comparison src/share/vm/opto/subnode.hpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
comparison
equal deleted inserted replaced
-1:000000000000 0:a61af66fc99e
1 /*
2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 // Portions of code courtesy of Clifford Click
26
27 //------------------------------SUBNode----------------------------------------
28 // Class SUBTRACTION functionality. This covers all the usual 'subtract'
29 // behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,
30 // -float, and -double are all inherited from this class. The compare
31 // functions behave like subtract functions, except that all negative answers
32 // are compressed into -1, and all positive answers compressed to 1.
33 class SubNode : public Node {
34 public:
35 SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
36 init_class_id(Class_Sub);
37 }
38
39 // Handle algebraic identities here. If we have an identity, return the Node
40 // we are equivalent to. We look for "add of zero" as an identity.
41 virtual Node *Identity( PhaseTransform *phase );
42
43 // Compute a new Type for this node. Basically we just do the pre-check,
44 // then call the virtual add() to set the type.
45 virtual const Type *Value( PhaseTransform *phase ) const;
46
47 // Supplied function returns the subtractend of the inputs.
48 // This also type-checks the inputs for sanity. Guaranteed never to
49 // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
50 virtual const Type *sub( const Type *, const Type * ) const = 0;
51
52 // Supplied function to return the additive identity type.
53 // This is returned whenever the subtracts inputs are the same.
54 virtual const Type *add_id() const = 0;
55
56 };
57
58
59 // NOTE: SubINode should be taken away and replaced by add and negate
60 //------------------------------SubINode---------------------------------------
61 // Subtract 2 integers
62 class SubINode : public SubNode {
63 public:
64 SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
65 virtual int Opcode() const;
66 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
67 virtual const Type *sub( const Type *, const Type * ) const;
68 const Type *add_id() const { return TypeInt::ZERO; }
69 const Type *bottom_type() const { return TypeInt::INT; }
70 virtual uint ideal_reg() const { return Op_RegI; }
71 };
72
73 //------------------------------SubLNode---------------------------------------
74 // Subtract 2 integers
75 class SubLNode : public SubNode {
76 public:
77 SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
78 virtual int Opcode() const;
79 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
80 virtual const Type *sub( const Type *, const Type * ) const;
81 const Type *add_id() const { return TypeLong::ZERO; }
82 const Type *bottom_type() const { return TypeLong::LONG; }
83 virtual uint ideal_reg() const { return Op_RegL; }
84 };
85
86 // NOTE: SubFPNode should be taken away and replaced by add and negate
87 //------------------------------SubFPNode--------------------------------------
88 // Subtract 2 floats or doubles
89 class SubFPNode : public SubNode {
90 protected:
91 SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
92 public:
93 const Type *Value( PhaseTransform *phase ) const;
94 };
95
96 // NOTE: SubFNode should be taken away and replaced by add and negate
97 //------------------------------SubFNode---------------------------------------
98 // Subtract 2 doubles
99 class SubFNode : public SubFPNode {
100 public:
101 SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
102 virtual int Opcode() const;
103 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
104 virtual const Type *sub( const Type *, const Type * ) const;
105 const Type *add_id() const { return TypeF::ZERO; }
106 const Type *bottom_type() const { return Type::FLOAT; }
107 virtual uint ideal_reg() const { return Op_RegF; }
108 };
109
110 // NOTE: SubDNode should be taken away and replaced by add and negate
111 //------------------------------SubDNode---------------------------------------
112 // Subtract 2 doubles
113 class SubDNode : public SubFPNode {
114 public:
115 SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
116 virtual int Opcode() const;
117 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
118 virtual const Type *sub( const Type *, const Type * ) const;
119 const Type *add_id() const { return TypeD::ZERO; }
120 const Type *bottom_type() const { return Type::DOUBLE; }
121 virtual uint ideal_reg() const { return Op_RegD; }
122 };
123
124 //------------------------------CmpNode---------------------------------------
125 // Compare 2 values, returning condition codes (-1, 0 or 1).
126 class CmpNode : public SubNode {
127 public:
128 CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
129 init_class_id(Class_Cmp);
130 }
131 virtual Node *Identity( PhaseTransform *phase );
132 const Type *add_id() const { return TypeInt::ZERO; }
133 const Type *bottom_type() const { return TypeInt::CC; }
134 virtual uint ideal_reg() const { return Op_RegFlags; }
135 };
136
137 //------------------------------CmpINode---------------------------------------
138 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
139 class CmpINode : public CmpNode {
140 public:
141 CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
142 virtual int Opcode() const;
143 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
144 virtual const Type *sub( const Type *, const Type * ) const;
145 };
146
147 //------------------------------CmpUNode---------------------------------------
148 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
149 class CmpUNode : public CmpNode {
150 public:
151 CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
152 virtual int Opcode() const;
153 virtual const Type *sub( const Type *, const Type * ) const;
154 };
155
156 //------------------------------CmpPNode---------------------------------------
157 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
158 class CmpPNode : public CmpNode {
159 public:
160 CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
161 virtual int Opcode() const;
162 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
163 virtual const Type *sub( const Type *, const Type * ) const;
164 };
165
166 //------------------------------CmpLNode---------------------------------------
167 // Compare 2 long values, returning condition codes (-1, 0 or 1).
168 class CmpLNode : public CmpNode {
169 public:
170 CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
171 virtual int Opcode() const;
172 virtual const Type *sub( const Type *, const Type * ) const;
173 };
174
175 //------------------------------CmpL3Node--------------------------------------
176 // Compare 2 long values, returning integer value (-1, 0 or 1).
177 class CmpL3Node : public CmpLNode {
178 public:
179 CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
180 // Since it is not consumed by Bools, it is not really a Cmp.
181 init_class_id(Class_Sub);
182 }
183 virtual int Opcode() const;
184 virtual uint ideal_reg() const { return Op_RegI; }
185 };
186
187 //------------------------------CmpFNode---------------------------------------
188 // Compare 2 float values, returning condition codes (-1, 0 or 1).
189 // This implements the Java bytecode fcmpl, so unordered returns -1.
190 // Operands may not commute.
191 class CmpFNode : public CmpNode {
192 public:
193 CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
194 virtual int Opcode() const;
195 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
196 const Type *Value( PhaseTransform *phase ) const;
197 };
198
199 //------------------------------CmpF3Node--------------------------------------
200 // Compare 2 float values, returning integer value (-1, 0 or 1).
201 // This implements the Java bytecode fcmpl, so unordered returns -1.
202 // Operands may not commute.
203 class CmpF3Node : public CmpFNode {
204 public:
205 CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
206 // Since it is not consumed by Bools, it is not really a Cmp.
207 init_class_id(Class_Sub);
208 }
209 virtual int Opcode() const;
210 // Since it is not consumed by Bools, it is not really a Cmp.
211 virtual uint ideal_reg() const { return Op_RegI; }
212 };
213
214
215 //------------------------------CmpDNode---------------------------------------
216 // Compare 2 double values, returning condition codes (-1, 0 or 1).
217 // This implements the Java bytecode dcmpl, so unordered returns -1.
218 // Operands may not commute.
219 class CmpDNode : public CmpNode {
220 public:
221 CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
222 virtual int Opcode() const;
223 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
224 const Type *Value( PhaseTransform *phase ) const;
225 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
226 };
227
228 //------------------------------CmpD3Node--------------------------------------
229 // Compare 2 double values, returning integer value (-1, 0 or 1).
230 // This implements the Java bytecode dcmpl, so unordered returns -1.
231 // Operands may not commute.
232 class CmpD3Node : public CmpDNode {
233 public:
234 CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
235 // Since it is not consumed by Bools, it is not really a Cmp.
236 init_class_id(Class_Sub);
237 }
238 virtual int Opcode() const;
239 virtual uint ideal_reg() const { return Op_RegI; }
240 };
241
242
243 //------------------------------BoolTest---------------------------------------
244 // Convert condition codes to a boolean test value (0 or -1).
245 // We pick the values as 3 bits; the low order 2 bits we compare against the
246 // condition codes, the high bit flips the sense of the result.
247 struct BoolTest VALUE_OBJ_CLASS_SPEC {
248 enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, illegal = 8 };
249 mask _test;
250 BoolTest( mask btm ) : _test(btm) {}
251 const Type *cc2logical( const Type *CC ) const;
252 // Commute the test. I use a small table lookup. The table is created as
253 // a simple char array where each element is the ASCII version of a 'mask'
254 // enum from above.
255 mask commute( ) const { return mask("038147858"[_test]-'0'); }
256 mask negate( ) const { return mask(_test^4); }
257 bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le); }
258 #ifndef PRODUCT
259 void dump_on(outputStream *st) const;
260 #endif
261 };
262
263 //------------------------------BoolNode---------------------------------------
264 // A Node to convert a Condition Codes to a Logical result.
265 class BoolNode : public Node {
266 virtual uint hash() const;
267 virtual uint cmp( const Node &n ) const;
268 virtual uint size_of() const;
269 public:
270 const BoolTest _test;
271 BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
272 init_class_id(Class_Bool);
273 }
274 // Convert an arbitrary int value to a Bool or other suitable predicate.
275 static Node* make_predicate(Node* test_value, PhaseGVN* phase);
276 // Convert self back to an integer value.
277 Node* as_int_value(PhaseGVN* phase);
278 // Invert sense of self, returning new Bool.
279 BoolNode* negate(PhaseGVN* phase);
280 virtual int Opcode() const;
281 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
282 virtual const Type *Value( PhaseTransform *phase ) const;
283 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
284 uint match_edge(uint idx) const { return 0; }
285 virtual uint ideal_reg() const { return Op_RegI; }
286
287 bool is_counted_loop_exit_test();
288 #ifndef PRODUCT
289 virtual void dump_spec(outputStream *st) const;
290 #endif
291 };
292
293 //------------------------------AbsNode----------------------------------------
294 // Abstract class for absolute value. Mostly used to get a handy wrapper
295 // for finding this pattern in the graph.
296 class AbsNode : public Node {
297 public:
298 AbsNode( Node *value ) : Node(0,value) {}
299 };
300
301 //------------------------------AbsINode---------------------------------------
302 // Absolute value an integer. Since a naive graph involves control flow, we
303 // "match" it in the ideal world (so the control flow can be removed).
304 class AbsINode : public AbsNode {
305 public:
306 AbsINode( Node *in1 ) : AbsNode(in1) {}
307 virtual int Opcode() const;
308 const Type *bottom_type() const { return TypeInt::INT; }
309 virtual uint ideal_reg() const { return Op_RegI; }
310 };
311
312 //------------------------------AbsFNode---------------------------------------
313 // Absolute value a float, a common float-point idiom with a cheap hardware
314 // implemention on most chips. Since a naive graph involves control flow, we
315 // "match" it in the ideal world (so the control flow can be removed).
316 class AbsFNode : public AbsNode {
317 public:
318 AbsFNode( Node *in1 ) : AbsNode(in1) {}
319 virtual int Opcode() const;
320 const Type *bottom_type() const { return Type::FLOAT; }
321 virtual uint ideal_reg() const { return Op_RegF; }
322 };
323
324 //------------------------------AbsDNode---------------------------------------
325 // Absolute value a double, a common float-point idiom with a cheap hardware
326 // implemention on most chips. Since a naive graph involves control flow, we
327 // "match" it in the ideal world (so the control flow can be removed).
328 class AbsDNode : public AbsNode {
329 public:
330 AbsDNode( Node *in1 ) : AbsNode(in1) {}
331 virtual int Opcode() const;
332 const Type *bottom_type() const { return Type::DOUBLE; }
333 virtual uint ideal_reg() const { return Op_RegD; }
334 };
335
336
337 //------------------------------CmpLTMaskNode----------------------------------
338 // If p < q, return -1 else return 0. Nice for flow-free idioms.
339 class CmpLTMaskNode : public Node {
340 public:
341 CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
342 virtual int Opcode() const;
343 const Type *bottom_type() const { return TypeInt::INT; }
344 virtual uint ideal_reg() const { return Op_RegI; }
345 };
346
347
348 //------------------------------NegNode----------------------------------------
349 class NegNode : public Node {
350 public:
351 NegNode( Node *in1 ) : Node(0,in1) {}
352 };
353
354 //------------------------------NegFNode---------------------------------------
355 // Negate value a float. Negating 0.0 returns -0.0, but subtracting from
356 // zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction
357 // cannot be used to replace negation we have to implement negation as ideal
358 // node; note that negation and addition can replace subtraction.
359 class NegFNode : public NegNode {
360 public:
361 NegFNode( Node *in1 ) : NegNode(in1) {}
362 virtual int Opcode() const;
363 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
364 const Type *bottom_type() const { return Type::FLOAT; }
365 virtual uint ideal_reg() const { return Op_RegF; }
366 };
367
368 //------------------------------NegDNode---------------------------------------
369 // Negate value a double. Negating 0.0 returns -0.0, but subtracting from
370 // zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction
371 // cannot be used to replace negation we have to implement negation as ideal
372 // node; note that negation and addition can replace subtraction.
373 class NegDNode : public NegNode {
374 public:
375 NegDNode( Node *in1 ) : NegNode(in1) {}
376 virtual int Opcode() const;
377 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
378 const Type *bottom_type() const { return Type::DOUBLE; }
379 virtual uint ideal_reg() const { return Op_RegD; }
380 };
381
382 //------------------------------CosDNode---------------------------------------
383 // Cosinus of a double
384 class CosDNode : public Node {
385 public:
386 CosDNode( Node *in1 ) : Node(0, in1) {}
387 virtual int Opcode() const;
388 const Type *bottom_type() const { return Type::DOUBLE; }
389 virtual uint ideal_reg() const { return Op_RegD; }
390 virtual const Type *Value( PhaseTransform *phase ) const;
391 };
392
393 //------------------------------CosDNode---------------------------------------
394 // Sinus of a double
395 class SinDNode : public Node {
396 public:
397 SinDNode( Node *in1 ) : Node(0, in1) {}
398 virtual int Opcode() const;
399 const Type *bottom_type() const { return Type::DOUBLE; }
400 virtual uint ideal_reg() const { return Op_RegD; }
401 virtual const Type *Value( PhaseTransform *phase ) const;
402 };
403
404
405 //------------------------------TanDNode---------------------------------------
406 // tangens of a double
407 class TanDNode : public Node {
408 public:
409 TanDNode(Node *in1 ) : Node(0, in1) {}
410 virtual int Opcode() const;
411 const Type *bottom_type() const { return Type::DOUBLE; }
412 virtual uint ideal_reg() const { return Op_RegD; }
413 virtual const Type *Value( PhaseTransform *phase ) const;
414 };
415
416
417 //------------------------------AtanDNode--------------------------------------
418 // arcus tangens of a double
419 class AtanDNode : public Node {
420 public:
421 AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
422 virtual int Opcode() const;
423 const Type *bottom_type() const { return Type::DOUBLE; }
424 virtual uint ideal_reg() const { return Op_RegD; }
425 };
426
427
428 //------------------------------SqrtDNode--------------------------------------
429 // square root a double
430 class SqrtDNode : public Node {
431 public:
432 SqrtDNode(Node *c, Node *in1 ) : Node(c, in1) {}
433 virtual int Opcode() const;
434 const Type *bottom_type() const { return Type::DOUBLE; }
435 virtual uint ideal_reg() const { return Op_RegD; }
436 virtual const Type *Value( PhaseTransform *phase ) const;
437 };
438
439 //------------------------------ExpDNode---------------------------------------
440 // Exponentiate a double
441 class ExpDNode : public Node {
442 public:
443 ExpDNode( Node *c, Node *in1 ) : Node(c, in1) {}
444 virtual int Opcode() const;
445 const Type *bottom_type() const { return Type::DOUBLE; }
446 virtual uint ideal_reg() const { return Op_RegD; }
447 virtual const Type *Value( PhaseTransform *phase ) const;
448 };
449
450 //------------------------------LogDNode---------------------------------------
451 // Log_e of a double
452 class LogDNode : public Node {
453 public:
454 LogDNode( Node *in1 ) : Node(0, in1) {}
455 virtual int Opcode() const;
456 const Type *bottom_type() const { return Type::DOUBLE; }
457 virtual uint ideal_reg() const { return Op_RegD; }
458 virtual const Type *Value( PhaseTransform *phase ) const;
459 };
460
461 //------------------------------Log10DNode---------------------------------------
462 // Log_10 of a double
463 class Log10DNode : public Node {
464 public:
465 Log10DNode( Node *in1 ) : Node(0, in1) {}
466 virtual int Opcode() const;
467 const Type *bottom_type() const { return Type::DOUBLE; }
468 virtual uint ideal_reg() const { return Op_RegD; }
469 virtual const Type *Value( PhaseTransform *phase ) const;
470 };
471
472 //------------------------------PowDNode---------------------------------------
473 // Raise a double to a double power
474 class PowDNode : public Node {
475 public:
476 PowDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
477 virtual int Opcode() const;
478 const Type *bottom_type() const { return Type::DOUBLE; }
479 virtual uint ideal_reg() const { return Op_RegD; }
480 virtual const Type *Value( PhaseTransform *phase ) const;
481 };
482
483 //-------------------------------ReverseBytesINode--------------------------------
484 // reverse bytes of an integer
485 class ReverseBytesINode : public Node {
486 public:
487 ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
488 virtual int Opcode() const;
489 const Type *bottom_type() const { return TypeInt::INT; }
490 virtual uint ideal_reg() const { return Op_RegI; }
491 };
492
493 //-------------------------------ReverseBytesLNode--------------------------------
494 // reverse bytes of a long
495 class ReverseBytesLNode : public Node {
496 public:
497 ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
498 virtual int Opcode() const;
499 const Type *bottom_type() const { return TypeLong::LONG; }
500 virtual uint ideal_reg() const { return Op_RegL; }
501 };