comparison src/share/vm/opto/parse3.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children c9314fa4f757
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1998-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_parse3.cpp.incl"
27
28 //=============================================================================
29 // Helper methods for _get* and _put* bytecodes
30 //=============================================================================
31 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
32 // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
33 // Better to check now than to Deoptimize as soon as we execute
34 assert( field->is_static(), "Only check if field is static");
35 // is_being_initialized() is too generous. It allows access to statics
36 // by threads that are not running the <clinit> before the <clinit> finishes.
37 // return field->holder()->is_being_initialized();
38
39 // The following restriction is correct but conservative.
40 // It is also desirable to allow compilation of methods called from <clinit>
41 // but this generated code will need to be made safe for execution by
42 // other threads, or the transition from interpreted to compiled code would
43 // need to be guarded.
44 ciInstanceKlass *field_holder = field->holder();
45
46 bool access_OK = false;
47 if (method->holder()->is_subclass_of(field_holder)) {
48 if (method->is_static()) {
49 if (method->name() == ciSymbol::class_initializer_name()) {
50 // OK to access static fields inside initializer
51 access_OK = true;
52 }
53 } else {
54 if (method->name() == ciSymbol::object_initializer_name()) {
55 // It's also OK to access static fields inside a constructor,
56 // because any thread calling the constructor must first have
57 // synchronized on the class by executing a '_new' bytecode.
58 access_OK = true;
59 }
60 }
61 }
62
63 return access_OK;
64
65 }
66
67
68 void Parse::do_field_access(bool is_get, bool is_field) {
69 bool will_link;
70 ciField* field = iter().get_field(will_link);
71 assert(will_link, "getfield: typeflow responsibility");
72
73 ciInstanceKlass* field_holder = field->holder();
74
75 if (is_field == field->is_static()) {
76 // Interpreter will throw java_lang_IncompatibleClassChangeError
77 // Check this before allowing <clinit> methods to access static fields
78 uncommon_trap(Deoptimization::Reason_unhandled,
79 Deoptimization::Action_none);
80 return;
81 }
82
83 if (!is_field && !field_holder->is_initialized()) {
84 if (!static_field_ok_in_clinit(field, method())) {
85 uncommon_trap(Deoptimization::Reason_uninitialized,
86 Deoptimization::Action_reinterpret,
87 NULL, "!static_field_ok_in_clinit");
88 return;
89 }
90 }
91
92 assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
93
94 // Note: We do not check for an unloaded field type here any more.
95
96 // Generate code for the object pointer.
97 Node* obj;
98 if (is_field) {
99 int obj_depth = is_get ? 0 : field->type()->size();
100 obj = do_null_check(peek(obj_depth), T_OBJECT);
101 // Compile-time detect of null-exception?
102 if (stopped()) return;
103
104 const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
105 assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
106
107 if (is_get) {
108 --_sp; // pop receiver before getting
109 do_get_xxx(tjp, obj, field, is_field);
110 } else {
111 do_put_xxx(tjp, obj, field, is_field);
112 --_sp; // pop receiver after putting
113 }
114 } else {
115 const TypeKlassPtr* tkp = TypeKlassPtr::make(field_holder);
116 obj = _gvn.makecon(tkp);
117 if (is_get) {
118 do_get_xxx(tkp, obj, field, is_field);
119 } else {
120 do_put_xxx(tkp, obj, field, is_field);
121 }
122 }
123 }
124
125
126 void Parse::do_get_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
127 // Does this field have a constant value? If so, just push the value.
128 if (field->is_constant() && push_constant(field->constant_value())) return;
129
130 ciType* field_klass = field->type();
131 bool is_vol = field->is_volatile();
132
133 // Compute address and memory type.
134 int offset = field->offset_in_bytes();
135 const TypePtr* adr_type = C->alias_type(field)->adr_type();
136 Node *adr = basic_plus_adr(obj, obj, offset);
137 BasicType bt = field->layout_type();
138
139 // Build the resultant type of the load
140 const Type *type;
141
142 bool must_assert_null = false;
143
144 if( bt == T_OBJECT ) {
145 if (!field->type()->is_loaded()) {
146 type = TypeInstPtr::BOTTOM;
147 must_assert_null = true;
148 } else if (field->is_constant()) {
149 // This can happen if the constant oop is non-perm.
150 ciObject* con = field->constant_value().as_object();
151 // Do not "join" in the previous type; it doesn't add value,
152 // and may yield a vacuous result if the field is of interface type.
153 type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
154 assert(type != NULL, "field singleton type must be consistent");
155 } else {
156 type = TypeOopPtr::make_from_klass(field_klass->as_klass());
157 }
158 } else {
159 type = Type::get_const_basic_type(bt);
160 }
161 // Build the load.
162 Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
163
164 // Adjust Java stack
165 if (type2size[bt] == 1)
166 push(ld);
167 else
168 push_pair(ld);
169
170 if (must_assert_null) {
171 // Do not take a trap here. It's possible that the program
172 // will never load the field's class, and will happily see
173 // null values in this field forever. Don't stumble into a
174 // trap for such a program, or we might get a long series
175 // of useless recompilations. (Or, we might load a class
176 // which should not be loaded.) If we ever see a non-null
177 // value, we will then trap and recompile. (The trap will
178 // not need to mention the class index, since the class will
179 // already have been loaded if we ever see a non-null value.)
180 // uncommon_trap(iter().get_field_signature_index());
181 #ifndef PRODUCT
182 if (PrintOpto && (Verbose || WizardMode)) {
183 method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
184 }
185 #endif
186 if (C->log() != NULL) {
187 C->log()->elem("assert_null reason='field' klass='%d'",
188 C->log()->identify(field->type()));
189 }
190 // If there is going to be a trap, put it at the next bytecode:
191 set_bci(iter().next_bci());
192 do_null_assert(peek(), T_OBJECT);
193 set_bci(iter().cur_bci()); // put it back
194 }
195
196 // If reference is volatile, prevent following memory ops from
197 // floating up past the volatile read. Also prevents commoning
198 // another volatile read.
199 if (field->is_volatile()) {
200 // Memory barrier includes bogus read of value to force load BEFORE membar
201 insert_mem_bar(Op_MemBarAcquire, ld);
202 }
203 }
204
205 void Parse::do_put_xxx(const TypePtr* obj_type, Node* obj, ciField* field, bool is_field) {
206 bool is_vol = field->is_volatile();
207 // If reference is volatile, prevent following memory ops from
208 // floating down past the volatile write. Also prevents commoning
209 // another volatile read.
210 if (is_vol) insert_mem_bar(Op_MemBarRelease);
211
212 // Compute address and memory type.
213 int offset = field->offset_in_bytes();
214 const TypePtr* adr_type = C->alias_type(field)->adr_type();
215 Node* adr = basic_plus_adr(obj, obj, offset);
216 BasicType bt = field->layout_type();
217 // Value to be stored
218 Node* val = type2size[bt] == 1 ? pop() : pop_pair();
219 // Round doubles before storing
220 if (bt == T_DOUBLE) val = dstore_rounding(val);
221
222 // Store the value.
223 Node* store;
224 if (bt == T_OBJECT) {
225 const TypePtr* field_type;
226 if (!field->type()->is_loaded()) {
227 field_type = TypeInstPtr::BOTTOM;
228 } else {
229 field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
230 }
231 store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
232 } else {
233 store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
234 }
235
236 // If reference is volatile, prevent following volatiles ops from
237 // floating up before the volatile write.
238 if (is_vol) {
239 // First place the specific membar for THIS volatile index. This first
240 // membar is dependent on the store, keeping any other membars generated
241 // below from floating up past the store.
242 int adr_idx = C->get_alias_index(adr_type);
243 insert_mem_bar_volatile(Op_MemBarVolatile, adr_idx);
244
245 // Now place a membar for AliasIdxBot for the unknown yet-to-be-parsed
246 // volatile alias indices. Skip this if the membar is redundant.
247 if (adr_idx != Compile::AliasIdxBot) {
248 insert_mem_bar_volatile(Op_MemBarVolatile, Compile::AliasIdxBot);
249 }
250
251 // Finally, place alias-index-specific membars for each volatile index
252 // that isn't the adr_idx membar. Typically there's only 1 or 2.
253 for( int i = Compile::AliasIdxRaw; i < C->num_alias_types(); i++ ) {
254 if (i != adr_idx && C->alias_type(i)->is_volatile()) {
255 insert_mem_bar_volatile(Op_MemBarVolatile, i);
256 }
257 }
258 }
259
260 // If the field is final, the rules of Java say we are in <init> or <clinit>.
261 // Note the presence of writes to final non-static fields, so that we
262 // can insert a memory barrier later on to keep the writes from floating
263 // out of the constructor.
264 if (is_field && field->is_final()) {
265 set_wrote_final(true);
266 }
267 }
268
269
270 bool Parse::push_constant(ciConstant constant) {
271 switch (constant.basic_type()) {
272 case T_BOOLEAN: push( intcon(constant.as_boolean()) ); break;
273 case T_INT: push( intcon(constant.as_int()) ); break;
274 case T_CHAR: push( intcon(constant.as_char()) ); break;
275 case T_BYTE: push( intcon(constant.as_byte()) ); break;
276 case T_SHORT: push( intcon(constant.as_short()) ); break;
277 case T_FLOAT: push( makecon(TypeF::make(constant.as_float())) ); break;
278 case T_DOUBLE: push_pair( makecon(TypeD::make(constant.as_double())) ); break;
279 case T_LONG: push_pair( longcon(constant.as_long()) ); break;
280 case T_ARRAY:
281 case T_OBJECT: {
282 // the oop is in perm space if the ciObject "has_encoding"
283 ciObject* oop_constant = constant.as_object();
284 if (oop_constant->is_null_object()) {
285 push( zerocon(T_OBJECT) );
286 break;
287 } else if (oop_constant->has_encoding()) {
288 push( makecon(TypeOopPtr::make_from_constant(oop_constant)) );
289 break;
290 } else {
291 // we cannot inline the oop, but we can use it later to narrow a type
292 return false;
293 }
294 }
295 case T_ILLEGAL: {
296 // Invalid ciConstant returned due to OutOfMemoryError in the CI
297 assert(C->env()->failing(), "otherwise should not see this");
298 // These always occur because of object types; we are going to
299 // bail out anyway, so make the stack depths match up
300 push( zerocon(T_OBJECT) );
301 return false;
302 }
303 default:
304 ShouldNotReachHere();
305 return false;
306 }
307
308 // success
309 return true;
310 }
311
312
313
314 //=============================================================================
315 void Parse::do_anewarray() {
316 bool will_link;
317 ciKlass* klass = iter().get_klass(will_link);
318
319 // Uncommon Trap when class that array contains is not loaded
320 // we need the loaded class for the rest of graph; do not
321 // initialize the container class (see Java spec)!!!
322 assert(will_link, "anewarray: typeflow responsibility");
323
324 ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
325 // Check that array_klass object is loaded
326 if (!array_klass->is_loaded()) {
327 // Generate uncommon_trap for unloaded array_class
328 uncommon_trap(Deoptimization::Reason_unloaded,
329 Deoptimization::Action_reinterpret,
330 array_klass);
331 return;
332 }
333
334 kill_dead_locals();
335
336 const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
337 Node* count_val = pop();
338 Node* obj = new_array(makecon(array_klass_type), count_val);
339 push(obj);
340 }
341
342
343 void Parse::do_newarray(BasicType elem_type) {
344 kill_dead_locals();
345
346 Node* count_val = pop();
347 const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
348 Node* obj = new_array(makecon(array_klass), count_val);
349 // Push resultant oop onto stack
350 push(obj);
351 }
352
353 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
354 // Also handle the degenerate 1-dimensional case of anewarray.
355 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions) {
356 Node* length = lengths[0];
357 assert(length != NULL, "");
358 Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length);
359 if (ndimensions > 1) {
360 jint length_con = find_int_con(length, -1);
361 guarantee(length_con >= 0, "non-constant multianewarray");
362 ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
363 const TypePtr* adr_type = TypeAryPtr::OOPS;
364 const Type* elemtype = _gvn.type(array)->is_aryptr()->elem();
365 const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
366 for (jint i = 0; i < length_con; i++) {
367 Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1);
368 intptr_t offset = header + ((intptr_t)i << LogBytesPerWord);
369 Node* eaddr = basic_plus_adr(array, offset);
370 store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
371 }
372 }
373 return array;
374 }
375
376 void Parse::do_multianewarray() {
377 int ndimensions = iter().get_dimensions();
378
379 // the m-dimensional array
380 bool will_link;
381 ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
382 assert(will_link, "multianewarray: typeflow responsibility");
383
384 // Note: Array classes are always initialized; no is_initialized check.
385
386 enum { MAX_DIMENSION = 5 };
387 if (ndimensions > MAX_DIMENSION || ndimensions <= 0) {
388 uncommon_trap(Deoptimization::Reason_unhandled,
389 Deoptimization::Action_none);
390 return;
391 }
392
393 kill_dead_locals();
394
395 // get the lengths from the stack (first dimension is on top)
396 Node* length[MAX_DIMENSION+1];
397 length[ndimensions] = NULL; // terminating null for make_runtime_call
398 int j;
399 for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
400
401 // The original expression was of this form: new T[length0][length1]...
402 // It is often the case that the lengths are small (except the last).
403 // If that happens, use the fast 1-d creator a constant number of times.
404 const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
405 jint expand_count = 1; // count of allocations in the expansion
406 jint expand_fanout = 1; // running total fanout
407 for (j = 0; j < ndimensions-1; j++) {
408 jint dim_con = find_int_con(length[j], -1);
409 expand_fanout *= dim_con;
410 expand_count += expand_fanout; // count the level-J sub-arrays
411 if (dim_con < 0
412 || dim_con > expand_limit
413 || expand_count > expand_limit) {
414 expand_count = 0;
415 break;
416 }
417 }
418
419 // Can use multianewarray instead of [a]newarray if only one dimension,
420 // or if all non-final dimensions are small constants.
421 if (expand_count == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
422 Node* obj = expand_multianewarray(array_klass, &length[0], ndimensions);
423 push(obj);
424 return;
425 }
426
427 address fun = NULL;
428 switch (ndimensions) {
429 //case 1: Actually, there is no case 1. It's handled by new_array.
430 case 2: fun = OptoRuntime::multianewarray2_Java(); break;
431 case 3: fun = OptoRuntime::multianewarray3_Java(); break;
432 case 4: fun = OptoRuntime::multianewarray4_Java(); break;
433 case 5: fun = OptoRuntime::multianewarray5_Java(); break;
434 default: ShouldNotReachHere();
435 };
436
437 Node* c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
438 OptoRuntime::multianewarray_Type(ndimensions),
439 fun, NULL, TypeRawPtr::BOTTOM,
440 makecon(TypeKlassPtr::make(array_klass)),
441 length[0], length[1], length[2],
442 length[3], length[4]);
443 Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms));
444
445 const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
446
447 // Improve the type: We know it's not null, exact, and of a given length.
448 type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
449 type = type->is_aryptr()->cast_to_exactness(true);
450
451 const TypeInt* ltype = _gvn.find_int_type(length[0]);
452 if (ltype != NULL)
453 type = type->is_aryptr()->cast_to_size(ltype);
454
455 // We cannot sharpen the nested sub-arrays, since the top level is mutable.
456
457 Node* cast = _gvn.transform( new (C, 2) CheckCastPPNode(control(), res, type) );
458 push(cast);
459
460 // Possible improvements:
461 // - Make a fast path for small multi-arrays. (W/ implicit init. loops.)
462 // - Issue CastII against length[*] values, to TypeInt::POS.
463 }