comparison src/share/vm/opto/postaloc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children b683f557224b
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_postaloc.cpp.incl"
27
28 // see if this register kind does not requires two registers
29 static bool is_single_register(uint x) {
30 #ifdef _LP64
31 return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
32 #else
33 return (x != Op_RegD && x != Op_RegL);
34 #endif
35 }
36
37 //------------------------------may_be_copy_of_callee-----------------------------
38 // Check to see if we can possibly be a copy of a callee-save value.
39 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
40 // Short circuit if there are no callee save registers
41 if (_matcher.number_of_saved_registers() == 0) return false;
42
43 // Expect only a spill-down and reload on exit for callee-save spills.
44 // Chains of copies cannot be deep.
45 // 5008997 - This is wishful thinking. Register allocator seems to
46 // be splitting live ranges for callee save registers to such
47 // an extent that in large methods the chains can be very long
48 // (50+). The conservative answer is to return true if we don't
49 // know as this prevents optimizations from occuring.
50
51 const int limit = 60;
52 int i;
53 for( i=0; i < limit; i++ ) {
54 if( def->is_Proj() && def->in(0)->is_Start() &&
55 _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
56 return true; // Direct use of callee-save proj
57 if( def->is_Copy() ) // Copies carry value through
58 def = def->in(def->is_Copy());
59 else if( def->is_Phi() ) // Phis can merge it from any direction
60 def = def->in(1);
61 else
62 break;
63 guarantee(def != NULL, "must not resurrect dead copy");
64 }
65 // If we reached the end and didn't find a callee save proj
66 // then this may be a callee save proj so we return true
67 // as the conservative answer. If we didn't reach then end
68 // we must have discovered that it was not a callee save
69 // else we would have returned.
70 return i == limit;
71 }
72
73
74
75 //------------------------------yank_if_dead-----------------------------------
76 // Removed an edge from 'old'. Yank if dead. Return adjustment counts to
77 // iterators in the current block.
78 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
79 int blk_adjust=0;
80 while (old->outcnt() == 0 && old != C->top()) {
81 Block *oldb = _cfg._bbs[old->_idx];
82 oldb->find_remove(old);
83 // Count 1 if deleting an instruction from the current block
84 if( oldb == current_block ) blk_adjust++;
85 _cfg._bbs.map(old->_idx,NULL);
86 OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
87 if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
88 value->map(old_reg,NULL); // Yank from value/regnd maps
89 regnd->map(old_reg,NULL); // This register's value is now unknown
90 }
91 Node *tmp = old->req() > 1 ? old->in(1) : NULL;
92 old->disconnect_inputs(NULL);
93 if( !tmp ) break;
94 old = tmp;
95 }
96 return blk_adjust;
97 }
98
99 //------------------------------use_prior_register-----------------------------
100 // Use the prior value instead of the current value, in an effort to make
101 // the current value go dead. Return block iterator adjustment, in case
102 // we yank some instructions from this block.
103 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
104 // No effect?
105 if( def == n->in(idx) ) return 0;
106 // Def is currently dead and can be removed? Do not resurrect
107 if( def->outcnt() == 0 ) return 0;
108
109 // Not every pair of physical registers are assignment compatible,
110 // e.g. on sparc floating point registers are not assignable to integer
111 // registers.
112 const LRG &def_lrg = lrgs(n2lidx(def));
113 OptoReg::Name def_reg = def_lrg.reg();
114 const RegMask &use_mask = n->in_RegMask(idx);
115 bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
116 : (use_mask.is_AllStack() != 0));
117 // Check for a copy to or from a misaligned pair.
118 can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
119
120 if (!can_use)
121 return 0;
122
123 // Capture the old def in case it goes dead...
124 Node *old = n->in(idx);
125
126 // Save-on-call copies can only be elided if the entire copy chain can go
127 // away, lest we get the same callee-save value alive in 2 locations at
128 // once. We check for the obvious trivial case here. Although it can
129 // sometimes be elided with cooperation outside our scope, here we will just
130 // miss the opportunity. :-(
131 if( may_be_copy_of_callee(def) ) {
132 if( old->outcnt() > 1 ) return 0; // We're the not last user
133 int idx = old->is_Copy();
134 assert( idx, "chain of copies being removed" );
135 Node *old2 = old->in(idx); // Chain of copies
136 if( old2->outcnt() > 1 ) return 0; // old is not the last user
137 int idx2 = old2->is_Copy();
138 if( !idx2 ) return 0; // Not a chain of 2 copies
139 if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
140 }
141
142 // Use the new def
143 n->set_req(idx,def);
144 _post_alloc++;
145
146 // Is old def now dead? We successfully yanked a copy?
147 return yank_if_dead(old,current_block,&value,&regnd);
148 }
149
150
151 //------------------------------skip_copies------------------------------------
152 // Skip through any number of copies (that don't mod oop-i-ness)
153 Node *PhaseChaitin::skip_copies( Node *c ) {
154 int idx = c->is_Copy();
155 uint is_oop = lrgs(n2lidx(c))._is_oop;
156 while (idx != 0) {
157 guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
158 if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
159 break; // casting copy, not the same value
160 c = c->in(idx);
161 idx = c->is_Copy();
162 }
163 return c;
164 }
165
166 //------------------------------elide_copy-------------------------------------
167 // Remove (bypass) copies along Node n, edge k.
168 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
169 int blk_adjust = 0;
170
171 uint nk_idx = n2lidx(n->in(k));
172 OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
173
174 // Remove obvious same-register copies
175 Node *x = n->in(k);
176 int idx;
177 while( (idx=x->is_Copy()) != 0 ) {
178 Node *copy = x->in(idx);
179 guarantee(copy != NULL, "must not resurrect dead copy");
180 if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
181 blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
182 if( n->in(k) != copy ) break; // Failed for some cutout?
183 x = copy; // Progress, try again
184 }
185
186 // Phis and 2-address instructions cannot change registers so easily - their
187 // outputs must match their input.
188 if( !can_change_regs )
189 return blk_adjust; // Only check stupid copies!
190
191 // Loop backedges won't have a value-mapping yet
192 if( &value == NULL ) return blk_adjust;
193
194 // Skip through all copies to the _value_ being used. Do not change from
195 // int to pointer. This attempts to jump through a chain of copies, where
196 // intermediate copies might be illegal, i.e., value is stored down to stack
197 // then reloaded BUT survives in a register the whole way.
198 Node *val = skip_copies(n->in(k));
199
200 if( val == x ) return blk_adjust; // No progress?
201
202 bool single = is_single_register(val->ideal_reg());
203 uint val_idx = n2lidx(val);
204 OptoReg::Name val_reg = lrgs(val_idx).reg();
205
206 // See if it happens to already be in the correct register!
207 // (either Phi's direct register, or the common case of the name
208 // never-clobbered original-def register)
209 if( value[val_reg] == val &&
210 // Doubles check both halves
211 ( single || value[val_reg-1] == val ) ) {
212 blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
213 if( n->in(k) == regnd[val_reg] ) // Success! Quit trying
214 return blk_adjust;
215 }
216
217 // See if we can skip the copy by changing registers. Don't change from
218 // using a register to using the stack unless we know we can remove a
219 // copy-load. Otherwise we might end up making a pile of Intel cisc-spill
220 // ops reading from memory instead of just loading once and using the
221 // register.
222
223 // Also handle duplicate copies here.
224 const Type *t = val->is_Con() ? val->bottom_type() : NULL;
225
226 // Scan all registers to see if this value is around already
227 for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
228 Node *vv = value[reg];
229 if( !single ) { // Doubles check for aligned-adjacent pair
230 if( (reg&1)==0 ) continue; // Wrong half of a pair
231 if( vv != value[reg-1] ) continue; // Not a complete pair
232 }
233 if( vv == val || // Got a direct hit?
234 (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
235 vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
236 assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
237 if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
238 OptoReg::is_reg(reg) || // turning into a register use OR
239 regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
240 blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
241 if( n->in(k) == regnd[reg] ) // Success! Quit trying
242 return blk_adjust;
243 } // End of if not degrading to a stack
244 } // End of if found value in another register
245 } // End of scan all machine registers
246 return blk_adjust;
247 }
248
249
250 //
251 // Check if nreg already contains the constant value val. Normal copy
252 // elimination doesn't doesn't work on constants because multiple
253 // nodes can represent the same constant so the type and rule of the
254 // MachNode must be checked to ensure equivalence.
255 //
256 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Block *current_block,
257 Node_List& value, Node_List& regnd,
258 OptoReg::Name nreg, OptoReg::Name nreg2) {
259 if (value[nreg] != val && val->is_Con() &&
260 value[nreg] != NULL && value[nreg]->is_Con() &&
261 (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
262 value[nreg]->bottom_type() == val->bottom_type() &&
263 value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
264 // This code assumes that two MachNodes representing constants
265 // which have the same rule and the same bottom type will produce
266 // identical effects into a register. This seems like it must be
267 // objectively true unless there are hidden inputs to the nodes
268 // but if that were to change this code would need to updated.
269 // Since they are equivalent the second one if redundant and can
270 // be removed.
271 //
272 // val will be replaced with the old value but val might have
273 // kills projections associated with it so remove them now so that
274 // yank_if_dead will be able to elminate the copy once the uses
275 // have been transferred to the old[value].
276 for (DUIterator_Fast imax, i = val->fast_outs(imax); i < imax; i++) {
277 Node* use = val->fast_out(i);
278 if (use->is_Proj() && use->outcnt() == 0) {
279 // Kill projections have no users and one input
280 use->set_req(0, C->top());
281 yank_if_dead(use, current_block, &value, &regnd);
282 --i; --imax;
283 }
284 }
285 _post_alloc++;
286 return true;
287 }
288 return false;
289 }
290
291
292 //------------------------------post_allocate_copy_removal---------------------
293 // Post-Allocation peephole copy removal. We do this in 1 pass over the
294 // basic blocks. We maintain a mapping of registers to Nodes (an array of
295 // Nodes indexed by machine register or stack slot number). NULL means that a
296 // register is not mapped to any Node. We can (want to have!) have several
297 // registers map to the same Node. We walk forward over the instructions
298 // updating the mapping as we go. At merge points we force a NULL if we have
299 // to merge 2 different Nodes into the same register. Phi functions will give
300 // us a new Node if there is a proper value merging. Since the blocks are
301 // arranged in some RPO, we will visit all parent blocks before visiting any
302 // successor blocks (except at loops).
303 //
304 // If we find a Copy we look to see if the Copy's source register is a stack
305 // slot and that value has already been loaded into some machine register; if
306 // so we use machine register directly. This turns a Load into a reg-reg
307 // Move. We also look for reloads of identical constants.
308 //
309 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
310 // source directly and make the copy go dead.
311 void PhaseChaitin::post_allocate_copy_removal() {
312 NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
313 ResourceMark rm;
314
315 // Need a mapping from basic block Node_Lists. We need a Node_List to
316 // map from register number to value-producing Node.
317 Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
318 memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
319 // Need a mapping from basic block Node_Lists. We need a Node_List to
320 // map from register number to register-defining Node.
321 Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
322 memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
323
324 // We keep unused Node_Lists on a free_list to avoid wasting
325 // memory.
326 GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
327
328 // For all blocks
329 for( uint i = 0; i < _cfg._num_blocks; i++ ) {
330 uint j;
331 Block *b = _cfg._blocks[i];
332
333 // Count of Phis in block
334 uint phi_dex;
335 for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
336 Node *phi = b->_nodes[phi_dex];
337 if( !phi->is_Phi() )
338 break;
339 }
340
341 // If any predecessor has not been visited, we do not know the state
342 // of registers at the start. Check for this, while updating copies
343 // along Phi input edges
344 bool missing_some_inputs = false;
345 Block *freed = NULL;
346 for( j = 1; j < b->num_preds(); j++ ) {
347 Block *pb = _cfg._bbs[b->pred(j)->_idx];
348 // Remove copies along phi edges
349 for( uint k=1; k<phi_dex; k++ )
350 elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
351 if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
352 // See if this predecessor's mappings have been used by everybody
353 // who wants them. If so, free 'em.
354 uint k;
355 for( k=0; k<pb->_num_succs; k++ ) {
356 Block *pbsucc = pb->_succs[k];
357 if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
358 break; // Found a future user
359 }
360 if( k >= pb->_num_succs ) { // No more uses, free!
361 freed = pb; // Record last block freed
362 free_list.push(blk2value[pb->_pre_order]);
363 free_list.push(blk2regnd[pb->_pre_order]);
364 }
365 } else { // This block has unvisited (loopback) inputs
366 missing_some_inputs = true;
367 }
368 }
369
370
371 // Extract Node_List mappings. If 'freed' is non-zero, we just popped
372 // 'freed's blocks off the list
373 Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
374 Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
375 assert( !freed || blk2value[freed->_pre_order] == &value, "" );
376 value.map(_max_reg,NULL);
377 regnd.map(_max_reg,NULL);
378 // Set mappings as OUR mappings
379 blk2value[b->_pre_order] = &value;
380 blk2regnd[b->_pre_order] = &regnd;
381
382 // Initialize value & regnd for this block
383 if( missing_some_inputs ) {
384 // Some predecessor has not yet been visited; zap map to empty
385 for( uint k = 0; k < (uint)_max_reg; k++ ) {
386 value.map(k,NULL);
387 regnd.map(k,NULL);
388 }
389 } else {
390 if( !freed ) { // Didn't get a freebie prior block
391 // Must clone some data
392 freed = _cfg._bbs[b->pred(1)->_idx];
393 Node_List &f_value = *blk2value[freed->_pre_order];
394 Node_List &f_regnd = *blk2regnd[freed->_pre_order];
395 for( uint k = 0; k < (uint)_max_reg; k++ ) {
396 value.map(k,f_value[k]);
397 regnd.map(k,f_regnd[k]);
398 }
399 }
400 // Merge all inputs together, setting to NULL any conflicts.
401 for( j = 1; j < b->num_preds(); j++ ) {
402 Block *pb = _cfg._bbs[b->pred(j)->_idx];
403 if( pb == freed ) continue; // Did self already via freelist
404 Node_List &p_regnd = *blk2regnd[pb->_pre_order];
405 for( uint k = 0; k < (uint)_max_reg; k++ ) {
406 if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
407 value.map(k,NULL); // Then no value handy
408 regnd.map(k,NULL);
409 }
410 }
411 }
412 }
413
414 // For all Phi's
415 for( j = 1; j < phi_dex; j++ ) {
416 uint k;
417 Node *phi = b->_nodes[j];
418 uint pidx = n2lidx(phi);
419 OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
420
421 // Remove copies remaining on edges. Check for junk phi.
422 Node *u = NULL;
423 for( k=1; k<phi->req(); k++ ) {
424 Node *x = phi->in(k);
425 if( phi != x && u != x ) // Found a different input
426 u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
427 }
428 if( u != NodeSentinel ) { // Junk Phi. Remove
429 b->_nodes.remove(j--); phi_dex--;
430 _cfg._bbs.map(phi->_idx,NULL);
431 phi->replace_by(u);
432 phi->disconnect_inputs(NULL);
433 continue;
434 }
435 // Note that if value[pidx] exists, then we merged no new values here
436 // and the phi is useless. This can happen even with the above phi
437 // removal for complex flows. I cannot keep the better known value here
438 // because locally the phi appears to define a new merged value. If I
439 // keep the better value then a copy of the phi, being unable to use the
440 // global flow analysis, can't "peek through" the phi to the original
441 // reaching value and so will act like it's defining a new value. This
442 // can lead to situations where some uses are from the old and some from
443 // the new values. Not illegal by itself but throws the over-strong
444 // assert in scheduling.
445 if( pidx ) {
446 value.map(preg,phi);
447 regnd.map(preg,phi);
448 OptoReg::Name preg_lo = OptoReg::add(preg,-1);
449 if( !is_single_register(phi->ideal_reg()) ) {
450 value.map(preg_lo,phi);
451 regnd.map(preg_lo,phi);
452 }
453 }
454 }
455
456 // For all remaining instructions
457 for( j = phi_dex; j < b->_nodes.size(); j++ ) {
458 Node *n = b->_nodes[j];
459
460 if( n->outcnt() == 0 && // Dead?
461 n != C->top() && // (ignore TOP, it has no du info)
462 !n->is_Proj() ) { // fat-proj kills
463 j -= yank_if_dead(n,b,&value,&regnd);
464 continue;
465 }
466
467 // Improve reaching-def info. Occasionally post-alloc's liveness gives
468 // up (at loop backedges, because we aren't doing a full flow pass).
469 // The presence of a live use essentially asserts that the use's def is
470 // alive and well at the use (or else the allocator fubar'd). Take
471 // advantage of this info to set a reaching def for the use-reg.
472 uint k;
473 for( k = 1; k < n->req(); k++ ) {
474 Node *def = n->in(k); // n->in(k) is a USE; def is the DEF for this USE
475 guarantee(def != NULL, "no disconnected nodes at this point");
476 uint useidx = n2lidx(def); // useidx is the live range index for this USE
477
478 if( useidx ) {
479 OptoReg::Name ureg = lrgs(useidx).reg();
480 if( !value[ureg] ) {
481 int idx; // Skip occasional useless copy
482 while( (idx=def->is_Copy()) != 0 &&
483 def->in(idx) != NULL && // NULL should not happen
484 ureg == lrgs(n2lidx(def->in(idx))).reg() )
485 def = def->in(idx);
486 Node *valdef = skip_copies(def); // tighten up val through non-useless copies
487 value.map(ureg,valdef); // record improved reaching-def info
488 regnd.map(ureg, def);
489 // Record other half of doubles
490 OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
491 if( !is_single_register(def->ideal_reg()) &&
492 ( !RegMask::can_represent(ureg_lo) ||
493 lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
494 !value[ureg_lo] ) {
495 value.map(ureg_lo,valdef); // record improved reaching-def info
496 regnd.map(ureg_lo, def);
497 }
498 }
499 }
500 }
501
502 const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
503
504 // Remove copies along input edges
505 for( k = 1; k < n->req(); k++ )
506 j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
507
508 // Unallocated Nodes define no registers
509 uint lidx = n2lidx(n);
510 if( !lidx ) continue;
511
512 // Update the register defined by this instruction
513 OptoReg::Name nreg = lrgs(lidx).reg();
514 // Skip through all copies to the _value_ being defined.
515 // Do not change from int to pointer
516 Node *val = skip_copies(n);
517
518 uint n_ideal_reg = n->ideal_reg();
519 if( is_single_register(n_ideal_reg) ) {
520 // If Node 'n' does not change the value mapped by the register,
521 // then 'n' is a useless copy. Do not update the register->node
522 // mapping so 'n' will go dead.
523 if( value[nreg] != val ) {
524 if (eliminate_copy_of_constant(val, b, value, regnd, nreg, OptoReg::Bad)) {
525 n->replace_by(regnd[nreg]);
526 j -= yank_if_dead(n,b,&value,&regnd);
527 } else {
528 // Update the mapping: record new Node defined by the register
529 regnd.map(nreg,n);
530 // Update mapping for defined *value*, which is the defined
531 // Node after skipping all copies.
532 value.map(nreg,val);
533 }
534 } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
535 assert( n->is_Copy(), "" );
536 n->replace_by(regnd[nreg]);
537 j -= yank_if_dead(n,b,&value,&regnd);
538 }
539 } else {
540 // If the value occupies a register pair, record same info
541 // in both registers.
542 OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
543 if( RegMask::can_represent(nreg_lo) && // Either a spill slot, or
544 !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
545 // Sparc occasionally has non-adjacent pairs.
546 // Find the actual other value
547 RegMask tmp = lrgs(lidx).mask();
548 tmp.Remove(nreg);
549 nreg_lo = tmp.find_first_elem();
550 }
551 if( value[nreg] != val || value[nreg_lo] != val ) {
552 if (eliminate_copy_of_constant(n, b, value, regnd, nreg, nreg_lo)) {
553 n->replace_by(regnd[nreg]);
554 j -= yank_if_dead(n,b,&value,&regnd);
555 } else {
556 regnd.map(nreg , n );
557 regnd.map(nreg_lo, n );
558 value.map(nreg ,val);
559 value.map(nreg_lo,val);
560 }
561 } else if( !may_be_copy_of_callee(n) && regnd[nreg]->outcnt() != 0 ) {
562 assert( n->is_Copy(), "" );
563 n->replace_by(regnd[nreg]);
564 j -= yank_if_dead(n,b,&value,&regnd);
565 }
566 }
567
568 // Fat projections kill many registers
569 if( n_ideal_reg == MachProjNode::fat_proj ) {
570 RegMask rm = n->out_RegMask();
571 // wow, what an expensive iterator...
572 nreg = rm.find_first_elem();
573 while( OptoReg::is_valid(nreg)) {
574 rm.Remove(nreg);
575 value.map(nreg,n);
576 regnd.map(nreg,n);
577 nreg = rm.find_first_elem();
578 }
579 }
580
581 } // End of for all instructions in the block
582
583 } // End for all blocks
584 }