comparison src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp @ 17759:bc22cbb8b45a

8035330: Remove G1ParScanPartialArrayClosure and G1ParScanHeapEvacClosure Summary: Mentioned closures are actually wrapped methods. This adds confusion to readers, and in this case also increases code size as G1ParScanHeapEvacClosure is part of the oop_oop_iterate() methods. Move them into G1ParScanThreadState as methods. Reviewed-by: stefank
author tschatzl
date Mon, 24 Mar 2014 15:30:56 +0100
parents a07bea31ef35
children 8ee855b4e667
comparison
equal deleted inserted replaced
17758:ae7336d6337e 17759:bc22cbb8b45a
1791 1791
1792 size_t _alloc_buffer_waste; 1792 size_t _alloc_buffer_waste;
1793 size_t _undo_waste; 1793 size_t _undo_waste;
1794 1794
1795 OopsInHeapRegionClosure* _evac_failure_cl; 1795 OopsInHeapRegionClosure* _evac_failure_cl;
1796 G1ParScanHeapEvacClosure* _evac_cl;
1797 G1ParScanPartialArrayClosure* _partial_scan_cl;
1798 1796
1799 int _hash_seed; 1797 int _hash_seed;
1800 uint _queue_num; 1798 uint _queue_num;
1801 1799
1802 size_t _term_attempts; 1800 size_t _term_attempts;
1920 } 1918 }
1921 OopsInHeapRegionClosure* evac_failure_closure() { 1919 OopsInHeapRegionClosure* evac_failure_closure() {
1922 return _evac_failure_cl; 1920 return _evac_failure_cl;
1923 } 1921 }
1924 1922
1925 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1926 _evac_cl = evac_cl;
1927 }
1928
1929 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1930 _partial_scan_cl = partial_scan_cl;
1931 }
1932
1933 int* hash_seed() { return &_hash_seed; } 1923 int* hash_seed() { return &_hash_seed; }
1934 uint queue_num() { return _queue_num; } 1924 uint queue_num() { return _queue_num; }
1935 1925
1936 size_t term_attempts() const { return _term_attempts; } 1926 size_t term_attempts() const { return _term_attempts; }
1937 void note_term_attempt() { _term_attempts++; } 1927 void note_term_attempt() { _term_attempts++; }
1975 _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap), 1965 _alloc_buffers[ap]->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
1976 true /* end_of_gc */, 1966 true /* end_of_gc */,
1977 false /* retain */); 1967 false /* retain */);
1978 } 1968 }
1979 } 1969 }
1970 private:
1971 #define G1_PARTIAL_ARRAY_MASK 0x2
1972
1973 inline bool has_partial_array_mask(oop* ref) const {
1974 return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
1975 }
1976
1977 // We never encode partial array oops as narrowOop*, so return false immediately.
1978 // This allows the compiler to create optimized code when popping references from
1979 // the work queue.
1980 inline bool has_partial_array_mask(narrowOop* ref) const {
1981 assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
1982 return false;
1983 }
1984
1985 // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
1986 // We always encode partial arrays as regular oop, to allow the
1987 // specialization for has_partial_array_mask() for narrowOops above.
1988 // This means that unintentional use of this method with narrowOops are caught
1989 // by the compiler.
1990 inline oop* set_partial_array_mask(oop obj) const {
1991 assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
1992 return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
1993 }
1994
1995 inline oop clear_partial_array_mask(oop* ref) const {
1996 return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
1997 }
1998
1999 void do_oop_partial_array(oop* p) {
2000 assert(has_partial_array_mask(p), "invariant");
2001 oop from_obj = clear_partial_array_mask(p);
2002
2003 assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
2004 assert(from_obj->is_objArray(), "must be obj array");
2005 objArrayOop from_obj_array = objArrayOop(from_obj);
2006 // The from-space object contains the real length.
2007 int length = from_obj_array->length();
2008
2009 assert(from_obj->is_forwarded(), "must be forwarded");
2010 oop to_obj = from_obj->forwardee();
2011 assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
2012 objArrayOop to_obj_array = objArrayOop(to_obj);
2013 // We keep track of the next start index in the length field of the
2014 // to-space object.
2015 int next_index = to_obj_array->length();
2016 assert(0 <= next_index && next_index < length,
2017 err_msg("invariant, next index: %d, length: %d", next_index, length));
2018
2019 int start = next_index;
2020 int end = length;
2021 int remainder = end - start;
2022 // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
2023 if (remainder > 2 * ParGCArrayScanChunk) {
2024 end = start + ParGCArrayScanChunk;
2025 to_obj_array->set_length(end);
2026 // Push the remainder before we process the range in case another
2027 // worker has run out of things to do and can steal it.
2028 oop* from_obj_p = set_partial_array_mask(from_obj);
2029 push_on_queue(from_obj_p);
2030 } else {
2031 assert(length == end, "sanity");
2032 // We'll process the final range for this object. Restore the length
2033 // so that the heap remains parsable in case of evacuation failure.
2034 to_obj_array->set_length(end);
2035 }
2036 _scanner.set_region(_g1h->heap_region_containing_raw(to_obj));
2037 // Process indexes [start,end). It will also process the header
2038 // along with the first chunk (i.e., the chunk with start == 0).
2039 // Note that at this point the length field of to_obj_array is not
2040 // correct given that we are using it to keep track of the next
2041 // start index. oop_iterate_range() (thankfully!) ignores the length
2042 // field and only relies on the start / end parameters. It does
2043 // however return the size of the object which will be incorrect. So
2044 // we have to ignore it even if we wanted to use it.
2045 to_obj_array->oop_iterate_range(&_scanner, start, end);
2046 }
2047
2048 // This method is applied to the fields of the objects that have just been copied.
2049 template <class T> void do_oop_evac(T* p, HeapRegion* from) {
2050 assert(!oopDesc::is_null(oopDesc::load_decode_heap_oop(p)),
2051 "Reference should not be NULL here as such are never pushed to the task queue.");
2052 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
2053
2054 // Although we never intentionally push references outside of the collection
2055 // set, due to (benign) races in the claim mechanism during RSet scanning more
2056 // than one thread might claim the same card. So the same card may be
2057 // processed multiple times. So redo this check.
2058 if (_g1h->in_cset_fast_test(obj)) {
2059 oop forwardee;
2060 if (obj->is_forwarded()) {
2061 forwardee = obj->forwardee();
2062 } else {
2063 forwardee = copy_to_survivor_space(obj);
2064 }
2065 assert(forwardee != NULL, "forwardee should not be NULL");
2066 oopDesc::encode_store_heap_oop(p, forwardee);
2067 }
2068
2069 assert(obj != NULL, "Must be");
2070 update_rs(from, p, queue_num());
2071 }
2072 public:
1980 2073
1981 oop copy_to_survivor_space(oop const obj); 2074 oop copy_to_survivor_space(oop const obj);
1982 2075
1983 template <class T> void deal_with_reference(T* ref_to_scan) { 2076 template <class T> void deal_with_reference(T* ref_to_scan) {
1984 if (has_partial_array_mask(ref_to_scan)) { 2077 if (!has_partial_array_mask(ref_to_scan)) {
1985 _partial_scan_cl->do_oop_nv(ref_to_scan);
1986 } else {
1987 // Note: we can use "raw" versions of "region_containing" because 2078 // Note: we can use "raw" versions of "region_containing" because
1988 // "obj_to_scan" is definitely in the heap, and is not in a 2079 // "obj_to_scan" is definitely in the heap, and is not in a
1989 // humongous region. 2080 // humongous region.
1990 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan); 2081 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
1991 _evac_cl->set_region(r); 2082 do_oop_evac(ref_to_scan, r);
1992 _evac_cl->do_oop_nv(ref_to_scan); 2083 } else {
2084 do_oop_partial_array((oop*)ref_to_scan);
1993 } 2085 }
1994 } 2086 }
1995 2087
1996 void deal_with_reference(StarTask ref) { 2088 void deal_with_reference(StarTask ref) {
1997 assert(verify_task(ref), "sanity"); 2089 assert(verify_task(ref), "sanity");