comparison src/share/vm/opto/runtime.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 37f87013dfd8
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_runtime.cpp.incl"
27
28
29 // For debugging purposes:
30 // To force FullGCALot inside a runtime function, add the following two lines
31 //
32 // Universe::release_fullgc_alot_dummy();
33 // MarkSweep::invoke(0, "Debugging");
34 //
35 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
36
37
38
39
40 // Compiled code entry points
41 address OptoRuntime::_new_instance_Java = NULL;
42 address OptoRuntime::_new_array_Java = NULL;
43 address OptoRuntime::_multianewarray2_Java = NULL;
44 address OptoRuntime::_multianewarray3_Java = NULL;
45 address OptoRuntime::_multianewarray4_Java = NULL;
46 address OptoRuntime::_multianewarray5_Java = NULL;
47 address OptoRuntime::_vtable_must_compile_Java = NULL;
48 address OptoRuntime::_complete_monitor_locking_Java = NULL;
49 address OptoRuntime::_rethrow_Java = NULL;
50
51 address OptoRuntime::_slow_arraycopy_Java = NULL;
52 address OptoRuntime::_register_finalizer_Java = NULL;
53
54 # ifdef ENABLE_ZAP_DEAD_LOCALS
55 address OptoRuntime::_zap_dead_Java_locals_Java = NULL;
56 address OptoRuntime::_zap_dead_native_locals_Java = NULL;
57 # endif
58
59
60 // This should be called in an assertion at the start of OptoRuntime routines
61 // which are entered from compiled code (all of them)
62 #ifndef PRODUCT
63 static bool check_compiled_frame(JavaThread* thread) {
64 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
65 #ifdef ASSERT
66 RegisterMap map(thread, false);
67 frame caller = thread->last_frame().sender(&map);
68 assert(caller.is_compiled_frame(), "not being called from compiled like code");
69 #endif /* ASSERT */
70 return true;
71 }
72 #endif
73
74
75 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
76 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
77
78 void OptoRuntime::generate(ciEnv* env) {
79
80 generate_exception_blob();
81
82 // Note: tls: Means fetching the return oop out of the thread-local storage
83 //
84 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
85 // -------------------------------------------------------------------------------------------------------------------------------
86 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
87 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
88 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
89 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
90 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
91 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
92 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C , 0 , false, false, false);
93 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
94
95 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
96 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
97
98 # ifdef ENABLE_ZAP_DEAD_LOCALS
99 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false );
100 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false );
101 # endif
102
103 }
104
105 #undef gen
106
107
108 // Helper method to do generation of RunTimeStub's
109 address OptoRuntime::generate_stub( ciEnv* env,
110 TypeFunc_generator gen, address C_function,
111 const char *name, int is_fancy_jump,
112 bool pass_tls,
113 bool save_argument_registers,
114 bool return_pc ) {
115 ResourceMark rm;
116 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
117 return C.stub_entry_point();
118 }
119
120 const char* OptoRuntime::stub_name(address entry) {
121 #ifndef PRODUCT
122 CodeBlob* cb = CodeCache::find_blob(entry);
123 RuntimeStub* rs =(RuntimeStub *)cb;
124 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
125 return rs->name();
126 #else
127 // Fast implementation for product mode (maybe it should be inlined too)
128 return "runtime stub";
129 #endif
130 }
131
132
133 //=============================================================================
134 // Opto compiler runtime routines
135 //=============================================================================
136
137
138 //=============================allocation======================================
139 // We failed the fast-path allocation. Now we need to do a scavenge or GC
140 // and try allocation again.
141
142 void OptoRuntime::do_eager_card_mark(JavaThread* thread) {
143 // After any safepoint, just before going back to compiled code,
144 // we perform a card mark. This lets the compiled code omit
145 // card marks for initialization of new objects.
146 // Keep this code consistent with GraphKit::store_barrier.
147
148 oop new_obj = thread->vm_result();
149 if (new_obj == NULL) return;
150
151 assert(Universe::heap()->can_elide_tlab_store_barriers(),
152 "compiler must check this first");
153 new_obj = Universe::heap()->new_store_barrier(new_obj);
154 thread->set_vm_result(new_obj);
155 }
156
157 // object allocation
158 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(klassOopDesc* klass, JavaThread* thread))
159 JRT_BLOCK;
160 #ifndef PRODUCT
161 SharedRuntime::_new_instance_ctr++; // new instance requires GC
162 #endif
163 assert(check_compiled_frame(thread), "incorrect caller");
164
165 // These checks are cheap to make and support reflective allocation.
166 int lh = Klass::cast(klass)->layout_helper();
167 if (Klass::layout_helper_needs_slow_path(lh)
168 || !instanceKlass::cast(klass)->is_initialized()) {
169 KlassHandle kh(THREAD, klass);
170 kh->check_valid_for_instantiation(false, THREAD);
171 if (!HAS_PENDING_EXCEPTION) {
172 instanceKlass::cast(kh())->initialize(THREAD);
173 }
174 if (!HAS_PENDING_EXCEPTION) {
175 klass = kh();
176 } else {
177 klass = NULL;
178 }
179 }
180
181 if (klass != NULL) {
182 // Scavenge and allocate an instance.
183 oop result = instanceKlass::cast(klass)->allocate_instance(THREAD);
184 thread->set_vm_result(result);
185
186 // Pass oops back through thread local storage. Our apparent type to Java
187 // is that we return an oop, but we can block on exit from this routine and
188 // a GC can trash the oop in C's return register. The generated stub will
189 // fetch the oop from TLS after any possible GC.
190 }
191
192 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
193 JRT_BLOCK_END;
194
195 if (GraphKit::use_ReduceInitialCardMarks()) {
196 // do them now so we don't have to do them on the fast path
197 do_eager_card_mark(thread);
198 }
199 JRT_END
200
201
202 // array allocation
203 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(klassOopDesc* array_type, int len, JavaThread *thread))
204 JRT_BLOCK;
205 #ifndef PRODUCT
206 SharedRuntime::_new_array_ctr++; // new array requires GC
207 #endif
208 assert(check_compiled_frame(thread), "incorrect caller");
209
210 // Scavenge and allocate an instance.
211 oop result;
212
213 if (Klass::cast(array_type)->oop_is_typeArray()) {
214 // The oopFactory likes to work with the element type.
215 // (We could bypass the oopFactory, since it doesn't add much value.)
216 BasicType elem_type = typeArrayKlass::cast(array_type)->element_type();
217 result = oopFactory::new_typeArray(elem_type, len, THREAD);
218 } else {
219 // Although the oopFactory likes to work with the elem_type,
220 // the compiler prefers the array_type, since it must already have
221 // that latter value in hand for the fast path.
222 klassOopDesc* elem_type = objArrayKlass::cast(array_type)->element_klass();
223 result = oopFactory::new_objArray(elem_type, len, THREAD);
224 }
225
226 // Pass oops back through thread local storage. Our apparent type to Java
227 // is that we return an oop, but we can block on exit from this routine and
228 // a GC can trash the oop in C's return register. The generated stub will
229 // fetch the oop from TLS after any possible GC.
230 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
231 thread->set_vm_result(result);
232 JRT_BLOCK_END;
233
234 if (GraphKit::use_ReduceInitialCardMarks()) {
235 // do them now so we don't have to do them on the fast path
236 do_eager_card_mark(thread);
237 }
238 JRT_END
239
240 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
241
242 // multianewarray for 2 dimensions
243 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(klassOopDesc* elem_type, int len1, int len2, JavaThread *thread))
244 #ifndef PRODUCT
245 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
246 #endif
247 assert(check_compiled_frame(thread), "incorrect caller");
248 assert(oop(elem_type)->is_klass(), "not a class");
249 jint dims[2];
250 dims[0] = len1;
251 dims[1] = len2;
252 oop obj = arrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
253 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
254 thread->set_vm_result(obj);
255 JRT_END
256
257 // multianewarray for 3 dimensions
258 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(klassOopDesc* elem_type, int len1, int len2, int len3, JavaThread *thread))
259 #ifndef PRODUCT
260 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
261 #endif
262 assert(check_compiled_frame(thread), "incorrect caller");
263 assert(oop(elem_type)->is_klass(), "not a class");
264 jint dims[3];
265 dims[0] = len1;
266 dims[1] = len2;
267 dims[2] = len3;
268 oop obj = arrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
269 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
270 thread->set_vm_result(obj);
271 JRT_END
272
273 // multianewarray for 4 dimensions
274 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
275 #ifndef PRODUCT
276 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
277 #endif
278 assert(check_compiled_frame(thread), "incorrect caller");
279 assert(oop(elem_type)->is_klass(), "not a class");
280 jint dims[4];
281 dims[0] = len1;
282 dims[1] = len2;
283 dims[2] = len3;
284 dims[3] = len4;
285 oop obj = arrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
286 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
287 thread->set_vm_result(obj);
288 JRT_END
289
290 // multianewarray for 5 dimensions
291 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(klassOopDesc* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
292 #ifndef PRODUCT
293 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
294 #endif
295 assert(check_compiled_frame(thread), "incorrect caller");
296 assert(oop(elem_type)->is_klass(), "not a class");
297 jint dims[5];
298 dims[0] = len1;
299 dims[1] = len2;
300 dims[2] = len3;
301 dims[3] = len4;
302 dims[4] = len5;
303 oop obj = arrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
304 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
305 thread->set_vm_result(obj);
306 JRT_END
307
308 const TypeFunc *OptoRuntime::new_instance_Type() {
309 // create input type (domain)
310 const Type **fields = TypeTuple::fields(1);
311 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
312 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
313
314 // create result type (range)
315 fields = TypeTuple::fields(1);
316 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
317
318 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
319
320 return TypeFunc::make(domain, range);
321 }
322
323
324 const TypeFunc *OptoRuntime::athrow_Type() {
325 // create input type (domain)
326 const Type **fields = TypeTuple::fields(1);
327 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
328 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
329
330 // create result type (range)
331 fields = TypeTuple::fields(0);
332
333 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
334
335 return TypeFunc::make(domain, range);
336 }
337
338
339 const TypeFunc *OptoRuntime::new_array_Type() {
340 // create input type (domain)
341 const Type **fields = TypeTuple::fields(2);
342 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
343 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
344 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
345
346 // create result type (range)
347 fields = TypeTuple::fields(1);
348 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
349
350 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
351
352 return TypeFunc::make(domain, range);
353 }
354
355 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
356 // create input type (domain)
357 const int nargs = ndim + 1;
358 const Type **fields = TypeTuple::fields(nargs);
359 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
360 for( int i = 1; i < nargs; i++ )
361 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
362 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
363
364 // create result type (range)
365 fields = TypeTuple::fields(1);
366 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
367 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
368
369 return TypeFunc::make(domain, range);
370 }
371
372 const TypeFunc *OptoRuntime::multianewarray2_Type() {
373 return multianewarray_Type(2);
374 }
375
376 const TypeFunc *OptoRuntime::multianewarray3_Type() {
377 return multianewarray_Type(3);
378 }
379
380 const TypeFunc *OptoRuntime::multianewarray4_Type() {
381 return multianewarray_Type(4);
382 }
383
384 const TypeFunc *OptoRuntime::multianewarray5_Type() {
385 return multianewarray_Type(5);
386 }
387
388 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
389 // create input type (domain)
390 const Type **fields = TypeTuple::fields(1);
391 // symbolOop name of class to be loaded
392 fields[TypeFunc::Parms+0] = TypeInt::INT;
393 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
394
395 // create result type (range)
396 fields = TypeTuple::fields(0);
397 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
398
399 return TypeFunc::make(domain, range);
400 }
401
402 # ifdef ENABLE_ZAP_DEAD_LOCALS
403 // Type used for stub generation for zap_dead_locals.
404 // No inputs or outputs
405 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
406 // create input type (domain)
407 const Type **fields = TypeTuple::fields(0);
408 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
409
410 // create result type (range)
411 fields = TypeTuple::fields(0);
412 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
413
414 return TypeFunc::make(domain,range);
415 }
416 # endif
417
418
419 //-----------------------------------------------------------------------------
420 // Monitor Handling
421 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
422 // create input type (domain)
423 const Type **fields = TypeTuple::fields(2);
424 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
425 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
426 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
427
428 // create result type (range)
429 fields = TypeTuple::fields(0);
430
431 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
432
433 return TypeFunc::make(domain,range);
434 }
435
436
437 //-----------------------------------------------------------------------------
438 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
439 // create input type (domain)
440 const Type **fields = TypeTuple::fields(2);
441 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
442 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
443 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
444
445 // create result type (range)
446 fields = TypeTuple::fields(0);
447
448 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
449
450 return TypeFunc::make(domain,range);
451 }
452
453 const TypeFunc* OptoRuntime::flush_windows_Type() {
454 // create input type (domain)
455 const Type** fields = TypeTuple::fields(1);
456 fields[TypeFunc::Parms+0] = NULL; // void
457 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
458
459 // create result type
460 fields = TypeTuple::fields(1);
461 fields[TypeFunc::Parms+0] = NULL; // void
462 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
463
464 return TypeFunc::make(domain, range);
465 }
466
467 const TypeFunc* OptoRuntime::l2f_Type() {
468 // create input type (domain)
469 const Type **fields = TypeTuple::fields(2);
470 fields[TypeFunc::Parms+0] = TypeLong::LONG;
471 fields[TypeFunc::Parms+1] = Type::HALF;
472 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
473
474 // create result type (range)
475 fields = TypeTuple::fields(1);
476 fields[TypeFunc::Parms+0] = Type::FLOAT;
477 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
478
479 return TypeFunc::make(domain, range);
480 }
481
482 const TypeFunc* OptoRuntime::modf_Type() {
483 const Type **fields = TypeTuple::fields(2);
484 fields[TypeFunc::Parms+0] = Type::FLOAT;
485 fields[TypeFunc::Parms+1] = Type::FLOAT;
486 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
487
488 // create result type (range)
489 fields = TypeTuple::fields(1);
490 fields[TypeFunc::Parms+0] = Type::FLOAT;
491
492 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
493
494 return TypeFunc::make(domain, range);
495 }
496
497 const TypeFunc *OptoRuntime::Math_D_D_Type() {
498 // create input type (domain)
499 const Type **fields = TypeTuple::fields(2);
500 // symbolOop name of class to be loaded
501 fields[TypeFunc::Parms+0] = Type::DOUBLE;
502 fields[TypeFunc::Parms+1] = Type::HALF;
503 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
504
505 // create result type (range)
506 fields = TypeTuple::fields(2);
507 fields[TypeFunc::Parms+0] = Type::DOUBLE;
508 fields[TypeFunc::Parms+1] = Type::HALF;
509 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
510
511 return TypeFunc::make(domain, range);
512 }
513
514 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
515 const Type **fields = TypeTuple::fields(4);
516 fields[TypeFunc::Parms+0] = Type::DOUBLE;
517 fields[TypeFunc::Parms+1] = Type::HALF;
518 fields[TypeFunc::Parms+2] = Type::DOUBLE;
519 fields[TypeFunc::Parms+3] = Type::HALF;
520 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
521
522 // create result type (range)
523 fields = TypeTuple::fields(2);
524 fields[TypeFunc::Parms+0] = Type::DOUBLE;
525 fields[TypeFunc::Parms+1] = Type::HALF;
526 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
527
528 return TypeFunc::make(domain, range);
529 }
530
531 //-------------- currentTimeMillis
532
533 const TypeFunc* OptoRuntime::current_time_millis_Type() {
534 // create input type (domain)
535 const Type **fields = TypeTuple::fields(0);
536 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
537
538 // create result type (range)
539 fields = TypeTuple::fields(2);
540 fields[TypeFunc::Parms+0] = TypeLong::LONG;
541 fields[TypeFunc::Parms+1] = Type::HALF;
542 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
543
544 return TypeFunc::make(domain, range);
545 }
546
547 // arraycopy stub variations:
548 enum ArrayCopyType {
549 ac_fast, // void(ptr, ptr, size_t)
550 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
551 ac_slow, // void(ptr, int, ptr, int, int)
552 ac_generic // int(ptr, int, ptr, int, int)
553 };
554
555 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
556 // create input type (domain)
557 int num_args = (act == ac_fast ? 3 : 5);
558 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
559 int argcnt = num_args;
560 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
561 const Type** fields = TypeTuple::fields(argcnt);
562 int argp = TypeFunc::Parms;
563 fields[argp++] = TypePtr::NOTNULL; // src
564 if (num_size_args == 0) {
565 fields[argp++] = TypeInt::INT; // src_pos
566 }
567 fields[argp++] = TypePtr::NOTNULL; // dest
568 if (num_size_args == 0) {
569 fields[argp++] = TypeInt::INT; // dest_pos
570 fields[argp++] = TypeInt::INT; // length
571 }
572 while (num_size_args-- > 0) {
573 fields[argp++] = TypeX_X; // size in whatevers (size_t)
574 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
575 }
576 if (act == ac_checkcast) {
577 fields[argp++] = TypePtr::NOTNULL; // super_klass
578 }
579 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
580 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
581
582 // create result type if needed
583 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
584 fields = TypeTuple::fields(1);
585 if (retcnt == 0)
586 fields[TypeFunc::Parms+0] = NULL; // void
587 else
588 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
589 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
590 return TypeFunc::make(domain, range);
591 }
592
593 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
594 // This signature is simple: Two base pointers and a size_t.
595 return make_arraycopy_Type(ac_fast);
596 }
597
598 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
599 // An extension of fast_arraycopy_Type which adds type checking.
600 return make_arraycopy_Type(ac_checkcast);
601 }
602
603 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
604 // This signature is exactly the same as System.arraycopy.
605 // There are no intptr_t (int/long) arguments.
606 return make_arraycopy_Type(ac_slow);
607 }
608
609 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
610 // This signature is like System.arraycopy, except that it returns status.
611 return make_arraycopy_Type(ac_generic);
612 }
613
614
615 //------------- Interpreter state access for on stack replacement
616 const TypeFunc* OptoRuntime::osr_end_Type() {
617 // create input type (domain)
618 const Type **fields = TypeTuple::fields(1);
619 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
620 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
621
622 // create result type
623 fields = TypeTuple::fields(1);
624 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
625 fields[TypeFunc::Parms+0] = NULL; // void
626 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
627 return TypeFunc::make(domain, range);
628 }
629
630 //-------------- methodData update helpers
631
632 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
633 // create input type (domain)
634 const Type **fields = TypeTuple::fields(2);
635 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
636 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
637 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
638
639 // create result type
640 fields = TypeTuple::fields(1);
641 fields[TypeFunc::Parms+0] = NULL; // void
642 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
643 return TypeFunc::make(domain,range);
644 }
645
646 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
647 if (receiver == NULL) return;
648 klassOop receiver_klass = receiver->klass();
649
650 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
651 int empty_row = -1; // free row, if any is encountered
652
653 // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
654 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
655 // if (vc->receiver(row) == receiver_klass)
656 int receiver_off = ReceiverTypeData::receiver_cell_index(row);
657 intptr_t row_recv = *(mdp + receiver_off);
658 if (row_recv == (intptr_t) receiver_klass) {
659 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
660 int count_off = ReceiverTypeData::receiver_count_cell_index(row);
661 *(mdp + count_off) += DataLayout::counter_increment;
662 return;
663 } else if (row_recv == 0) {
664 // else if (vc->receiver(row) == NULL)
665 empty_row = (int) row;
666 }
667 }
668
669 if (empty_row != -1) {
670 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
671 // vc->set_receiver(empty_row, receiver_klass);
672 *(mdp + receiver_off) = (intptr_t) receiver_klass;
673 // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
674 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
675 *(mdp + count_off) = DataLayout::counter_increment;
676 }
677 JRT_END
678
679 //-----------------------------------------------------------------------------
680 // implicit exception support.
681
682 static void report_null_exception_in_code_cache(address exception_pc) {
683 ResourceMark rm;
684 CodeBlob* n = CodeCache::find_blob(exception_pc);
685 if (n != NULL) {
686 tty->print_cr("#");
687 tty->print_cr("# HotSpot Runtime Error, null exception in generated code");
688 tty->print_cr("#");
689 tty->print_cr("# pc where exception happened = " INTPTR_FORMAT, exception_pc);
690
691 if (n->is_nmethod()) {
692 methodOop method = ((nmethod*)n)->method();
693 tty->print_cr("# Method where it happened %s.%s ", Klass::cast(method->method_holder())->name()->as_C_string(), method->name()->as_C_string());
694 tty->print_cr("#");
695 if (ShowMessageBoxOnError && UpdateHotSpotCompilerFileOnError) {
696 const char* title = "HotSpot Runtime Error";
697 const char* question = "Do you want to exclude compilation of this method in future runs?";
698 if (os::message_box(title, question)) {
699 CompilerOracle::append_comment_to_file("");
700 CompilerOracle::append_comment_to_file("Null exception in compiled code resulted in the following exclude");
701 CompilerOracle::append_comment_to_file("");
702 CompilerOracle::append_exclude_to_file(method);
703 tty->print_cr("#");
704 tty->print_cr("# %s has been updated to exclude the specified method", CompileCommandFile);
705 tty->print_cr("#");
706 }
707 }
708 fatal("Implicit null exception happened in compiled method");
709 } else {
710 n->print();
711 fatal("Implicit null exception happened in generated stub");
712 }
713 }
714 fatal("Implicit null exception at wrong place");
715 }
716
717
718 //-------------------------------------------------------------------------------------
719 // register policy
720
721 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
722 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
723 switch (register_save_policy[reg]) {
724 case 'C': return false; //SOC
725 case 'E': return true ; //SOE
726 case 'N': return false; //NS
727 case 'A': return false; //AS
728 }
729 ShouldNotReachHere();
730 return false;
731 }
732
733 //-----------------------------------------------------------------------
734 // Exceptions
735 //
736
737 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
738
739 // The method is an entry that is always called by a C++ method not
740 // directly from compiled code. Compiled code will call the C++ method following.
741 // We can't allow async exception to be installed during exception processing.
742 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
743
744 // Do not confuse exception_oop with pending_exception. The exception_oop
745 // is only used to pass arguments into the method. Not for general
746 // exception handling. DO NOT CHANGE IT to use pending_exception, since
747 // the runtime stubs checks this on exit.
748 assert(thread->exception_oop() != NULL, "exception oop is found");
749 address handler_address = NULL;
750
751 Handle exception(thread, thread->exception_oop());
752
753 if (TraceExceptions) {
754 trace_exception(exception(), thread->exception_pc(), "");
755 }
756 // for AbortVMOnException flag
757 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
758
759 #ifdef ASSERT
760 if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
761 // should throw an exception here
762 ShouldNotReachHere();
763 }
764 #endif
765
766
767 // new exception handling: this method is entered only from adapters
768 // exceptions from compiled java methods are handled in compiled code
769 // using rethrow node
770
771 address pc = thread->exception_pc();
772 nm = CodeCache::find_nmethod(pc);
773 assert(nm != NULL, "No NMethod found");
774 if (nm->is_native_method()) {
775 fatal("Native mathod should not have path to exception handling");
776 } else {
777 // we are switching to old paradigm: search for exception handler in caller_frame
778 // instead in exception handler of caller_frame.sender()
779
780 if (JvmtiExport::can_post_exceptions()) {
781 // "Full-speed catching" is not necessary here,
782 // since we're notifying the VM on every catch.
783 // Force deoptimization and the rest of the lookup
784 // will be fine.
785 deoptimize_caller_frame(thread, true);
786 }
787
788 // Check the stack guard pages. If enabled, look for handler in this frame;
789 // otherwise, forcibly unwind the frame.
790 //
791 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
792 bool force_unwind = !thread->reguard_stack();
793 bool deopting = false;
794 if (nm->is_deopt_pc(pc)) {
795 deopting = true;
796 RegisterMap map(thread, false);
797 frame deoptee = thread->last_frame().sender(&map);
798 assert(deoptee.is_deoptimized_frame(), "must be deopted");
799 // Adjust the pc back to the original throwing pc
800 pc = deoptee.pc();
801 }
802
803 // If we are forcing an unwind because of stack overflow then deopt is
804 // irrelevant sice we are throwing the frame away anyway.
805
806 if (deopting && !force_unwind) {
807 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
808 } else {
809
810 handler_address =
811 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
812
813 if (handler_address == NULL) {
814 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
815 assert (handler_address != NULL, "must have compiled handler");
816 // Update the exception cache only when the unwind was not forced.
817 if (!force_unwind) {
818 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
819 }
820 } else {
821 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
822 }
823 }
824
825 thread->set_exception_pc(pc);
826 thread->set_exception_handler_pc(handler_address);
827 thread->set_exception_stack_size(0);
828 }
829
830 // Restore correct return pc. Was saved above.
831 thread->set_exception_oop(exception());
832 return handler_address;
833
834 JRT_END
835
836 // We are entering here from exception_blob
837 // If there is a compiled exception handler in this method, we will continue there;
838 // otherwise we will unwind the stack and continue at the caller of top frame method
839 // Note we enter without the usual JRT wrapper. We will call a helper routine that
840 // will do the normal VM entry. We do it this way so that we can see if the nmethod
841 // we looked up the handler for has been deoptimized in the meantime. If it has been
842 // we must not use the handler and instread return the deopt blob.
843 address OptoRuntime::handle_exception_C(JavaThread* thread) {
844 //
845 // We are in Java not VM and in debug mode we have a NoHandleMark
846 //
847 #ifndef PRODUCT
848 SharedRuntime::_find_handler_ctr++; // find exception handler
849 #endif
850 debug_only(NoHandleMark __hm;)
851 nmethod* nm = NULL;
852 address handler_address = NULL;
853 {
854 // Enter the VM
855
856 ResetNoHandleMark rnhm;
857 handler_address = handle_exception_C_helper(thread, nm);
858 }
859
860 // Back in java: Use no oops, DON'T safepoint
861
862 // Now check to see if the handler we are returning is in a now
863 // deoptimized frame
864
865 if (nm != NULL) {
866 RegisterMap map(thread, false);
867 frame caller = thread->last_frame().sender(&map);
868 #ifdef ASSERT
869 assert(caller.is_compiled_frame(), "must be");
870 #endif // ASSERT
871 if (caller.is_deoptimized_frame()) {
872 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
873 }
874 }
875 return handler_address;
876 }
877
878 //------------------------------rethrow----------------------------------------
879 // We get here after compiled code has executed a 'RethrowNode'. The callee
880 // is either throwing or rethrowing an exception. The callee-save registers
881 // have been restored, synchronized objects have been unlocked and the callee
882 // stack frame has been removed. The return address was passed in.
883 // Exception oop is passed as the 1st argument. This routine is then called
884 // from the stub. On exit, we know where to jump in the caller's code.
885 // After this C code exits, the stub will pop his frame and end in a jump
886 // (instead of a return). We enter the caller's default handler.
887 //
888 // This must be JRT_LEAF:
889 // - caller will not change its state as we cannot block on exit,
890 // therefore raw_exception_handler_for_return_address is all it takes
891 // to handle deoptimized blobs
892 //
893 // However, there needs to be a safepoint check in the middle! So compiled
894 // safepoints are completely watertight.
895 //
896 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
897 //
898 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
899 //
900 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
901 #ifndef PRODUCT
902 SharedRuntime::_rethrow_ctr++; // count rethrows
903 #endif
904 assert (exception != NULL, "should have thrown a NULLPointerException");
905 #ifdef ASSERT
906 if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
907 // should throw an exception here
908 ShouldNotReachHere();
909 }
910 #endif
911
912 thread->set_vm_result(exception);
913 // Frame not compiled (handles deoptimization blob)
914 return SharedRuntime::raw_exception_handler_for_return_address(ret_pc);
915 }
916
917
918 const TypeFunc *OptoRuntime::rethrow_Type() {
919 // create input type (domain)
920 const Type **fields = TypeTuple::fields(1);
921 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
922 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
923
924 // create result type (range)
925 fields = TypeTuple::fields(1);
926 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
927 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
928
929 return TypeFunc::make(domain, range);
930 }
931
932
933 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
934 // Deoptimize frame
935 if (doit) {
936 // Called from within the owner thread, so no need for safepoint
937 RegisterMap reg_map(thread);
938 frame stub_frame = thread->last_frame();
939 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
940 frame caller_frame = stub_frame.sender(&reg_map);
941
942 VM_DeoptimizeFrame deopt(thread, caller_frame.id());
943 VMThread::execute(&deopt);
944 }
945 }
946
947
948 const TypeFunc *OptoRuntime::register_finalizer_Type() {
949 // create input type (domain)
950 const Type **fields = TypeTuple::fields(1);
951 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
952 // // The JavaThread* is passed to each routine as the last argument
953 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
954 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
955
956 // create result type (range)
957 fields = TypeTuple::fields(0);
958
959 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
960
961 return TypeFunc::make(domain,range);
962 }
963
964
965 //-----------------------------------------------------------------------------
966 // Dtrace support. entry and exit probes have the same signature
967 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
968 // create input type (domain)
969 const Type **fields = TypeTuple::fields(2);
970 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
971 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // methodOop; Method we are entering
972 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
973
974 // create result type (range)
975 fields = TypeTuple::fields(0);
976
977 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
978
979 return TypeFunc::make(domain,range);
980 }
981
982 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
983 // create input type (domain)
984 const Type **fields = TypeTuple::fields(2);
985 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
986 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
987
988 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
989
990 // create result type (range)
991 fields = TypeTuple::fields(0);
992
993 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
994
995 return TypeFunc::make(domain,range);
996 }
997
998
999 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1000 assert(obj->is_oop(), "must be a valid oop");
1001 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
1002 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
1003 JRT_END
1004
1005 //-----------------------------------------------------------------------------
1006
1007 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1008
1009 //
1010 // dump the collected NamedCounters.
1011 //
1012 void OptoRuntime::print_named_counters() {
1013 int total_lock_count = 0;
1014 int eliminated_lock_count = 0;
1015
1016 NamedCounter* c = _named_counters;
1017 while (c) {
1018 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1019 int count = c->count();
1020 if (count > 0) {
1021 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1022 if (Verbose) {
1023 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1024 }
1025 total_lock_count += count;
1026 if (eliminated) {
1027 eliminated_lock_count += count;
1028 }
1029 }
1030 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1031 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1032 if (blc->nonzero()) {
1033 tty->print_cr("%s", c->name());
1034 blc->print_on(tty);
1035 }
1036 }
1037 c = c->next();
1038 }
1039 if (total_lock_count > 0) {
1040 tty->print_cr("dynamic locks: %d", total_lock_count);
1041 if (eliminated_lock_count) {
1042 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1043 (int)(eliminated_lock_count * 100.0 / total_lock_count));
1044 }
1045 }
1046 }
1047
1048 //
1049 // Allocate a new NamedCounter. The JVMState is used to generate the
1050 // name which consists of method@line for the inlining tree.
1051 //
1052
1053 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1054 int max_depth = youngest_jvms->depth();
1055
1056 // Visit scopes from youngest to oldest.
1057 bool first = true;
1058 stringStream st;
1059 for (int depth = max_depth; depth >= 1; depth--) {
1060 JVMState* jvms = youngest_jvms->of_depth(depth);
1061 ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1062 if (!first) {
1063 st.print(" ");
1064 } else {
1065 first = false;
1066 }
1067 int bci = jvms->bci();
1068 if (bci < 0) bci = 0;
1069 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1070 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1071 }
1072 NamedCounter* c;
1073 if (tag == NamedCounter::BiasedLockingCounter) {
1074 c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1075 } else {
1076 c = new NamedCounter(strdup(st.as_string()), tag);
1077 }
1078
1079 // atomically add the new counter to the head of the list. We only
1080 // add counters so this is safe.
1081 NamedCounter* head;
1082 do {
1083 head = _named_counters;
1084 c->set_next(head);
1085 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1086 return c;
1087 }
1088
1089 //-----------------------------------------------------------------------------
1090 // Non-product code
1091 #ifndef PRODUCT
1092
1093 int trace_exception_counter = 0;
1094 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1095 ttyLocker ttyl;
1096 trace_exception_counter++;
1097 tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1098 exception_oop->print_value();
1099 tty->print(" in ");
1100 CodeBlob* blob = CodeCache::find_blob(exception_pc);
1101 if (blob->is_nmethod()) {
1102 ((nmethod*)blob)->method()->print_value();
1103 } else if (blob->is_runtime_stub()) {
1104 tty->print("<runtime-stub>");
1105 } else {
1106 tty->print("<unknown>");
1107 }
1108 tty->print(" at " INTPTR_FORMAT, exception_pc);
1109 tty->print_cr("]");
1110 }
1111
1112 #endif // PRODUCT
1113
1114
1115 # ifdef ENABLE_ZAP_DEAD_LOCALS
1116 // Called from call sites in compiled code with oop maps (actually safepoints)
1117 // Zaps dead locals in first java frame.
1118 // Is entry because may need to lock to generate oop maps
1119 // Currently, only used for compiler frames, but someday may be used
1120 // for interpreter frames, too.
1121
1122 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1123
1124 // avoid pointers to member funcs with these helpers
1125 static bool is_java_frame( frame* f) { return f->is_java_frame(); }
1126 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1127
1128
1129 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1130 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1131 assert(JavaThread::current() == thread, "is this needed?");
1132
1133 if ( !ZapDeadCompiledLocals ) return;
1134
1135 bool skip = false;
1136
1137 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special
1138 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true;
1139 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count )
1140 warning("starting zapping after skipping");
1141
1142 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special
1143 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true;
1144 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count )
1145 warning("about to zap last zap");
1146
1147 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1148
1149 if ( skip ) return;
1150
1151 // find java frame and zap it
1152
1153 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) {
1154 if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1155 sfs.current()->zap_dead_locals(thread, sfs.register_map());
1156 return;
1157 }
1158 }
1159 warning("no frame found to zap in zap_dead_Java_locals_C");
1160 }
1161
1162 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1163 zap_dead_java_or_native_locals(thread, is_java_frame);
1164 JRT_END
1165
1166 // The following does not work because for one thing, the
1167 // thread state is wrong; it expects java, but it is native.
1168 // Also, the invarients in a native stub are different and
1169 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1170 // in there.
1171 // So for now, we do not zap in native stubs.
1172
1173 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1174 zap_dead_java_or_native_locals(thread, is_native_frame);
1175 JRT_END
1176
1177 # endif