comparison src/share/vm/opto/output.cpp @ 12355:cefad50507d8

Merge with hs25-b53
author Gilles Duboscq <duboscq@ssw.jku.at>
date Fri, 11 Oct 2013 10:38:03 +0200
parents 3cce976666d9 650868c062a9
children d8041d695d19
comparison
equal deleted inserted replaced
12058:ccb4f2af2319 12355:cefad50507d8
52 #endif 52 #endif
53 53
54 extern int emit_exception_handler(CodeBuffer &cbuf); 54 extern int emit_exception_handler(CodeBuffer &cbuf);
55 extern int emit_deopt_handler(CodeBuffer &cbuf); 55 extern int emit_deopt_handler(CodeBuffer &cbuf);
56 56
57 //------------------------------Output-----------------------------------------
58 // Convert Nodes to instruction bits and pass off to the VM 57 // Convert Nodes to instruction bits and pass off to the VM
59 void Compile::Output() { 58 void Compile::Output() {
60 // RootNode goes 59 // RootNode goes
61 assert( _cfg->_broot->_nodes.size() == 0, "" ); 60 assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
62 61
63 // The number of new nodes (mostly MachNop) is proportional to 62 // The number of new nodes (mostly MachNop) is proportional to
64 // the number of java calls and inner loops which are aligned. 63 // the number of java calls and inner loops which are aligned.
65 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 64 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
66 C->inner_loops()*(OptoLoopAlignment-1)), 65 C->inner_loops()*(OptoLoopAlignment-1)),
67 "out of nodes before code generation" ) ) { 66 "out of nodes before code generation" ) ) {
68 return; 67 return;
69 } 68 }
70 // Make sure I can find the Start Node 69 // Make sure I can find the Start Node
71 Block *entry = _cfg->_blocks[1]; 70 Block *entry = _cfg->get_block(1);
72 Block *broot = _cfg->_broot; 71 Block *broot = _cfg->get_root_block();
73 72
74 const StartNode *start = entry->_nodes[0]->as_Start(); 73 const StartNode *start = entry->head()->as_Start();
75 74
76 // Replace StartNode with prolog 75 // Replace StartNode with prolog
77 MachPrologNode *prolog = new (this) MachPrologNode(); 76 MachPrologNode *prolog = new (this) MachPrologNode();
78 entry->_nodes.map( 0, prolog ); 77 entry->map_node(prolog, 0);
79 _cfg->map_node_to_block(prolog, entry); 78 _cfg->map_node_to_block(prolog, entry);
80 _cfg->unmap_node_from_block(start); // start is no longer in any block 79 _cfg->unmap_node_from_block(start); // start is no longer in any block
81 80
82 // Virtual methods need an unverified entry point 81 // Virtual methods need an unverified entry point
83 82
107 // runtime stubs or frame converters 106 // runtime stubs or frame converters
108 _cfg->insert( entry, 1, new (this) MachBreakpointNode() ); 107 _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
109 } 108 }
110 109
111 // Insert epilogs before every return 110 // Insert epilogs before every return
112 for( uint i=0; i<_cfg->_num_blocks; i++ ) { 111 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
113 Block *b = _cfg->_blocks[i]; 112 Block* block = _cfg->get_block(i);
114 if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point? 113 if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
115 Node *m = b->end(); 114 Node* m = block->end();
116 if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) { 115 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
117 MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 116 MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
118 b->add_inst( epilog ); 117 block->add_inst(epilog);
119 _cfg->map_node_to_block(epilog, b); 118 _cfg->map_node_to_block(epilog, block);
120 } 119 }
121 } 120 }
122 } 121 }
123 122
124 # ifdef ENABLE_ZAP_DEAD_LOCALS 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
125 if ( ZapDeadCompiledLocals ) Insert_zap_nodes(); 124 if (ZapDeadCompiledLocals) {
125 Insert_zap_nodes();
126 }
126 # endif 127 # endif
127 128
128 uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1); 129 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
129 blk_starts[0] = 0; 130 blk_starts[0] = 0;
130 131
131 // Initialize code buffer and process short branches. 132 // Initialize code buffer and process short branches.
132 CodeBuffer* cb = init_buffer(blk_starts); 133 CodeBuffer* cb = init_buffer(blk_starts);
133 134
134 if (cb == NULL || failing()) return; 135 if (cb == NULL || failing()) {
136 return;
137 }
135 138
136 ScheduleAndBundle(); 139 ScheduleAndBundle();
137 140
138 #ifndef PRODUCT 141 #ifndef PRODUCT
139 if (trace_opto_output()) { 142 if (trace_opto_output()) {
140 tty->print("\n---- After ScheduleAndBundle ----\n"); 143 tty->print("\n---- After ScheduleAndBundle ----\n");
141 for (uint i = 0; i < _cfg->_num_blocks; i++) { 144 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
142 tty->print("\nBB#%03d:\n", i); 145 tty->print("\nBB#%03d:\n", i);
143 Block *bb = _cfg->_blocks[i]; 146 Block* block = _cfg->get_block(i);
144 for (uint j = 0; j < bb->_nodes.size(); j++) { 147 for (uint j = 0; j < block->number_of_nodes(); j++) {
145 Node *n = bb->_nodes[j]; 148 Node* n = block->get_node(j);
146 OptoReg::Name reg = _regalloc->get_reg_first(n); 149 OptoReg::Name reg = _regalloc->get_reg_first(n);
147 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 150 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
148 n->dump(); 151 n->dump();
149 } 152 }
150 } 153 }
151 } 154 }
152 #endif 155 #endif
153 156
154 if (failing()) return; 157 if (failing()) {
158 return;
159 }
155 160
156 BuildOopMaps(); 161 BuildOopMaps();
157 162
158 if (failing()) return; 163 if (failing()) {
164 return;
165 }
159 166
160 fill_buffer(cb, blk_starts); 167 fill_buffer(cb, blk_starts);
161 } 168 }
162 169
163 bool Compile::need_stack_bang(int frame_size_in_bytes) const { 170 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
215 222
216 if ( _method == NULL ) 223 if ( _method == NULL )
217 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care 224 return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
218 225
219 // Insert call to zap runtime stub before every node with an oop map 226 // Insert call to zap runtime stub before every node with an oop map
220 for( uint i=0; i<_cfg->_num_blocks; i++ ) { 227 for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
221 Block *b = _cfg->_blocks[i]; 228 Block *b = _cfg->get_block(i);
222 for ( uint j = 0; j < b->_nodes.size(); ++j ) { 229 for ( uint j = 0; j < b->number_of_nodes(); ++j ) {
223 Node *n = b->_nodes[j]; 230 Node *n = b->get_node(j);
224 231
225 // Determining if we should insert a zap-a-lot node in output. 232 // Determining if we should insert a zap-a-lot node in output.
226 // We do that for all nodes that has oopmap info, except for calls 233 // We do that for all nodes that has oopmap info, except for calls
227 // to allocation. Calls to allocation passes in the old top-of-eden pointer 234 // to allocation. Calls to allocation passes in the old top-of-eden pointer
228 // and expect the C code to reset it. Hence, there can be no safepoints between 235 // and expect the C code to reset it. Hence, there can be no safepoints between
247 insert = false; 254 insert = false;
248 } 255 }
249 } 256 }
250 if (insert) { 257 if (insert) {
251 Node *zap = call_zap_node(n->as_MachSafePoint(), i); 258 Node *zap = call_zap_node(n->as_MachSafePoint(), i);
252 b->_nodes.insert( j, zap ); 259 b->insert_node(zap, j);
253 _cfg->map_node_to_block(zap, b); 260 _cfg->map_node_to_block(zap, b);
254 ++j; 261 ++j;
255 } 262 }
256 } 263 }
257 } 264 }
273 // Add the cloned OopMap to the zap node 280 // Add the cloned OopMap to the zap node
274 ideal_node->set_oop_map(clone); 281 ideal_node->set_oop_map(clone);
275 return _matcher->match_sfpt(ideal_node); 282 return _matcher->match_sfpt(ideal_node);
276 } 283 }
277 284
278 //------------------------------is_node_getting_a_safepoint--------------------
279 bool Compile::is_node_getting_a_safepoint( Node* n) { 285 bool Compile::is_node_getting_a_safepoint( Node* n) {
280 // This code duplicates the logic prior to the call of add_safepoint 286 // This code duplicates the logic prior to the call of add_safepoint
281 // below in this file. 287 // below in this file.
282 if( n->is_MachSafePoint() ) return true; 288 if( n->is_MachSafePoint() ) return true;
283 return false; 289 return false;
284 } 290 }
285 291
286 # endif // ENABLE_ZAP_DEAD_LOCALS 292 # endif // ENABLE_ZAP_DEAD_LOCALS
287 293
288 //------------------------------compute_loop_first_inst_sizes------------------
289 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 294 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
290 // of a loop. When aligning a loop we need to provide enough instructions 295 // of a loop. When aligning a loop we need to provide enough instructions
291 // in cpu's fetch buffer to feed decoders. The loop alignment could be 296 // in cpu's fetch buffer to feed decoders. The loop alignment could be
292 // avoided if we have enough instructions in fetch buffer at the head of a loop. 297 // avoided if we have enough instructions in fetch buffer at the head of a loop.
293 // By default, the size is set to 999999 by Block's constructor so that 298 // By default, the size is set to 999999 by Block's constructor so that
300 // The next condition is used to gate the loop alignment optimization. 305 // The next condition is used to gate the loop alignment optimization.
301 // Don't aligned a loop if there are enough instructions at the head of a loop 306 // Don't aligned a loop if there are enough instructions at the head of a loop
302 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 307 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
303 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 308 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
304 // equal to 11 bytes which is the largest address NOP instruction. 309 // equal to 11 bytes which is the largest address NOP instruction.
305 if( MaxLoopPad < OptoLoopAlignment-1 ) { 310 if (MaxLoopPad < OptoLoopAlignment - 1) {
306 uint last_block = _cfg->_num_blocks-1; 311 uint last_block = _cfg->number_of_blocks() - 1;
307 for( uint i=1; i <= last_block; i++ ) { 312 for (uint i = 1; i <= last_block; i++) {
308 Block *b = _cfg->_blocks[i]; 313 Block* block = _cfg->get_block(i);
309 // Check the first loop's block which requires an alignment. 314 // Check the first loop's block which requires an alignment.
310 if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) { 315 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
311 uint sum_size = 0; 316 uint sum_size = 0;
312 uint inst_cnt = NumberOfLoopInstrToAlign; 317 uint inst_cnt = NumberOfLoopInstrToAlign;
313 inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc); 318 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
314 319
315 // Check subsequent fallthrough blocks if the loop's first 320 // Check subsequent fallthrough blocks if the loop's first
316 // block(s) does not have enough instructions. 321 // block(s) does not have enough instructions.
317 Block *nb = b; 322 Block *nb = block;
318 while( inst_cnt > 0 && 323 while(inst_cnt > 0 &&
319 i < last_block && 324 i < last_block &&
320 !_cfg->_blocks[i+1]->has_loop_alignment() && 325 !_cfg->get_block(i + 1)->has_loop_alignment() &&
321 !nb->has_successor(b) ) { 326 !nb->has_successor(block)) {
322 i++; 327 i++;
323 nb = _cfg->_blocks[i]; 328 nb = _cfg->get_block(i);
324 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc); 329 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
325 } // while( inst_cnt > 0 && i < last_block ) 330 } // while( inst_cnt > 0 && i < last_block )
326 331
327 b->set_first_inst_size(sum_size); 332 block->set_first_inst_size(sum_size);
328 } // f( b->head()->is_Loop() ) 333 } // f( b->head()->is_Loop() )
329 } // for( i <= last_block ) 334 } // for( i <= last_block )
330 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 335 } // if( MaxLoopPad < OptoLoopAlignment-1 )
331 } 336 }
332 337
333 //----------------------shorten_branches---------------------------------------
334 // The architecture description provides short branch variants for some long 338 // The architecture description provides short branch variants for some long
335 // branch instructions. Replace eligible long branches with short branches. 339 // branch instructions. Replace eligible long branches with short branches.
336 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) { 340 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
337
338 // ------------------
339 // Compute size of each block, method size, and relocation information size 341 // Compute size of each block, method size, and relocation information size
340 uint nblocks = _cfg->_num_blocks; 342 uint nblocks = _cfg->number_of_blocks();
341 343
342 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 344 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
343 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 345 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
344 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 346 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks);
345 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 347 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
362 // Step one, perform a pessimistic sizing pass. 364 // Step one, perform a pessimistic sizing pass.
363 uint last_call_adr = max_uint; 365 uint last_call_adr = max_uint;
364 uint last_avoid_back_to_back_adr = max_uint; 366 uint last_avoid_back_to_back_adr = max_uint;
365 uint nop_size = (new (this) MachNopNode())->size(_regalloc); 367 uint nop_size = (new (this) MachNopNode())->size(_regalloc);
366 for (uint i = 0; i < nblocks; i++) { // For all blocks 368 for (uint i = 0; i < nblocks; i++) { // For all blocks
367 Block *b = _cfg->_blocks[i]; 369 Block* block = _cfg->get_block(i);
368 370
369 // During short branch replacement, we store the relative (to blk_starts) 371 // During short branch replacement, we store the relative (to blk_starts)
370 // offset of jump in jmp_offset, rather than the absolute offset of jump. 372 // offset of jump in jmp_offset, rather than the absolute offset of jump.
371 // This is so that we do not need to recompute sizes of all nodes when 373 // This is so that we do not need to recompute sizes of all nodes when
372 // we compute correct blk_starts in our next sizing pass. 374 // we compute correct blk_starts in our next sizing pass.
375 jmp_nidx[i] = -1; 377 jmp_nidx[i] = -1;
376 DEBUG_ONLY( jmp_target[i] = 0; ) 378 DEBUG_ONLY( jmp_target[i] = 0; )
377 DEBUG_ONLY( jmp_rule[i] = 0; ) 379 DEBUG_ONLY( jmp_rule[i] = 0; )
378 380
379 // Sum all instruction sizes to compute block size 381 // Sum all instruction sizes to compute block size
380 uint last_inst = b->_nodes.size(); 382 uint last_inst = block->number_of_nodes();
381 uint blk_size = 0; 383 uint blk_size = 0;
382 for (uint j = 0; j < last_inst; j++) { 384 for (uint j = 0; j < last_inst; j++) {
383 Node* nj = b->_nodes[j]; 385 Node* nj = block->get_node(j);
384 // Handle machine instruction nodes 386 // Handle machine instruction nodes
385 if (nj->is_Mach()) { 387 if (nj->is_Mach()) {
386 MachNode *mach = nj->as_Mach(); 388 MachNode *mach = nj->as_Mach();
387 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 389 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
388 reloc_size += mach->reloc(); 390 reloc_size += mach->reloc();
439 } 441 }
440 442
441 // When the next block starts a loop, we may insert pad NOP 443 // When the next block starts a loop, we may insert pad NOP
442 // instructions. Since we cannot know our future alignment, 444 // instructions. Since we cannot know our future alignment,
443 // assume the worst. 445 // assume the worst.
444 if (i< nblocks-1) { 446 if (i < nblocks - 1) {
445 Block *nb = _cfg->_blocks[i+1]; 447 Block* nb = _cfg->get_block(i + 1);
446 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 448 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
447 if (max_loop_pad > 0) { 449 if (max_loop_pad > 0) {
448 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 450 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
449 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 451 // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
450 // If either is the last instruction in this block, bump by 452 // If either is the last instruction in this block, bump by
471 while (has_short_branch_candidate && progress) { 473 while (has_short_branch_candidate && progress) {
472 progress = false; 474 progress = false;
473 has_short_branch_candidate = false; 475 has_short_branch_candidate = false;
474 int adjust_block_start = 0; 476 int adjust_block_start = 0;
475 for (uint i = 0; i < nblocks; i++) { 477 for (uint i = 0; i < nblocks; i++) {
476 Block *b = _cfg->_blocks[i]; 478 Block* block = _cfg->get_block(i);
477 int idx = jmp_nidx[i]; 479 int idx = jmp_nidx[i];
478 MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach(); 480 MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
479 if (mach != NULL && mach->may_be_short_branch()) { 481 if (mach != NULL && mach->may_be_short_branch()) {
480 #ifdef ASSERT 482 #ifdef ASSERT
481 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 483 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
482 int j; 484 int j;
483 // Find the branch; ignore trailing NOPs. 485 // Find the branch; ignore trailing NOPs.
484 for (j = b->_nodes.size()-1; j>=0; j--) { 486 for (j = block->number_of_nodes()-1; j>=0; j--) {
485 Node* n = b->_nodes[j]; 487 Node* n = block->get_node(j);
486 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 488 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
487 break; 489 break;
488 } 490 }
489 assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity"); 491 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
490 #endif 492 #endif
491 int br_size = jmp_size[i]; 493 int br_size = jmp_size[i];
492 int br_offs = blk_starts[i] + jmp_offset[i]; 494 int br_offs = blk_starts[i] + jmp_offset[i];
493 495
494 // This requires the TRUE branch target be in succs[0] 496 // This requires the TRUE branch target be in succs[0]
495 uint bnum = b->non_connector_successor(0)->_pre_order; 497 uint bnum = block->non_connector_successor(0)->_pre_order;
496 int offset = blk_starts[bnum] - br_offs; 498 int offset = blk_starts[bnum] - br_offs;
497 if (bnum > i) { // adjust following block's offset 499 if (bnum > i) { // adjust following block's offset
498 offset -= adjust_block_start; 500 offset -= adjust_block_start;
499 } 501 }
500 // In the following code a nop could be inserted before 502 // In the following code a nop could be inserted before
518 if (needs_padding && replacement->avoid_back_to_back()) { 520 if (needs_padding && replacement->avoid_back_to_back()) {
519 jmp_offset[i] += nop_size; 521 jmp_offset[i] += nop_size;
520 diff -= nop_size; 522 diff -= nop_size;
521 } 523 }
522 adjust_block_start += diff; 524 adjust_block_start += diff;
523 b->_nodes.map(idx, replacement); 525 block->map_node(replacement, idx);
524 mach->subsume_by(replacement, C); 526 mach->subsume_by(replacement, C);
525 mach = replacement; 527 mach = replacement;
526 progress = true; 528 progress = true;
527 529
528 jmp_size[i] = new_size; 530 jmp_size[i] = new_size;
635 cik->is_array_klass(), "Not supported allocation."); 637 cik->is_array_klass(), "Not supported allocation.");
636 sv = new ObjectValue(spobj->_idx, 638 sv = new ObjectValue(spobj->_idx,
637 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 639 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
638 Compile::set_sv_for_object_node(objs, sv); 640 Compile::set_sv_for_object_node(objs, sv);
639 641
640 uint first_ind = spobj->first_index(); 642 uint first_ind = spobj->first_index(sfpt->jvms());
641 for (uint i = 0; i < spobj->n_fields(); i++) { 643 for (uint i = 0; i < spobj->n_fields(); i++) {
642 Node* fld_node = sfpt->in(first_ind+i); 644 Node* fld_node = sfpt->in(first_ind+i);
643 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 645 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
644 } 646 }
645 } 647 }
890 892
891 // Build the growable array of ScopeValues for exp stack 893 // Build the growable array of ScopeValues for exp stack
892 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 894 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
893 895
894 // Loop over monitors and insert into array 896 // Loop over monitors and insert into array
895 for(idx = 0; idx < num_mon; idx++) { 897 for (idx = 0; idx < num_mon; idx++) {
896 // Grab the node that defines this monitor 898 // Grab the node that defines this monitor
897 Node* box_node = sfn->monitor_box(jvms, idx); 899 Node* box_node = sfn->monitor_box(jvms, idx);
898 Node* obj_node = sfn->monitor_obj(jvms, idx); 900 Node* obj_node = sfn->monitor_obj(jvms, idx);
899 901
900 // Create ScopeValue for object 902 // Create ScopeValue for object
901 ScopeValue *scval = NULL; 903 ScopeValue *scval = NULL;
902 904
903 if( obj_node->is_SafePointScalarObject() ) { 905 if (obj_node->is_SafePointScalarObject()) {
904 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 906 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
905 scval = Compile::sv_for_node_id(objs, spobj->_idx); 907 scval = Compile::sv_for_node_id(objs, spobj->_idx);
906 if (scval == NULL) { 908 if (scval == NULL) {
907 const Type *t = obj_node->bottom_type(); 909 const Type *t = spobj->bottom_type();
908 ciKlass* cik = t->is_oopptr()->klass(); 910 ciKlass* cik = t->is_oopptr()->klass();
909 assert(cik->is_instance_klass() || 911 assert(cik->is_instance_klass() ||
910 cik->is_array_klass(), "Not supported allocation."); 912 cik->is_array_klass(), "Not supported allocation.");
911 ObjectValue* sv = new ObjectValue(spobj->_idx, 913 ObjectValue* sv = new ObjectValue(spobj->_idx,
912 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding())); 914 new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
913 Compile::set_sv_for_object_node(objs, sv); 915 Compile::set_sv_for_object_node(objs, sv);
914 916
915 uint first_ind = spobj->first_index(); 917 uint first_ind = spobj->first_index(youngest_jvms);
916 for (uint i = 0; i < spobj->n_fields(); i++) { 918 for (uint i = 0; i < spobj->n_fields(); i++) {
917 Node* fld_node = sfn->in(first_ind+i); 919 Node* fld_node = sfn->in(first_ind+i);
918 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 920 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
919 } 921 }
920 scval = sv; 922 scval = sv;
921 } 923 }
922 } else if( !obj_node->is_Con() ) { 924 } else if (!obj_node->is_Con()) {
923 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node); 925 OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
924 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 926 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
925 scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop ); 927 scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
926 } else { 928 } else {
927 scval = new_loc_value( _regalloc, obj_reg, Location::oop ); 929 scval = new_loc_value( _regalloc, obj_reg, Location::oop );
1084 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1086 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1085 1087
1086 if (has_mach_constant_base_node()) { 1088 if (has_mach_constant_base_node()) {
1087 // Fill the constant table. 1089 // Fill the constant table.
1088 // Note: This must happen before shorten_branches. 1090 // Note: This must happen before shorten_branches.
1089 for (uint i = 0; i < _cfg->_num_blocks; i++) { 1091 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1090 Block* b = _cfg->_blocks[i]; 1092 Block* b = _cfg->get_block(i);
1091 1093
1092 for (uint j = 0; j < b->_nodes.size(); j++) { 1094 for (uint j = 0; j < b->number_of_nodes(); j++) {
1093 Node* n = b->_nodes[j]; 1095 Node* n = b->get_node(j);
1094 1096
1095 // If the node is a MachConstantNode evaluate the constant 1097 // If the node is a MachConstantNode evaluate the constant
1096 // value section. 1098 // value section.
1097 if (n->is_MachConstant()) { 1099 if (n->is_MachConstant()) {
1098 MachConstantNode* machcon = n->as_MachConstant(); 1100 MachConstantNode* machcon = n->as_MachConstant();
1171 _oop_map_set = new OopMapSet(); 1173 _oop_map_set = new OopMapSet();
1172 1174
1173 // !!!!! This preserves old handling of oopmaps for now 1175 // !!!!! This preserves old handling of oopmaps for now
1174 debug_info()->set_oopmaps(_oop_map_set); 1176 debug_info()->set_oopmaps(_oop_map_set);
1175 1177
1176 uint nblocks = _cfg->_num_blocks; 1178 uint nblocks = _cfg->number_of_blocks();
1177 // Count and start of implicit null check instructions 1179 // Count and start of implicit null check instructions
1178 uint inct_cnt = 0; 1180 uint inct_cnt = 0;
1179 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1181 uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1180 1182
1181 // Count and start of calls 1183 // Count and start of calls
1219 1221
1220 // ------------------ 1222 // ------------------
1221 // Now fill in the code buffer 1223 // Now fill in the code buffer
1222 Node *delay_slot = NULL; 1224 Node *delay_slot = NULL;
1223 1225
1224 for (uint i=0; i < nblocks; i++) { 1226 for (uint i = 0; i < nblocks; i++) {
1225 Block *b = _cfg->_blocks[i]; 1227 Block* block = _cfg->get_block(i);
1226 1228 Node* head = block->head();
1227 Node *head = b->head();
1228 1229
1229 // If this block needs to start aligned (i.e, can be reached other 1230 // If this block needs to start aligned (i.e, can be reached other
1230 // than by falling-thru from the previous block), then force the 1231 // than by falling-thru from the previous block), then force the
1231 // start of a new bundle. 1232 // start of a new bundle.
1232 if (Pipeline::requires_bundling() && starts_bundle(head)) 1233 if (Pipeline::requires_bundling() && starts_bundle(head)) {
1233 cb->flush_bundle(true); 1234 cb->flush_bundle(true);
1235 }
1234 1236
1235 #ifdef ASSERT 1237 #ifdef ASSERT
1236 if (!b->is_connector()) { 1238 if (!block->is_connector()) {
1237 stringStream st; 1239 stringStream st;
1238 b->dump_head(_cfg, &st); 1240 block->dump_head(_cfg, &st);
1239 MacroAssembler(cb).block_comment(st.as_string()); 1241 MacroAssembler(cb).block_comment(st.as_string());
1240 } 1242 }
1241 jmp_target[i] = 0; 1243 jmp_target[i] = 0;
1242 jmp_offset[i] = 0; 1244 jmp_offset[i] = 0;
1243 jmp_size[i] = 0; 1245 jmp_size[i] = 0;
1244 jmp_rule[i] = 0; 1246 jmp_rule[i] = 0;
1245 #endif 1247 #endif
1246 int blk_offset = current_offset; 1248 int blk_offset = current_offset;
1247 1249
1248 // Define the label at the beginning of the basic block 1250 // Define the label at the beginning of the basic block
1249 MacroAssembler(cb).bind(blk_labels[b->_pre_order]); 1251 MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1250 1252
1251 uint last_inst = b->_nodes.size(); 1253 uint last_inst = block->number_of_nodes();
1252 1254
1253 // Emit block normally, except for last instruction. 1255 // Emit block normally, except for last instruction.
1254 // Emit means "dump code bits into code buffer". 1256 // Emit means "dump code bits into code buffer".
1255 for (uint j = 0; j<last_inst; j++) { 1257 for (uint j = 0; j<last_inst; j++) {
1256 1258
1257 // Get the node 1259 // Get the node
1258 Node* n = b->_nodes[j]; 1260 Node* n = block->get_node(j);
1259 1261
1260 // See if delay slots are supported 1262 // See if delay slots are supported
1261 if (valid_bundle_info(n) && 1263 if (valid_bundle_info(n) &&
1262 node_bundling(n)->used_in_unconditional_delay()) { 1264 node_bundling(n)->used_in_unconditional_delay()) {
1263 assert(delay_slot == NULL, "no use of delay slot node"); 1265 assert(delay_slot == NULL, "no use of delay slot node");
1307 1309
1308 if(padding > 0) { 1310 if(padding > 0) {
1309 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1311 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1310 int nops_cnt = padding / nop_size; 1312 int nops_cnt = padding / nop_size;
1311 MachNode *nop = new (this) MachNopNode(nops_cnt); 1313 MachNode *nop = new (this) MachNopNode(nops_cnt);
1312 b->_nodes.insert(j++, nop); 1314 block->insert_node(nop, j++);
1313 last_inst++; 1315 last_inst++;
1314 _cfg->map_node_to_block(nop, b); 1316 _cfg->map_node_to_block(nop, block);
1315 nop->emit(*cb, _regalloc); 1317 nop->emit(*cb, _regalloc);
1316 cb->flush_bundle(true); 1318 cb->flush_bundle(true);
1317 current_offset = cb->insts_size(); 1319 current_offset = cb->insts_size();
1318 } 1320 }
1319 1321
1323 1325
1324 // This destination address is NOT PC-relative 1326 // This destination address is NOT PC-relative
1325 mcall->method_set((intptr_t)mcall->entry_point()); 1327 mcall->method_set((intptr_t)mcall->entry_point());
1326 1328
1327 // Save the return address 1329 // Save the return address
1328 call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset(); 1330 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1329 1331
1330 if (mcall->is_MachCallLeaf()) { 1332 if (mcall->is_MachCallLeaf()) {
1331 is_mcall = false; 1333 is_mcall = false;
1332 is_sfn = false; 1334 is_sfn = false;
1333 } 1335 }
1360 } 1362 }
1361 1363
1362 // If this is a branch, then fill in the label with the target BB's label 1364 // If this is a branch, then fill in the label with the target BB's label
1363 else if (mach->is_MachBranch()) { 1365 else if (mach->is_MachBranch()) {
1364 // This requires the TRUE branch target be in succs[0] 1366 // This requires the TRUE branch target be in succs[0]
1365 uint block_num = b->non_connector_successor(0)->_pre_order; 1367 uint block_num = block->non_connector_successor(0)->_pre_order;
1366 1368
1367 // Try to replace long branch if delay slot is not used, 1369 // Try to replace long branch if delay slot is not used,
1368 // it is mostly for back branches since forward branch's 1370 // it is mostly for back branches since forward branch's
1369 // distance is not updated yet. 1371 // distance is not updated yet.
1370 bool delay_slot_is_used = valid_bundle_info(n) && 1372 bool delay_slot_is_used = valid_bundle_info(n) &&
1393 int new_size = replacement->size(_regalloc); 1395 int new_size = replacement->size(_regalloc);
1394 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1396 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1395 // Insert padding between avoid_back_to_back branches. 1397 // Insert padding between avoid_back_to_back branches.
1396 if (needs_padding && replacement->avoid_back_to_back()) { 1398 if (needs_padding && replacement->avoid_back_to_back()) {
1397 MachNode *nop = new (this) MachNopNode(); 1399 MachNode *nop = new (this) MachNopNode();
1398 b->_nodes.insert(j++, nop); 1400 block->insert_node(nop, j++);
1399 _cfg->map_node_to_block(nop, b); 1401 _cfg->map_node_to_block(nop, block);
1400 last_inst++; 1402 last_inst++;
1401 nop->emit(*cb, _regalloc); 1403 nop->emit(*cb, _regalloc);
1402 cb->flush_bundle(true); 1404 cb->flush_bundle(true);
1403 current_offset = cb->insts_size(); 1405 current_offset = cb->insts_size();
1404 } 1406 }
1406 jmp_target[i] = block_num; 1408 jmp_target[i] = block_num;
1407 jmp_offset[i] = current_offset - blk_offset; 1409 jmp_offset[i] = current_offset - blk_offset;
1408 jmp_size[i] = new_size; 1410 jmp_size[i] = new_size;
1409 jmp_rule[i] = mach->rule(); 1411 jmp_rule[i] = mach->rule();
1410 #endif 1412 #endif
1411 b->_nodes.map(j, replacement); 1413 block->map_node(replacement, j);
1412 mach->subsume_by(replacement, C); 1414 mach->subsume_by(replacement, C);
1413 n = replacement; 1415 n = replacement;
1414 mach = replacement; 1416 mach = replacement;
1415 } 1417 }
1416 } 1418 }
1417 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1419 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1418 } else if (mach->ideal_Opcode() == Op_Jump) { 1420 } else if (mach->ideal_Opcode() == Op_Jump) {
1419 for (uint h = 0; h < b->_num_succs; h++) { 1421 for (uint h = 0; h < block->_num_succs; h++) {
1420 Block* succs_block = b->_succs[h]; 1422 Block* succs_block = block->_succs[h];
1421 for (uint j = 1; j < succs_block->num_preds(); j++) { 1423 for (uint j = 1; j < succs_block->num_preds(); j++) {
1422 Node* jpn = succs_block->pred(j); 1424 Node* jpn = succs_block->pred(j);
1423 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1425 if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1424 uint block_num = succs_block->non_connector()->_pre_order; 1426 uint block_num = succs_block->non_connector()->_pre_order;
1425 Label *blkLabel = &blk_labels[block_num]; 1427 Label *blkLabel = &blk_labels[block_num];
1426 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1428 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1427 } 1429 }
1428 } 1430 }
1429 } 1431 }
1430 } 1432 }
1431
1432 #ifdef ASSERT 1433 #ifdef ASSERT
1433 // Check that oop-store precedes the card-mark 1434 // Check that oop-store precedes the card-mark
1434 else if (mach->ideal_Opcode() == Op_StoreCM) { 1435 else if (mach->ideal_Opcode() == Op_StoreCM) {
1435 uint storeCM_idx = j; 1436 uint storeCM_idx = j;
1436 int count = 0; 1437 int count = 0;
1437 for (uint prec = mach->req(); prec < mach->len(); prec++) { 1438 for (uint prec = mach->req(); prec < mach->len(); prec++) {
1438 Node *oop_store = mach->in(prec); // Precedence edge 1439 Node *oop_store = mach->in(prec); // Precedence edge
1439 if (oop_store == NULL) continue; 1440 if (oop_store == NULL) continue;
1440 count++; 1441 count++;
1441 uint i4; 1442 uint i4;
1442 for( i4 = 0; i4 < last_inst; ++i4 ) { 1443 for (i4 = 0; i4 < last_inst; ++i4) {
1443 if( b->_nodes[i4] == oop_store ) break; 1444 if (block->get_node(i4) == oop_store) {
1445 break;
1446 }
1444 } 1447 }
1445 // Note: This test can provide a false failure if other precedence 1448 // Note: This test can provide a false failure if other precedence
1446 // edges have been added to the storeCMNode. 1449 // edges have been added to the storeCMNode.
1447 assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); 1450 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1448 } 1451 }
1449 assert(count > 0, "storeCM expects at least one precedence edge"); 1452 assert(count > 0, "storeCM expects at least one precedence edge");
1450 } 1453 }
1451 #endif 1454 #endif
1452
1453 else if (!n->is_Proj()) { 1455 else if (!n->is_Proj()) {
1454 // Remember the beginning of the previous instruction, in case 1456 // Remember the beginning of the previous instruction, in case
1455 // it's followed by a flag-kill and a null-check. Happens on 1457 // it's followed by a flag-kill and a null-check. Happens on
1456 // Intel all the time, with add-to-memory kind of opcodes. 1458 // Intel all the time, with add-to-memory kind of opcodes.
1457 previous_offset = current_offset; 1459 previous_offset = current_offset;
1543 } // End for all instructions in block 1545 } // End for all instructions in block
1544 1546
1545 // If the next block is the top of a loop, pad this block out to align 1547 // If the next block is the top of a loop, pad this block out to align
1546 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1548 // the loop top a little. Helps prevent pipe stalls at loop back branches.
1547 if (i < nblocks-1) { 1549 if (i < nblocks-1) {
1548 Block *nb = _cfg->_blocks[i+1]; 1550 Block *nb = _cfg->get_block(i + 1);
1549 int padding = nb->alignment_padding(current_offset); 1551 int padding = nb->alignment_padding(current_offset);
1550 if( padding > 0 ) { 1552 if( padding > 0 ) {
1551 MachNode *nop = new (this) MachNopNode(padding / nop_size); 1553 MachNode *nop = new (this) MachNopNode(padding / nop_size);
1552 b->_nodes.insert( b->_nodes.size(), nop ); 1554 block->insert_node(nop, block->number_of_nodes());
1553 _cfg->map_node_to_block(nop, b); 1555 _cfg->map_node_to_block(nop, block);
1554 nop->emit(*cb, _regalloc); 1556 nop->emit(*cb, _regalloc);
1555 current_offset = cb->insts_size(); 1557 current_offset = cb->insts_size();
1556 } 1558 }
1557 } 1559 }
1558 // Verify that the distance for generated before forward 1560 // Verify that the distance for generated before forward
1587 assert(false, "Displacement too large for short jmp"); 1589 assert(false, "Displacement too large for short jmp");
1588 } 1590 }
1589 } 1591 }
1590 } 1592 }
1591 #endif 1593 #endif
1592
1593 // ------------------
1594 1594
1595 #ifndef PRODUCT 1595 #ifndef PRODUCT
1596 // Information on the size of the method, without the extraneous code 1596 // Information on the size of the method, without the extraneous code
1597 Scheduling::increment_method_size(cb->insts_size()); 1597 Scheduling::increment_method_size(cb->insts_size());
1598 #endif 1598 #endif
1650 1650
1651 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1651 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1652 _inc_table.set_size(cnt); 1652 _inc_table.set_size(cnt);
1653 1653
1654 uint inct_cnt = 0; 1654 uint inct_cnt = 0;
1655 for( uint i=0; i<_cfg->_num_blocks; i++ ) { 1655 for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1656 Block *b = _cfg->_blocks[i]; 1656 Block* block = _cfg->get_block(i);
1657 Node *n = NULL; 1657 Node *n = NULL;
1658 int j; 1658 int j;
1659 1659
1660 // Find the branch; ignore trailing NOPs. 1660 // Find the branch; ignore trailing NOPs.
1661 for( j = b->_nodes.size()-1; j>=0; j-- ) { 1661 for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1662 n = b->_nodes[j]; 1662 n = block->get_node(j);
1663 if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con ) 1663 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1664 break; 1664 break;
1665 }
1665 } 1666 }
1666 1667
1667 // If we didn't find anything, continue 1668 // If we didn't find anything, continue
1668 if( j < 0 ) continue; 1669 if (j < 0) {
1670 continue;
1671 }
1669 1672
1670 // Compute ExceptionHandlerTable subtable entry and add it 1673 // Compute ExceptionHandlerTable subtable entry and add it
1671 // (skip empty blocks) 1674 // (skip empty blocks)
1672 if( n->is_Catch() ) { 1675 if (n->is_Catch()) {
1673 1676
1674 // Get the offset of the return from the call 1677 // Get the offset of the return from the call
1675 uint call_return = call_returns[b->_pre_order]; 1678 uint call_return = call_returns[block->_pre_order];
1676 #ifdef ASSERT 1679 #ifdef ASSERT
1677 assert( call_return > 0, "no call seen for this basic block" ); 1680 assert( call_return > 0, "no call seen for this basic block" );
1678 while( b->_nodes[--j]->is_MachProj() ) ; 1681 while (block->get_node(--j)->is_MachProj()) ;
1679 assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" ); 1682 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1680 #endif 1683 #endif
1681 // last instruction is a CatchNode, find it's CatchProjNodes 1684 // last instruction is a CatchNode, find it's CatchProjNodes
1682 int nof_succs = b->_num_succs; 1685 int nof_succs = block->_num_succs;
1683 // allocate space 1686 // allocate space
1684 GrowableArray<intptr_t> handler_bcis(nof_succs); 1687 GrowableArray<intptr_t> handler_bcis(nof_succs);
1685 GrowableArray<intptr_t> handler_pcos(nof_succs); 1688 GrowableArray<intptr_t> handler_pcos(nof_succs);
1686 // iterate through all successors 1689 // iterate through all successors
1687 for (int j = 0; j < nof_succs; j++) { 1690 for (int j = 0; j < nof_succs; j++) {
1688 Block* s = b->_succs[j]; 1691 Block* s = block->_succs[j];
1689 bool found_p = false; 1692 bool found_p = false;
1690 for( uint k = 1; k < s->num_preds(); k++ ) { 1693 for (uint k = 1; k < s->num_preds(); k++) {
1691 Node *pk = s->pred(k); 1694 Node* pk = s->pred(k);
1692 if( pk->is_CatchProj() && pk->in(0) == n ) { 1695 if (pk->is_CatchProj() && pk->in(0) == n) {
1693 const CatchProjNode* p = pk->as_CatchProj(); 1696 const CatchProjNode* p = pk->as_CatchProj();
1694 found_p = true; 1697 found_p = true;
1695 // add the corresponding handler bci & pco information 1698 // add the corresponding handler bci & pco information
1696 if( p->_con != CatchProjNode::fall_through_index ) { 1699 if (p->_con != CatchProjNode::fall_through_index) {
1697 // p leads to an exception handler (and is not fall through) 1700 // p leads to an exception handler (and is not fall through)
1698 assert(s == _cfg->_blocks[s->_pre_order],"bad numbering"); 1701 assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1699 // no duplicates, please 1702 // no duplicates, please
1700 if( !handler_bcis.contains(p->handler_bci()) ) { 1703 if (!handler_bcis.contains(p->handler_bci())) {
1701 uint block_num = s->non_connector()->_pre_order; 1704 uint block_num = s->non_connector()->_pre_order;
1702 handler_bcis.append(p->handler_bci()); 1705 handler_bcis.append(p->handler_bci());
1703 handler_pcos.append(blk_labels[block_num].loc_pos()); 1706 handler_pcos.append(blk_labels[block_num].loc_pos());
1704 } 1707 }
1705 } 1708 }
1714 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos); 1717 _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1715 continue; 1718 continue;
1716 } 1719 }
1717 1720
1718 // Handle implicit null exception table updates 1721 // Handle implicit null exception table updates
1719 if( n->is_MachNullCheck() ) { 1722 if (n->is_MachNullCheck()) {
1720 uint block_num = b->non_connector_successor(0)->_pre_order; 1723 uint block_num = block->non_connector_successor(0)->_pre_order;
1721 _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() ); 1724 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1722 continue; 1725 continue;
1723 } 1726 }
1724 } // End of for all blocks fill in exception table entries 1727 } // End of for all blocks fill in exception table entries
1725 } 1728 }
1726 1729
1775 memset(_node_latency, 0, node_max * sizeof(unsigned short)); 1778 memset(_node_latency, 0, node_max * sizeof(unsigned short));
1776 memset(_uses, 0, node_max * sizeof(short)); 1779 memset(_uses, 0, node_max * sizeof(short));
1777 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 1780 memset(_current_latency, 0, node_max * sizeof(unsigned short));
1778 1781
1779 // Clear the bundling information 1782 // Clear the bundling information
1780 memcpy(_bundle_use_elements, 1783 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1781 Pipeline_Use::elaborated_elements,
1782 sizeof(Pipeline_Use::elaborated_elements));
1783 1784
1784 // Get the last node 1785 // Get the last node
1785 Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1]; 1786 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1786 1787
1787 _next_node = bb->_nodes[bb->_nodes.size()-1]; 1788 _next_node = block->get_node(block->number_of_nodes() - 1);
1788 } 1789 }
1789 1790
1790 #ifndef PRODUCT 1791 #ifndef PRODUCT
1791 // Scheduling destructor 1792 // Scheduling destructor
1792 Scheduling::~Scheduling() { 1793 Scheduling::~Scheduling() {
1832 memcpy(_bundle_use_elements, 1833 memcpy(_bundle_use_elements,
1833 Pipeline_Use::elaborated_elements, 1834 Pipeline_Use::elaborated_elements,
1834 sizeof(Pipeline_Use::elaborated_elements)); 1835 sizeof(Pipeline_Use::elaborated_elements));
1835 } 1836 }
1836 1837
1837 //------------------------------ScheduleAndBundle------------------------------
1838 // Perform instruction scheduling and bundling over the sequence of 1838 // Perform instruction scheduling and bundling over the sequence of
1839 // instructions in backwards order. 1839 // instructions in backwards order.
1840 void Compile::ScheduleAndBundle() { 1840 void Compile::ScheduleAndBundle() {
1841 1841
1842 // Don't optimize this if it isn't a method 1842 // Don't optimize this if it isn't a method
1859 // Walk backwards over each basic block, computing the needed alignment 1859 // Walk backwards over each basic block, computing the needed alignment
1860 // Walk over all the basic blocks 1860 // Walk over all the basic blocks
1861 scheduling.DoScheduling(); 1861 scheduling.DoScheduling();
1862 } 1862 }
1863 1863
1864 //------------------------------ComputeLocalLatenciesForward-------------------
1865 // Compute the latency of all the instructions. This is fairly simple, 1864 // Compute the latency of all the instructions. This is fairly simple,
1866 // because we already have a legal ordering. Walk over the instructions 1865 // because we already have a legal ordering. Walk over the instructions
1867 // from first to last, and compute the latency of the instruction based 1866 // from first to last, and compute the latency of the instruction based
1868 // on the latency of the preceding instruction(s). 1867 // on the latency of the preceding instruction(s).
1869 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) { 1868 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1877 1876
1878 // This is a kludge, forcing all latency calculations to start at 1. 1877 // This is a kludge, forcing all latency calculations to start at 1.
1879 // Used to allow latency 0 to force an instruction to the beginning 1878 // Used to allow latency 0 to force an instruction to the beginning
1880 // of the bb 1879 // of the bb
1881 uint latency = 1; 1880 uint latency = 1;
1882 Node *use = bb->_nodes[j]; 1881 Node *use = bb->get_node(j);
1883 uint nlen = use->len(); 1882 uint nlen = use->len();
1884 1883
1885 // Walk over all the inputs 1884 // Walk over all the inputs
1886 for ( uint k=0; k < nlen; k++ ) { 1885 for ( uint k=0; k < nlen; k++ ) {
1887 Node *def = use->in(k); 1886 Node *def = use->in(k);
2029 #endif 2028 #endif
2030 2029
2031 return _available[0]; 2030 return _available[0];
2032 } 2031 }
2033 2032
2034 //------------------------------AddNodeToAvailableList-------------------------
2035 void Scheduling::AddNodeToAvailableList(Node *n) { 2033 void Scheduling::AddNodeToAvailableList(Node *n) {
2036 assert( !n->is_Proj(), "projections never directly made available" ); 2034 assert( !n->is_Proj(), "projections never directly made available" );
2037 #ifndef PRODUCT 2035 #ifndef PRODUCT
2038 if (_cfg->C->trace_opto_output()) { 2036 if (_cfg->C->trace_opto_output()) {
2039 tty->print("# AddNodeToAvailableList: "); 2037 tty->print("# AddNodeToAvailableList: ");
2075 if (_cfg->C->trace_opto_output()) 2073 if (_cfg->C->trace_opto_output())
2076 dump_available(); 2074 dump_available();
2077 #endif 2075 #endif
2078 } 2076 }
2079 2077
2080 //------------------------------DecrementUseCounts-----------------------------
2081 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2078 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2082 for ( uint i=0; i < n->len(); i++ ) { 2079 for ( uint i=0; i < n->len(); i++ ) {
2083 Node *def = n->in(i); 2080 Node *def = n->in(i);
2084 if (!def) continue; 2081 if (!def) continue;
2085 if( def->is_Proj() ) // If this is a machine projection, then 2082 if( def->is_Proj() ) // If this is a machine projection, then
2098 if ((--_uses[def->_idx]) == 0) 2095 if ((--_uses[def->_idx]) == 0)
2099 AddNodeToAvailableList(def); 2096 AddNodeToAvailableList(def);
2100 } 2097 }
2101 } 2098 }
2102 2099
2103 //------------------------------AddNodeToBundle--------------------------------
2104 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2100 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2105 #ifndef PRODUCT 2101 #ifndef PRODUCT
2106 if (_cfg->C->trace_opto_output()) { 2102 if (_cfg->C->trace_opto_output()) {
2107 tty->print("# AddNodeToBundle: "); 2103 tty->print("# AddNodeToBundle: ");
2108 n->dump(); 2104 n->dump();
2291 (op != Op_Node && // Not an unused antidepedence node and 2287 (op != Op_Node && // Not an unused antidepedence node and
2292 // not an unallocated boxlock 2288 // not an unallocated boxlock
2293 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2289 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2294 2290
2295 // Push any trailing projections 2291 // Push any trailing projections
2296 if( bb->_nodes[bb->_nodes.size()-1] != n ) { 2292 if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2297 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2293 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2298 Node *foi = n->fast_out(i); 2294 Node *foi = n->fast_out(i);
2299 if( foi->is_Proj() ) 2295 if( foi->is_Proj() )
2300 _scheduled.push(foi); 2296 _scheduled.push(foi);
2301 } 2297 }
2313 // Walk all the definitions, decrementing use counts, and 2309 // Walk all the definitions, decrementing use counts, and
2314 // if a definition has a 0 use count, place it in the available list. 2310 // if a definition has a 0 use count, place it in the available list.
2315 DecrementUseCounts(n,bb); 2311 DecrementUseCounts(n,bb);
2316 } 2312 }
2317 2313
2318 //------------------------------ComputeUseCount--------------------------------
2319 // This method sets the use count within a basic block. We will ignore all 2314 // This method sets the use count within a basic block. We will ignore all
2320 // uses outside the current basic block. As we are doing a backwards walk, 2315 // uses outside the current basic block. As we are doing a backwards walk,
2321 // any node we reach that has a use count of 0 may be scheduled. This also 2316 // any node we reach that has a use count of 0 may be scheduled. This also
2322 // avoids the problem of cyclic references from phi nodes, as long as phi 2317 // avoids the problem of cyclic references from phi nodes, as long as phi
2323 // nodes are at the front of the basic block. This method also initializes 2318 // nodes are at the front of the basic block. This method also initializes
2335 2330
2336 // No delay slot specified 2331 // No delay slot specified
2337 _unconditional_delay_slot = NULL; 2332 _unconditional_delay_slot = NULL;
2338 2333
2339 #ifdef ASSERT 2334 #ifdef ASSERT
2340 for( uint i=0; i < bb->_nodes.size(); i++ ) 2335 for( uint i=0; i < bb->number_of_nodes(); i++ )
2341 assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" ); 2336 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2342 #endif 2337 #endif
2343 2338
2344 // Force the _uses count to never go to zero for unscheduable pieces 2339 // Force the _uses count to never go to zero for unscheduable pieces
2345 // of the block 2340 // of the block
2346 for( uint k = 0; k < _bb_start; k++ ) 2341 for( uint k = 0; k < _bb_start; k++ )
2347 _uses[bb->_nodes[k]->_idx] = 1; 2342 _uses[bb->get_node(k)->_idx] = 1;
2348 for( uint l = _bb_end; l < bb->_nodes.size(); l++ ) 2343 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2349 _uses[bb->_nodes[l]->_idx] = 1; 2344 _uses[bb->get_node(l)->_idx] = 1;
2350 2345
2351 // Iterate backwards over the instructions in the block. Don't count the 2346 // Iterate backwards over the instructions in the block. Don't count the
2352 // branch projections at end or the block header instructions. 2347 // branch projections at end or the block header instructions.
2353 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2348 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2354 Node *n = bb->_nodes[j]; 2349 Node *n = bb->get_node(j);
2355 if( n->is_Proj() ) continue; // Projections handled another way 2350 if( n->is_Proj() ) continue; // Projections handled another way
2356 2351
2357 // Account for all uses 2352 // Account for all uses
2358 for ( uint k = 0; k < n->len(); k++ ) { 2353 for ( uint k = 0; k < n->len(); k++ ) {
2359 Node *inp = n->in(k); 2354 Node *inp = n->in(k);
2398 2393
2399 Block *succ_bb = NULL; 2394 Block *succ_bb = NULL;
2400 Block *bb; 2395 Block *bb;
2401 2396
2402 // Walk over all the basic blocks in reverse order 2397 // Walk over all the basic blocks in reverse order
2403 for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) { 2398 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2404 bb = _cfg->_blocks[i]; 2399 bb = _cfg->get_block(i);
2405 2400
2406 #ifndef PRODUCT 2401 #ifndef PRODUCT
2407 if (_cfg->C->trace_opto_output()) { 2402 if (_cfg->C->trace_opto_output()) {
2408 tty->print("# Schedule BB#%03d (initial)\n", i); 2403 tty->print("# Schedule BB#%03d (initial)\n", i);
2409 for (uint j = 0; j < bb->_nodes.size(); j++) 2404 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2410 bb->_nodes[j]->dump(); 2405 bb->get_node(j)->dump();
2406 }
2411 } 2407 }
2412 #endif 2408 #endif
2413 2409
2414 // On the head node, skip processing 2410 // On the head node, skip processing
2415 if( bb == _cfg->_broot ) 2411 if (bb == _cfg->get_root_block()) {
2416 continue; 2412 continue;
2413 }
2417 2414
2418 // Skip empty, connector blocks 2415 // Skip empty, connector blocks
2419 if (bb->is_connector()) 2416 if (bb->is_connector())
2420 continue; 2417 continue;
2421 2418
2430 #endif 2427 #endif
2431 step_and_clear(); 2428 step_and_clear();
2432 } 2429 }
2433 2430
2434 // Leave untouched the starting instruction, any Phis, a CreateEx node 2431 // Leave untouched the starting instruction, any Phis, a CreateEx node
2435 // or Top. bb->_nodes[_bb_start] is the first schedulable instruction. 2432 // or Top. bb->get_node(_bb_start) is the first schedulable instruction.
2436 _bb_end = bb->_nodes.size()-1; 2433 _bb_end = bb->number_of_nodes()-1;
2437 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2434 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2438 Node *n = bb->_nodes[_bb_start]; 2435 Node *n = bb->get_node(_bb_start);
2439 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2436 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2440 // Also, MachIdealNodes do not get scheduled 2437 // Also, MachIdealNodes do not get scheduled
2441 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2438 if( !n->is_Mach() ) continue; // Skip non-machine nodes
2442 MachNode *mach = n->as_Mach(); 2439 MachNode *mach = n->as_Mach();
2443 int iop = mach->ideal_Opcode(); 2440 int iop = mach->ideal_Opcode();
2453 // might schedule. _bb_end points just after last schedulable inst. We 2450 // might schedule. _bb_end points just after last schedulable inst. We
2454 // normally schedule conditional branches (despite them being forced last 2451 // normally schedule conditional branches (despite them being forced last
2455 // in the block), because they have delay slots we can fill. Calls all 2452 // in the block), because they have delay slots we can fill. Calls all
2456 // have their delay slots filled in the template expansions, so we don't 2453 // have their delay slots filled in the template expansions, so we don't
2457 // bother scheduling them. 2454 // bother scheduling them.
2458 Node *last = bb->_nodes[_bb_end]; 2455 Node *last = bb->get_node(_bb_end);
2459 // Ignore trailing NOPs. 2456 // Ignore trailing NOPs.
2460 while (_bb_end > 0 && last->is_Mach() && 2457 while (_bb_end > 0 && last->is_Mach() &&
2461 last->as_Mach()->ideal_Opcode() == Op_Con) { 2458 last->as_Mach()->ideal_Opcode() == Op_Con) {
2462 last = bb->_nodes[--_bb_end]; 2459 last = bb->get_node(--_bb_end);
2463 } 2460 }
2464 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2461 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2465 if( last->is_Catch() || 2462 if( last->is_Catch() ||
2466 // Exclude unreachable path case when Halt node is in a separate block. 2463 // Exclude unreachable path case when Halt node is in a separate block.
2467 (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2464 (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2468 // There must be a prior call. Skip it. 2465 // There must be a prior call. Skip it.
2469 while( !bb->_nodes[--_bb_end]->is_MachCall() ) { 2466 while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2470 assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" ); 2467 assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2471 } 2468 }
2472 } else if( last->is_MachNullCheck() ) { 2469 } else if( last->is_MachNullCheck() ) {
2473 // Backup so the last null-checked memory instruction is 2470 // Backup so the last null-checked memory instruction is
2474 // outside the schedulable range. Skip over the nullcheck, 2471 // outside the schedulable range. Skip over the nullcheck,
2475 // projection, and the memory nodes. 2472 // projection, and the memory nodes.
2476 Node *mem = last->in(1); 2473 Node *mem = last->in(1);
2477 do { 2474 do {
2478 _bb_end--; 2475 _bb_end--;
2479 } while (mem != bb->_nodes[_bb_end]); 2476 } while (mem != bb->get_node(_bb_end));
2480 } else { 2477 } else {
2481 // Set _bb_end to point after last schedulable inst. 2478 // Set _bb_end to point after last schedulable inst.
2482 _bb_end++; 2479 _bb_end++;
2483 } 2480 }
2484 2481
2503 } 2500 }
2504 2501
2505 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2502 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2506 #ifdef ASSERT 2503 #ifdef ASSERT
2507 for( uint l = _bb_start; l < _bb_end; l++ ) { 2504 for( uint l = _bb_start; l < _bb_end; l++ ) {
2508 Node *n = bb->_nodes[l]; 2505 Node *n = bb->get_node(l);
2509 uint m; 2506 uint m;
2510 for( m = 0; m < _bb_end-_bb_start; m++ ) 2507 for( m = 0; m < _bb_end-_bb_start; m++ )
2511 if( _scheduled[m] == n ) 2508 if( _scheduled[m] == n )
2512 break; 2509 break;
2513 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2510 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2514 } 2511 }
2515 #endif 2512 #endif
2516 2513
2517 // Now copy the instructions (in reverse order) back to the block 2514 // Now copy the instructions (in reverse order) back to the block
2518 for ( uint k = _bb_start; k < _bb_end; k++ ) 2515 for ( uint k = _bb_start; k < _bb_end; k++ )
2519 bb->_nodes.map(k, _scheduled[_bb_end-k-1]); 2516 bb->map_node(_scheduled[_bb_end-k-1], k);
2520 2517
2521 #ifndef PRODUCT 2518 #ifndef PRODUCT
2522 if (_cfg->C->trace_opto_output()) { 2519 if (_cfg->C->trace_opto_output()) {
2523 tty->print("# Schedule BB#%03d (final)\n", i); 2520 tty->print("# Schedule BB#%03d (final)\n", i);
2524 uint current = 0; 2521 uint current = 0;
2525 for (uint j = 0; j < bb->_nodes.size(); j++) { 2522 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2526 Node *n = bb->_nodes[j]; 2523 Node *n = bb->get_node(j);
2527 if( valid_bundle_info(n) ) { 2524 if( valid_bundle_info(n) ) {
2528 Bundle *bundle = node_bundling(n); 2525 Bundle *bundle = node_bundling(n);
2529 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2526 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2530 tty->print("*** Bundle: "); 2527 tty->print("*** Bundle: ");
2531 bundle->dump(); 2528 bundle->dump();
2548 // Record final node-bundling array location 2545 // Record final node-bundling array location
2549 _regalloc->C->set_node_bundling_base(_node_bundling_base); 2546 _regalloc->C->set_node_bundling_base(_node_bundling_base);
2550 2547
2551 } // end DoScheduling 2548 } // end DoScheduling
2552 2549
2553 //------------------------------verify_good_schedule---------------------------
2554 // Verify that no live-range used in the block is killed in the block by a 2550 // Verify that no live-range used in the block is killed in the block by a
2555 // wrong DEF. This doesn't verify live-ranges that span blocks. 2551 // wrong DEF. This doesn't verify live-ranges that span blocks.
2556 2552
2557 // Check for edge existence. Used to avoid adding redundant precedence edges. 2553 // Check for edge existence. Used to avoid adding redundant precedence edges.
2558 static bool edge_from_to( Node *from, Node *to ) { 2554 static bool edge_from_to( Node *from, Node *to ) {
2561 return true; 2557 return true;
2562 return false; 2558 return false;
2563 } 2559 }
2564 2560
2565 #ifdef ASSERT 2561 #ifdef ASSERT
2566 //------------------------------verify_do_def----------------------------------
2567 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2562 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2568 // Check for bad kills 2563 // Check for bad kills
2569 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2564 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2570 Node *prior_use = _reg_node[def]; 2565 Node *prior_use = _reg_node[def];
2571 if( prior_use && !edge_from_to(prior_use,n) ) { 2566 if( prior_use && !edge_from_to(prior_use,n) ) {
2577 } 2572 }
2578 _reg_node.map(def,NULL); // Kill live USEs 2573 _reg_node.map(def,NULL); // Kill live USEs
2579 } 2574 }
2580 } 2575 }
2581 2576
2582 //------------------------------verify_good_schedule---------------------------
2583 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2577 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2584 2578
2585 // Zap to something reasonable for the verify code 2579 // Zap to something reasonable for the verify code
2586 _reg_node.clear(); 2580 _reg_node.clear();
2587 2581
2588 // Walk over the block backwards. Check to make sure each DEF doesn't 2582 // Walk over the block backwards. Check to make sure each DEF doesn't
2589 // kill a live value (other than the one it's supposed to). Add each 2583 // kill a live value (other than the one it's supposed to). Add each
2590 // USE to the live set. 2584 // USE to the live set.
2591 for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) { 2585 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2592 Node *n = b->_nodes[i]; 2586 Node *n = b->get_node(i);
2593 int n_op = n->Opcode(); 2587 int n_op = n->Opcode();
2594 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2588 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2595 // Fat-proj kills a slew of registers 2589 // Fat-proj kills a slew of registers
2596 RegMask rm = n->out_RegMask();// Make local copy 2590 RegMask rm = n->out_RegMask();// Make local copy
2597 while( rm.is_NotEmpty() ) { 2591 while( rm.is_NotEmpty() ) {
2637 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2631 if( from != to && // No cycles (for things like LD L0,[L0+4] )
2638 !edge_from_to( from, to ) ) // Avoid duplicate edge 2632 !edge_from_to( from, to ) ) // Avoid duplicate edge
2639 from->add_prec(to); 2633 from->add_prec(to);
2640 } 2634 }
2641 2635
2642 //------------------------------anti_do_def------------------------------------
2643 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2636 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2644 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2637 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2645 return; 2638 return;
2646 2639
2647 Node *pinch = _reg_node[def_reg]; // Get pinch point 2640 Node *pinch = _reg_node[def_reg]; // Get pinch point
2707 2700
2708 // Add edge from kill to pinch-point 2701 // Add edge from kill to pinch-point
2709 add_prec_edge_from_to(kill,pinch); 2702 add_prec_edge_from_to(kill,pinch);
2710 } 2703 }
2711 2704
2712 //------------------------------anti_do_use------------------------------------
2713 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 2705 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2714 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 2706 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2715 return; 2707 return;
2716 Node *pinch = _reg_node[use_reg]; // Get pinch point 2708 Node *pinch = _reg_node[use_reg]; // Get pinch point
2717 // Check for no later def_reg/kill in block 2709 // Check for no later def_reg/kill in block
2720 _cfg->get_block_for_node(use) == b) { 2712 _cfg->get_block_for_node(use) == b) {
2721 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 2713 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2722 pinch->req() == 1 ) { // pinch not yet in block? 2714 pinch->req() == 1 ) { // pinch not yet in block?
2723 pinch->del_req(0); // yank pointer to later-def, also set flag 2715 pinch->del_req(0); // yank pointer to later-def, also set flag
2724 // Insert the pinch-point in the block just after the last use 2716 // Insert the pinch-point in the block just after the last use
2725 b->_nodes.insert(b->find_node(use)+1,pinch); 2717 b->insert_node(pinch, b->find_node(use) + 1);
2726 _bb_end++; // Increase size scheduled region in block 2718 _bb_end++; // Increase size scheduled region in block
2727 } 2719 }
2728 2720
2729 add_prec_edge_from_to(pinch,use); 2721 add_prec_edge_from_to(pinch,use);
2730 } 2722 }
2731 } 2723 }
2732 2724
2733 //------------------------------ComputeRegisterAntidependences-----------------
2734 // We insert antidependences between the reads and following write of 2725 // We insert antidependences between the reads and following write of
2735 // allocated registers to prevent illegal code motion. Hopefully, the 2726 // allocated registers to prevent illegal code motion. Hopefully, the
2736 // number of added references should be fairly small, especially as we 2727 // number of added references should be fairly small, especially as we
2737 // are only adding references within the current basic block. 2728 // are only adding references within the current basic block.
2738 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 2729 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2773 // block. Leftover node from some prior block is treated like a NULL (no 2764 // block. Leftover node from some prior block is treated like a NULL (no
2774 // prior def, so no anti-dependence needed). Valid def is distinguished by 2765 // prior def, so no anti-dependence needed). Valid def is distinguished by
2775 // it being in the current block. 2766 // it being in the current block.
2776 bool fat_proj_seen = false; 2767 bool fat_proj_seen = false;
2777 uint last_safept = _bb_end-1; 2768 uint last_safept = _bb_end-1;
2778 Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL; 2769 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2779 Node* last_safept_node = end_node; 2770 Node* last_safept_node = end_node;
2780 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 2771 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2781 Node *n = b->_nodes[i]; 2772 Node *n = b->get_node(i);
2782 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 2773 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
2783 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 2774 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2784 // Fat-proj kills a slew of registers 2775 // Fat-proj kills a slew of registers
2785 // This can add edges to 'n' and obscure whether or not it was a def, 2776 // This can add edges to 'n' and obscure whether or not it was a def,
2786 // hence the is_def flag. 2777 // hence the is_def flag.
2825 } 2816 }
2826 } 2817 }
2827 // Do not allow defs of new derived values to float above GC 2818 // Do not allow defs of new derived values to float above GC
2828 // points unless the base is definitely available at the GC point. 2819 // points unless the base is definitely available at the GC point.
2829 2820
2830 Node *m = b->_nodes[i]; 2821 Node *m = b->get_node(i);
2831 2822
2832 // Add precedence edge from following safepoint to use of derived pointer 2823 // Add precedence edge from following safepoint to use of derived pointer
2833 if( last_safept_node != end_node && 2824 if( last_safept_node != end_node &&
2834 m != last_safept_node) { 2825 m != last_safept_node) {
2835 for (uint k = 1; k < m->req(); k++) { 2826 for (uint k = 1; k < m->req(); k++) {
2842 } 2833 }
2843 } 2834 }
2844 2835
2845 if( n->jvms() ) { // Precedence edge from derived to safept 2836 if( n->jvms() ) { // Precedence edge from derived to safept
2846 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 2837 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2847 if( b->_nodes[last_safept] != last_safept_node ) { 2838 if( b->get_node(last_safept) != last_safept_node ) {
2848 last_safept = b->find_node(last_safept_node); 2839 last_safept = b->find_node(last_safept_node);
2849 } 2840 }
2850 for( uint j=last_safept; j > i; j-- ) { 2841 for( uint j=last_safept; j > i; j-- ) {
2851 Node *mach = b->_nodes[j]; 2842 Node *mach = b->get_node(j);
2852 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 2843 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2853 mach->add_prec( n ); 2844 mach->add_prec( n );
2854 } 2845 }
2855 last_safept = i; 2846 last_safept = i;
2856 last_safept_node = m; 2847 last_safept_node = m;
2861 // Garbage collect pinch nodes that were not consumed. 2852 // Garbage collect pinch nodes that were not consumed.
2862 // They are usually created by a fat kill MachProj for a call. 2853 // They are usually created by a fat kill MachProj for a call.
2863 garbage_collect_pinch_nodes(); 2854 garbage_collect_pinch_nodes();
2864 } 2855 }
2865 } 2856 }
2866
2867 //------------------------------garbage_collect_pinch_nodes-------------------------------
2868 2857
2869 // Garbage collect pinch nodes for reuse by other blocks. 2858 // Garbage collect pinch nodes for reuse by other blocks.
2870 // 2859 //
2871 // The block scheduler's insertion of anti-dependence 2860 // The block scheduler's insertion of anti-dependence
2872 // edges creates many pinch nodes when the block contains 2861 // edges creates many pinch nodes when the block contains
2938 } 2927 }
2939 // May have a later_def entry 2928 // May have a later_def entry
2940 pinch->set_req(0, NULL); 2929 pinch->set_req(0, NULL);
2941 } 2930 }
2942 2931
2943 //------------------------------print_statistics-------------------------------
2944 #ifndef PRODUCT 2932 #ifndef PRODUCT
2945 2933
2946 void Scheduling::dump_available() const { 2934 void Scheduling::dump_available() const {
2947 tty->print("#Availist "); 2935 tty->print("#Availist ");
2948 for (uint i = 0; i < _available.size(); i++) 2936 for (uint i = 0; i < _available.size(); i++)