comparison src/cpu/sparc/vm/assembler_sparc.hpp @ 7206:d2f8c38e543d

Merge
author roland
date Fri, 07 Dec 2012 01:09:03 -0800
parents f0c2369fda5a
children ffa87474d7a4
comparison
equal deleted inserted replaced
7191:816b7e5bf2ed 7206:d2f8c38e543d
23 */ 23 */
24 24
25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
27 27
28 class BiasedLockingCounters; 28 #include "asm/register.hpp"
29
30 // <sys/trap.h> promises that the system will not use traps 16-31
31 #define ST_RESERVED_FOR_USER_0 0x10
32
33 /* Written: David Ungar 4/19/97 */
34
35 // Contains all the definitions needed for sparc assembly code generation.
36
37 // Register aliases for parts of the system:
38
39 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
40 // across context switches in V8+ ABI. Of course, there are no 64 bit regs
41 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
42
43 // g2-g4 are scratch registers called "application globals". Their
44 // meaning is reserved to the "compilation system"--which means us!
45 // They are are not supposed to be touched by ordinary C code, although
46 // highly-optimized C code might steal them for temps. They are safe
47 // across thread switches, and the ABI requires that they be safe
48 // across function calls.
49 //
50 // g1 and g3 are touched by more modules. V8 allows g1 to be clobbered
51 // across func calls, and V8+ also allows g5 to be clobbered across
52 // func calls. Also, g1 and g5 can get touched while doing shared
53 // library loading.
54 //
55 // We must not touch g7 (it is the thread-self register) and g6 is
56 // reserved for certain tools. g0, of course, is always zero.
57 //
58 // (Sources: SunSoft Compilers Group, thread library engineers.)
59
60 // %%%% The interpreter should be revisited to reduce global scratch regs.
61
62 // This global always holds the current JavaThread pointer:
63
64 REGISTER_DECLARATION(Register, G2_thread , G2);
65 REGISTER_DECLARATION(Register, G6_heapbase , G6);
66
67 // The following globals are part of the Java calling convention:
68
69 REGISTER_DECLARATION(Register, G5_method , G5);
70 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
71 REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method);
72
73 // The following globals are used for the new C1 & interpreter calling convention:
74 REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument
75
76 // This local is used to preserve G2_thread in the interpreter and in stubs:
77 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
78
79 // These globals are used as scratch registers in the interpreter:
80
81 REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch
82 REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME
83 REGISTER_DECLARATION(Register, G3_scratch , G3);
84 REGISTER_DECLARATION(Register, G4_scratch , G4);
85
86 // These globals are used as short-lived scratch registers in the compiler:
87
88 REGISTER_DECLARATION(Register, Gtemp , G5);
89
90 // JSR 292 fixed register usages:
91 REGISTER_DECLARATION(Register, G5_method_type , G5);
92 REGISTER_DECLARATION(Register, G3_method_handle , G3);
93 REGISTER_DECLARATION(Register, L7_mh_SP_save , L7);
94
95 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
96 // because a single patchable "set" instruction (NativeMovConstReg,
97 // or NativeMovConstPatching for compiler1) instruction
98 // serves to set up either quantity, depending on whether the compiled
99 // call site is an inline cache or is megamorphic. See the function
100 // CompiledIC::set_to_megamorphic.
101 //
102 // If a inline cache targets an interpreted method, then the
103 // G5 register will be used twice during the call. First,
104 // the call site will be patched to load a compiledICHolder
105 // into G5. (This is an ordered pair of ic_klass, method.)
106 // The c2i adapter will first check the ic_klass, then load
107 // G5_method with the method part of the pair just before
108 // jumping into the interpreter.
109 //
110 // Note that G5_method is only the method-self for the interpreter,
111 // and is logically unrelated to G5_megamorphic_method.
112 //
113 // Invariants on G2_thread (the JavaThread pointer):
114 // - it should not be used for any other purpose anywhere
115 // - it must be re-initialized by StubRoutines::call_stub()
116 // - it must be preserved around every use of call_VM
117
118 // We can consider using g2/g3/g4 to cache more values than the
119 // JavaThread, such as the card-marking base or perhaps pointers into
120 // Eden. It's something of a waste to use them as scratch temporaries,
121 // since they are not supposed to be volatile. (Of course, if we find
122 // that Java doesn't benefit from application globals, then we can just
123 // use them as ordinary temporaries.)
124 //
125 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
126 // it makes sense to use them routinely for procedure linkage,
127 // whenever the On registers are not applicable. Examples: G5_method,
128 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
129 // stubs. This means that compiler stubs, etc., should be kept to a
130 // maximum of two or three G-register arguments.
131
132
133 // stub frames
134
135 REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself
136
137 // Interpreter frames
138
139 #ifdef CC_INTERP
140 REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer
141 REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch
142 REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only)
143 REGISTER_DECLARATION(Register, L2_scratch , L2);
144 REGISTER_DECLARATION(Register, L3_scratch , L3);
145 REGISTER_DECLARATION(Register, L4_scratch , L4);
146 REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses
147 REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses
148 REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache
149 REGISTER_DECLARATION(Register, O5_savedSP , O5);
150 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
151 // a copy SP, so in 64-bit it's a biased value. The bias
152 // is added and removed as needed in the frame code.
153 // Interface to signature handler
154 REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler
155 REGISTER_DECLARATION(Register, Lmethod , L6); // Method* when calling signature handler
156
157 #else
158 REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer
159 REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode
160 REGISTER_DECLARATION(Register, Lmethod , L2);
161 REGISTER_DECLARATION(Register, Llocals , L3);
162 REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler
163 // must match Llocals in asm interpreter
164 REGISTER_DECLARATION(Register, Lmonitors , L4);
165 REGISTER_DECLARATION(Register, Lbyte_code , L5);
166 // When calling out from the interpreter we record SP so that we can remove any extra stack
167 // space allocated during adapter transitions. This register is only live from the point
168 // of the call until we return.
169 REGISTER_DECLARATION(Register, Llast_SP , L5);
170 REGISTER_DECLARATION(Register, Lscratch , L5);
171 REGISTER_DECLARATION(Register, Lscratch2 , L6);
172 REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache
173
174 REGISTER_DECLARATION(Register, O5_savedSP , O5);
175 REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply
176 // a copy SP, so in 64-bit it's a biased value. The bias
177 // is added and removed as needed in the frame code.
178 REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables
179 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
180 REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data
181 #endif /* CC_INTERP */
182
183 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
184 // the interpreter code. If Lscratch2 needs to be used for some
185 // purpose than LcpoolCache should be restore after that for
186 // the interpreter to work right
187 // (These assignments must be compatible with L7_thread_cache; see above.)
188
189 // Since Lbcp points into the middle of the method object,
190 // it is temporarily converted into a "bcx" during GC.
191
192 // Exception processing
193 // These registers are passed into exception handlers.
194 // All exception handlers require the exception object being thrown.
195 // In addition, an nmethod's exception handler must be passed
196 // the address of the call site within the nmethod, to allow
197 // proper selection of the applicable catch block.
198 // (Interpreter frames use their own bcp() for this purpose.)
199 //
200 // The Oissuing_pc value is not always needed. When jumping to a
201 // handler that is known to be interpreted, the Oissuing_pc value can be
202 // omitted. An actual catch block in compiled code receives (from its
203 // nmethod's exception handler) the thrown exception in the Oexception,
204 // but it doesn't need the Oissuing_pc.
205 //
206 // If an exception handler (either interpreted or compiled)
207 // discovers there is no applicable catch block, it updates
208 // the Oissuing_pc to the continuation PC of its own caller,
209 // pops back to that caller's stack frame, and executes that
210 // caller's exception handler. Obviously, this process will
211 // iterate until the control stack is popped back to a method
212 // containing an applicable catch block. A key invariant is
213 // that the Oissuing_pc value is always a value local to
214 // the method whose exception handler is currently executing.
215 //
216 // Note: The issuing PC value is __not__ a raw return address (I7 value).
217 // It is a "return pc", the address __following__ the call.
218 // Raw return addresses are converted to issuing PCs by frame::pc(),
219 // or by stubs. Issuing PCs can be used directly with PC range tables.
220 //
221 REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown
222 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
223
224
225 // These must occur after the declarations above
226 #ifndef DONT_USE_REGISTER_DEFINES
227
228 #define Gthread AS_REGISTER(Register, Gthread)
229 #define Gmethod AS_REGISTER(Register, Gmethod)
230 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
231 #define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg)
232 #define Gargs AS_REGISTER(Register, Gargs)
233 #define Lthread_cache AS_REGISTER(Register, Lthread_cache)
234 #define Gframe_size AS_REGISTER(Register, Gframe_size)
235 #define Gtemp AS_REGISTER(Register, Gtemp)
236
237 #ifdef CC_INTERP
238 #define Lstate AS_REGISTER(Register, Lstate)
239 #define Lesp AS_REGISTER(Register, Lesp)
240 #define L1_scratch AS_REGISTER(Register, L1_scratch)
241 #define Lmirror AS_REGISTER(Register, Lmirror)
242 #define L2_scratch AS_REGISTER(Register, L2_scratch)
243 #define L3_scratch AS_REGISTER(Register, L3_scratch)
244 #define L4_scratch AS_REGISTER(Register, L4_scratch)
245 #define Lscratch AS_REGISTER(Register, Lscratch)
246 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
247 #define L7_scratch AS_REGISTER(Register, L7_scratch)
248 #define Ostate AS_REGISTER(Register, Ostate)
249 #else
250 #define Lesp AS_REGISTER(Register, Lesp)
251 #define Lbcp AS_REGISTER(Register, Lbcp)
252 #define Lmethod AS_REGISTER(Register, Lmethod)
253 #define Llocals AS_REGISTER(Register, Llocals)
254 #define Lmonitors AS_REGISTER(Register, Lmonitors)
255 #define Lbyte_code AS_REGISTER(Register, Lbyte_code)
256 #define Lscratch AS_REGISTER(Register, Lscratch)
257 #define Lscratch2 AS_REGISTER(Register, Lscratch2)
258 #define LcpoolCache AS_REGISTER(Register, LcpoolCache)
259 #endif /* ! CC_INTERP */
260
261 #define Lentry_args AS_REGISTER(Register, Lentry_args)
262 #define I5_savedSP AS_REGISTER(Register, I5_savedSP)
263 #define O5_savedSP AS_REGISTER(Register, O5_savedSP)
264 #define IdispatchAddress AS_REGISTER(Register, IdispatchAddress)
265 #define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr)
266 #define IdispatchTables AS_REGISTER(Register, IdispatchTables)
267
268 #define Oexception AS_REGISTER(Register, Oexception)
269 #define Oissuing_pc AS_REGISTER(Register, Oissuing_pc)
270
271
272 #endif
273
274 // Address is an abstraction used to represent a memory location.
275 //
276 // Note: A register location is represented via a Register, not
277 // via an address for efficiency & simplicity reasons.
278
279 class Address VALUE_OBJ_CLASS_SPEC {
280 private:
281 Register _base; // Base register.
282 RegisterOrConstant _index_or_disp; // Index register or constant displacement.
283 RelocationHolder _rspec;
284
285 public:
286 Address() : _base(noreg), _index_or_disp(noreg) {}
287
288 Address(Register base, RegisterOrConstant index_or_disp)
289 : _base(base),
290 _index_or_disp(index_or_disp) {
291 }
292
293 Address(Register base, Register index)
294 : _base(base),
295 _index_or_disp(index) {
296 }
297
298 Address(Register base, int disp)
299 : _base(base),
300 _index_or_disp(disp) {
301 }
302
303 #ifdef ASSERT
304 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
305 Address(Register base, ByteSize disp)
306 : _base(base),
307 _index_or_disp(in_bytes(disp)) {
308 }
309 #endif
310
311 // accessors
312 Register base() const { return _base; }
313 Register index() const { return _index_or_disp.as_register(); }
314 int disp() const { return _index_or_disp.as_constant(); }
315
316 bool has_index() const { return _index_or_disp.is_register(); }
317 bool has_disp() const { return _index_or_disp.is_constant(); }
318
319 bool uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
320
321 const relocInfo::relocType rtype() { return _rspec.type(); }
322 const RelocationHolder& rspec() { return _rspec; }
323
324 RelocationHolder rspec(int offset) const {
325 return offset == 0 ? _rspec : _rspec.plus(offset);
326 }
327
328 inline bool is_simm13(int offset = 0); // check disp+offset for overflow
329
330 Address plus_disp(int plusdisp) const { // bump disp by a small amount
331 assert(_index_or_disp.is_constant(), "must have a displacement");
332 Address a(base(), disp() + plusdisp);
333 return a;
334 }
335 bool is_same_address(Address a) const {
336 // disregard _rspec
337 return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
338 }
339
340 Address after_save() const {
341 Address a = (*this);
342 a._base = a._base->after_save();
343 return a;
344 }
345
346 Address after_restore() const {
347 Address a = (*this);
348 a._base = a._base->after_restore();
349 return a;
350 }
351
352 // Convert the raw encoding form into the form expected by the
353 // constructor for Address.
354 static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
355
356 friend class Assembler;
357 };
358
359
360 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
361 private:
362 address _address;
363 RelocationHolder _rspec;
364
365 RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
366 switch (rtype) {
367 case relocInfo::external_word_type:
368 return external_word_Relocation::spec(addr);
369 case relocInfo::internal_word_type:
370 return internal_word_Relocation::spec(addr);
371 #ifdef _LP64
372 case relocInfo::opt_virtual_call_type:
373 return opt_virtual_call_Relocation::spec();
374 case relocInfo::static_call_type:
375 return static_call_Relocation::spec();
376 case relocInfo::runtime_call_type:
377 return runtime_call_Relocation::spec();
378 #endif
379 case relocInfo::none:
380 return RelocationHolder();
381 default:
382 ShouldNotReachHere();
383 return RelocationHolder();
384 }
385 }
386
387 protected:
388 // creation
389 AddressLiteral() : _address(NULL), _rspec(NULL) {}
390
391 public:
392 AddressLiteral(address addr, RelocationHolder const& rspec)
393 : _address(addr),
394 _rspec(rspec) {}
395
396 // Some constructors to avoid casting at the call site.
397 AddressLiteral(jobject obj, RelocationHolder const& rspec)
398 : _address((address) obj),
399 _rspec(rspec) {}
400
401 AddressLiteral(intptr_t value, RelocationHolder const& rspec)
402 : _address((address) value),
403 _rspec(rspec) {}
404
405 AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
406 : _address((address) addr),
407 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
408
409 // Some constructors to avoid casting at the call site.
410 AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
411 : _address((address) addr),
412 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
413
414 AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
415 : _address((address) addr),
416 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
417
418 AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
419 : _address((address) addr),
420 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
421
422 AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
423 : _address((address) addr),
424 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
425
426 AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
427 : _address((address) addr),
428 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
429
430 AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
431 : _address((address) addr),
432 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
433
434 #ifdef _LP64
435 // 32-bit complains about a multiple declaration for int*.
436 AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
437 : _address((address) addr),
438 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
439 #endif
440
441 AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
442 : _address((address) addr),
443 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
444
445 AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
446 : _address((address) addr),
447 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
448
449 AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
450 : _address((address) addr),
451 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
452
453 AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
454 : _address((address) addr),
455 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
456
457 intptr_t value() const { return (intptr_t) _address; }
458 int low10() const;
459
460 const relocInfo::relocType rtype() const { return _rspec.type(); }
461 const RelocationHolder& rspec() const { return _rspec; }
462
463 RelocationHolder rspec(int offset) const {
464 return offset == 0 ? _rspec : _rspec.plus(offset);
465 }
466 };
467
468 // Convenience classes
469 class ExternalAddress: public AddressLiteral {
470 private:
471 static relocInfo::relocType reloc_for_target(address target) {
472 // Sometimes ExternalAddress is used for values which aren't
473 // exactly addresses, like the card table base.
474 // external_word_type can't be used for values in the first page
475 // so just skip the reloc in that case.
476 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
477 }
478
479 public:
480 ExternalAddress(address target) : AddressLiteral(target, reloc_for_target( target)) {}
481 ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
482 };
483
484 inline Address RegisterImpl::address_in_saved_window() const {
485 return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
486 }
487
488
489
490 // Argument is an abstraction used to represent an outgoing
491 // actual argument or an incoming formal parameter, whether
492 // it resides in memory or in a register, in a manner consistent
493 // with the SPARC Application Binary Interface, or ABI. This is
494 // often referred to as the native or C calling convention.
495
496 class Argument VALUE_OBJ_CLASS_SPEC {
497 private:
498 int _number;
499 bool _is_in;
500
501 public:
502 #ifdef _LP64
503 enum {
504 n_register_parameters = 6, // only 6 registers may contain integer parameters
505 n_float_register_parameters = 16 // Can have up to 16 floating registers
506 };
507 #else
508 enum {
509 n_register_parameters = 6 // only 6 registers may contain integer parameters
510 };
511 #endif
512
513 // creation
514 Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
515
516 int number() const { return _number; }
517 bool is_in() const { return _is_in; }
518 bool is_out() const { return !is_in(); }
519
520 Argument successor() const { return Argument(number() + 1, is_in()); }
521 Argument as_in() const { return Argument(number(), true ); }
522 Argument as_out() const { return Argument(number(), false); }
523
524 // locating register-based arguments:
525 bool is_register() const { return _number < n_register_parameters; }
526
527 #ifdef _LP64
528 // locating Floating Point register-based arguments:
529 bool is_float_register() const { return _number < n_float_register_parameters; }
530
531 FloatRegister as_float_register() const {
532 assert(is_float_register(), "must be a register argument");
533 return as_FloatRegister(( number() *2 ) + 1);
534 }
535 FloatRegister as_double_register() const {
536 assert(is_float_register(), "must be a register argument");
537 return as_FloatRegister(( number() *2 ));
538 }
539 #endif
540
541 Register as_register() const {
542 assert(is_register(), "must be a register argument");
543 return is_in() ? as_iRegister(number()) : as_oRegister(number());
544 }
545
546 // locating memory-based arguments
547 Address as_address() const {
548 assert(!is_register(), "must be a memory argument");
549 return address_in_frame();
550 }
551
552 // When applied to a register-based argument, give the corresponding address
553 // into the 6-word area "into which callee may store register arguments"
554 // (This is a different place than the corresponding register-save area location.)
555 Address address_in_frame() const;
556
557 // debugging
558 const char* name() const;
559
560 friend class Assembler;
561 };
562
563 29
564 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction 30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
565 // level; i.e., what you write 31 // level; i.e., what you write
566 // is what you get. The Assembler is generating code into a CodeBuffer. 32 // is what you get. The Assembler is generating code into a CodeBuffer.
567 33
568 class Assembler : public AbstractAssembler { 34 class Assembler : public AbstractAssembler {
569 protected:
570
571 static void print_instruction(int inst);
572 static int patched_branch(int dest_pos, int inst, int inst_pos);
573 static int branch_destination(int inst, int pos);
574
575
576 friend class AbstractAssembler; 35 friend class AbstractAssembler;
577 friend class AddressLiteral; 36 friend class AddressLiteral;
578 37
579 // code patchers need various routines like inv_wdisp() 38 // code patchers need various routines like inv_wdisp()
580 friend class NativeInstruction; 39 friend class NativeInstruction;
1228 // instructions, refer to page numbers in the SPARC Architecture Manual, V9 687 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
1229 688
1230 // pp 135 (addc was addx in v8) 689 // pp 135 (addc was addx in v8)
1231 690
1232 inline void add(Register s1, Register s2, Register d ); 691 inline void add(Register s1, Register s2, Register d );
1233 inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none); 692 inline void add(Register s1, int simm13a, Register d );
1234 inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
1235 inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
1236 inline void add(const Address& a, Register d, int offset = 0);
1237 693
1238 void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } 694 void addcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1239 void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 695 void addcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1240 void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); } 696 void addc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
1241 void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 697 void addc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1393 void jmpl( Register s1, Register s2, Register d ); 849 void jmpl( Register s1, Register s2, Register d );
1394 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() ); 850 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1395 851
1396 // 171 852 // 171
1397 853
1398 inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
1399 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d); 854 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
1400 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder()); 855 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
1401
1402 inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
1403 856
1404 857
1405 inline void ldfsr( Register s1, Register s2 ); 858 inline void ldfsr( Register s1, Register s2 );
1406 inline void ldfsr( Register s1, int simm13a); 859 inline void ldfsr( Register s1, int simm13a);
1407 inline void ldxfsr( Register s1, Register s2 ); 860 inline void ldxfsr( Register s1, Register s2 );
1436 inline void lduh( Register s1, int simm13a, Register d); 889 inline void lduh( Register s1, int simm13a, Register d);
1437 inline void lduw( Register s1, Register s2, Register d ); 890 inline void lduw( Register s1, Register s2, Register d );
1438 inline void lduw( Register s1, int simm13a, Register d); 891 inline void lduw( Register s1, int simm13a, Register d);
1439 inline void ldx( Register s1, Register s2, Register d ); 892 inline void ldx( Register s1, Register s2, Register d );
1440 inline void ldx( Register s1, int simm13a, Register d); 893 inline void ldx( Register s1, int simm13a, Register d);
1441 inline void ld( Register s1, Register s2, Register d );
1442 inline void ld( Register s1, int simm13a, Register d);
1443 inline void ldd( Register s1, Register s2, Register d ); 894 inline void ldd( Register s1, Register s2, Register d );
1444 inline void ldd( Register s1, int simm13a, Register d); 895 inline void ldd( Register s1, int simm13a, Register d);
1445
1446 #ifdef ASSERT
1447 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1448 inline void ld( Register s1, ByteSize simm13a, Register d);
1449 #endif
1450
1451 inline void ldsb(const Address& a, Register d, int offset = 0);
1452 inline void ldsh(const Address& a, Register d, int offset = 0);
1453 inline void ldsw(const Address& a, Register d, int offset = 0);
1454 inline void ldub(const Address& a, Register d, int offset = 0);
1455 inline void lduh(const Address& a, Register d, int offset = 0);
1456 inline void lduw(const Address& a, Register d, int offset = 0);
1457 inline void ldx( const Address& a, Register d, int offset = 0);
1458 inline void ld( const Address& a, Register d, int offset = 0);
1459 inline void ldd( const Address& a, Register d, int offset = 0);
1460
1461 inline void ldub( Register s1, RegisterOrConstant s2, Register d );
1462 inline void ldsb( Register s1, RegisterOrConstant s2, Register d );
1463 inline void lduh( Register s1, RegisterOrConstant s2, Register d );
1464 inline void ldsh( Register s1, RegisterOrConstant s2, Register d );
1465 inline void lduw( Register s1, RegisterOrConstant s2, Register d );
1466 inline void ldsw( Register s1, RegisterOrConstant s2, Register d );
1467 inline void ldx( Register s1, RegisterOrConstant s2, Register d );
1468 inline void ld( Register s1, RegisterOrConstant s2, Register d );
1469 inline void ldd( Register s1, RegisterOrConstant s2, Register d );
1470 896
1471 // pp 177 897 // pp 177
1472 898
1473 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } 899 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1474 void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 900 void ldsba( Register s1, int simm13a, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1503 void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 929 void and3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1504 void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } 930 void andcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1505 void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 931 void andcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1506 void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); } 932 void andn( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
1507 void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 933 void andn( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1508 void andn( Register s1, RegisterOrConstant s2, Register d);
1509 void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } 934 void andncc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1510 void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 935 void andncc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1511 void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); } 936 void or3( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
1512 void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 937 void or3( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1513 void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } 938 void orcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1582 void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); } 1007 void popc( Register s, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
1583 void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); } 1008 void popc( int simm13a, Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
1584 1009
1585 // pp 203 1010 // pp 203
1586 1011
1587 void prefetch( Register s1, Register s2, PrefetchFcn f); 1012 void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
1588 void prefetch( Register s1, int simm13a, PrefetchFcn f); 1013 void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
1014
1589 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } 1015 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1590 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 1016 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1591
1592 inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
1593 1017
1594 // pp 208 1018 // pp 208
1595 1019
1596 // not implementing read privileged register 1020 // not implementing read privileged register
1597 1021
1651 1075
1652 void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); } 1076 void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
1653 1077
1654 // pp 222 1078 // pp 222
1655 1079
1656 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
1657 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2); 1080 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
1658 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a); 1081 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
1659 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
1660 1082
1661 inline void stfsr( Register s1, Register s2 ); 1083 inline void stfsr( Register s1, Register s2 );
1662 inline void stfsr( Register s1, int simm13a); 1084 inline void stfsr( Register s1, int simm13a);
1663 inline void stxfsr( Register s1, Register s2 ); 1085 inline void stxfsr( Register s1, Register s2 );
1664 inline void stxfsr( Register s1, int simm13a); 1086 inline void stxfsr( Register s1, int simm13a);
1674 inline void stb( Register d, Register s1, int simm13a); 1096 inline void stb( Register d, Register s1, int simm13a);
1675 inline void sth( Register d, Register s1, Register s2 ); 1097 inline void sth( Register d, Register s1, Register s2 );
1676 inline void sth( Register d, Register s1, int simm13a); 1098 inline void sth( Register d, Register s1, int simm13a);
1677 inline void stw( Register d, Register s1, Register s2 ); 1099 inline void stw( Register d, Register s1, Register s2 );
1678 inline void stw( Register d, Register s1, int simm13a); 1100 inline void stw( Register d, Register s1, int simm13a);
1679 inline void st( Register d, Register s1, Register s2 );
1680 inline void st( Register d, Register s1, int simm13a);
1681 inline void stx( Register d, Register s1, Register s2 ); 1101 inline void stx( Register d, Register s1, Register s2 );
1682 inline void stx( Register d, Register s1, int simm13a); 1102 inline void stx( Register d, Register s1, int simm13a);
1683 inline void std( Register d, Register s1, Register s2 ); 1103 inline void std( Register d, Register s1, Register s2 );
1684 inline void std( Register d, Register s1, int simm13a); 1104 inline void std( Register d, Register s1, int simm13a);
1685
1686 #ifdef ASSERT
1687 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1688 inline void st( Register d, Register s1, ByteSize simm13a);
1689 #endif
1690
1691 inline void stb( Register d, const Address& a, int offset = 0 );
1692 inline void sth( Register d, const Address& a, int offset = 0 );
1693 inline void stw( Register d, const Address& a, int offset = 0 );
1694 inline void stx( Register d, const Address& a, int offset = 0 );
1695 inline void st( Register d, const Address& a, int offset = 0 );
1696 inline void std( Register d, const Address& a, int offset = 0 );
1697
1698 inline void stb( Register d, Register s1, RegisterOrConstant s2 );
1699 inline void sth( Register d, Register s1, RegisterOrConstant s2 );
1700 inline void stw( Register d, Register s1, RegisterOrConstant s2 );
1701 inline void stx( Register d, Register s1, RegisterOrConstant s2 );
1702 inline void std( Register d, Register s1, RegisterOrConstant s2 );
1703 inline void st( Register d, Register s1, RegisterOrConstant s2 );
1704 1105
1705 // pp 177 1106 // pp 177
1706 1107
1707 void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } 1108 void stba( Register d, Register s1, Register s2, int ia ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1708 void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 1109 void stba( Register d, Register s1, int simm13a ) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1729 // pp 230 1130 // pp 230
1730 1131
1731 void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); } 1132 void sub( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
1732 void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 1133 void sub( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1733 1134
1734 // Note: offset is added to s2.
1735 inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
1736
1737 void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); } 1135 void subcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
1738 void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 1136 void subcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1739 void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); } 1137 void subc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
1740 void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 1138 void subc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1741 void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); } 1139 void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1743 1141
1744 // pp 231 1142 // pp 231
1745 1143
1746 inline void swap( Register s1, Register s2, Register d ); 1144 inline void swap( Register s1, Register s2, Register d );
1747 inline void swap( Register s1, int simm13a, Register d); 1145 inline void swap( Register s1, int simm13a, Register d);
1748 inline void swap( Address& a, Register d, int offset = 0 );
1749 1146
1750 // pp 232 1147 // pp 232
1751 1148
1752 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); } 1149 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1753 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); } 1150 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1797 void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); } 1194 void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_long( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
1798 1195
1799 void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); } 1196 void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
1800 void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); } 1197 void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_long( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
1801 1198
1802
1803
1804
1805 // For a given register condition, return the appropriate condition code
1806 // Condition (the one you would use to get the same effect after "tst" on
1807 // the target register.)
1808 Assembler::Condition reg_cond_to_cc_cond(RCondition in);
1809
1810
1811 // Creation 1199 // Creation
1812 Assembler(CodeBuffer* code) : AbstractAssembler(code) { 1200 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1813 #ifdef CHECK_DELAY 1201 #ifdef CHECK_DELAY
1814 delay_state = no_delay; 1202 delay_state = no_delay;
1815 #endif 1203 #endif
1816 } 1204 }
1817
1818 // Testing
1819 #ifndef PRODUCT
1820 void test_v9();
1821 void test_v8_onlys();
1822 #endif
1823 }; 1205 };
1824 1206
1825
1826 class RegistersForDebugging : public StackObj {
1827 public:
1828 intptr_t i[8], l[8], o[8], g[8];
1829 float f[32];
1830 double d[32];
1831
1832 void print(outputStream* s);
1833
1834 static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
1835 static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
1836 static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
1837 static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
1838 static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
1839 static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
1840
1841 // gen asm code to save regs
1842 static void save_registers(MacroAssembler* a);
1843
1844 // restore global registers in case C code disturbed them
1845 static void restore_registers(MacroAssembler* a, Register r);
1846
1847
1848 };
1849
1850
1851 // MacroAssembler extends Assembler by a few frequently used macros.
1852 //
1853 // Most of the standard SPARC synthetic ops are defined here.
1854 // Instructions for which a 'better' code sequence exists depending
1855 // on arguments should also go in here.
1856
1857 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
1858 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
1859 #define JUMP(a, temp, off) jump(a, temp, off, __FILE__, __LINE__)
1860 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
1861
1862
1863 class MacroAssembler: public Assembler {
1864 protected:
1865 // Support for VM calls
1866 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1867 // may customize this version by overriding it for its purposes (e.g., to save/restore
1868 // additional registers when doing a VM call).
1869 #ifdef CC_INTERP
1870 #define VIRTUAL
1871 #else
1872 #define VIRTUAL virtual
1873 #endif
1874
1875 VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
1876
1877 //
1878 // It is imperative that all calls into the VM are handled via the call_VM macros.
1879 // They make sure that the stack linkage is setup correctly. call_VM's correspond
1880 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1881 //
1882 // This is the base routine called by the different versions of call_VM. The interpreter
1883 // may customize this version by overriding it for its purposes (e.g., to save/restore
1884 // additional registers when doing a VM call).
1885 //
1886 // A non-volatile java_thread_cache register should be specified so
1887 // that the G2_thread value can be preserved across the call.
1888 // (If java_thread_cache is noreg, then a slow get_thread call
1889 // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
1890 // thread.
1891 //
1892 // If no last_java_sp is specified (noreg) than SP will be used instead.
1893
1894 virtual void call_VM_base(
1895 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
1896 Register java_thread_cache, // the thread if computed before ; use noreg otherwise
1897 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
1898 address entry_point, // the entry point
1899 int number_of_arguments, // the number of arguments (w/o thread) to pop after call
1900 bool check_exception=true // flag which indicates if exception should be checked
1901 );
1902
1903 // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1904 // The implementation is only non-empty for the InterpreterMacroAssembler,
1905 // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
1906 virtual void check_and_handle_popframe(Register scratch_reg);
1907 virtual void check_and_handle_earlyret(Register scratch_reg);
1908
1909 public:
1910 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1911
1912 // Support for NULL-checks
1913 //
1914 // Generates code that causes a NULL OS exception if the content of reg is NULL.
1915 // If the accessed location is M[reg + offset] and the offset is known, provide the
1916 // offset. No explicit code generation is needed if the offset is within a certain
1917 // range (0 <= offset <= page_size).
1918 //
1919 // %%%%%% Currently not done for SPARC
1920
1921 void null_check(Register reg, int offset = -1);
1922 static bool needs_explicit_null_check(intptr_t offset);
1923
1924 // support for delayed instructions
1925 MacroAssembler* delayed() { Assembler::delayed(); return this; }
1926
1927 // branches that use right instruction for v8 vs. v9
1928 inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1929 inline void br( Condition c, bool a, Predict p, Label& L );
1930
1931 inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1932 inline void fb( Condition c, bool a, Predict p, Label& L );
1933
1934 // compares register with zero (32 bit) and branches (V9 and V8 instructions)
1935 void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
1936 // Compares a pointer register with zero and branches on (not)null.
1937 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1938 void br_null ( Register s1, bool a, Predict p, Label& L );
1939 void br_notnull( Register s1, bool a, Predict p, Label& L );
1940
1941 //
1942 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
1943 //
1944 // ATTENTION: use these instructions with caution because cbcond instruction
1945 // has very short distance: 512 instructions (2Kbyte).
1946
1947 // Compare integer (32 bit) values (icc only).
1948 void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
1949 void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
1950 // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
1951 void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
1952 void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
1953
1954 // Short branch version for compares a pointer pwith zero.
1955 void br_null_short ( Register s1, Predict p, Label& L );
1956 void br_notnull_short( Register s1, Predict p, Label& L );
1957
1958 // unconditional short branch
1959 void ba_short(Label& L);
1960
1961 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1962 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1963
1964 // Branch that tests xcc in LP64 and icc in !LP64
1965 inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1966 inline void brx( Condition c, bool a, Predict p, Label& L );
1967
1968 // unconditional branch
1969 inline void ba( Label& L );
1970
1971 // Branch that tests fp condition codes
1972 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1973 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1974
1975 // get PC the best way
1976 inline int get_pc( Register d );
1977
1978 // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
1979 inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
1980 inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
1981
1982 inline void jmp( Register s1, Register s2 );
1983 inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1984
1985 // Check if the call target is out of wdisp30 range (relative to the code cache)
1986 static inline bool is_far_target(address d);
1987 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
1988 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
1989 inline void callr( Register s1, Register s2 );
1990 inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1991
1992 // Emits nothing on V8
1993 inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
1994 inline void iprefetch( Label& L);
1995
1996 inline void tst( Register s ) { orcc( G0, s, G0 ); }
1997
1998 #ifdef PRODUCT
1999 inline void ret( bool trace = TraceJumps ) { if (trace) {
2000 mov(I7, O7); // traceable register
2001 JMP(O7, 2 * BytesPerInstWord);
2002 } else {
2003 jmpl( I7, 2 * BytesPerInstWord, G0 );
2004 }
2005 }
2006
2007 inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
2008 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
2009 #else
2010 void ret( bool trace = TraceJumps );
2011 void retl( bool trace = TraceJumps );
2012 #endif /* PRODUCT */
2013
2014 // Required platform-specific helpers for Label::patch_instructions.
2015 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
2016 void pd_patch_instruction(address branch, address target);
2017 #ifndef PRODUCT
2018 static void pd_print_patched_instruction(address branch);
2019 #endif
2020
2021 // sethi Macro handles optimizations and relocations
2022 private:
2023 void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
2024 public:
2025 void sethi(const AddressLiteral& addrlit, Register d);
2026 void patchable_sethi(const AddressLiteral& addrlit, Register d);
2027
2028 // compute the number of instructions for a sethi/set
2029 static int insts_for_sethi( address a, bool worst_case = false );
2030 static int worst_case_insts_for_set();
2031
2032 // set may be either setsw or setuw (high 32 bits may be zero or sign)
2033 private:
2034 void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
2035 static int insts_for_internal_set(intptr_t value);
2036 public:
2037 void set(const AddressLiteral& addrlit, Register d);
2038 void set(intptr_t value, Register d);
2039 void set(address addr, Register d, RelocationHolder const& rspec);
2040 static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
2041
2042 void patchable_set(const AddressLiteral& addrlit, Register d);
2043 void patchable_set(intptr_t value, Register d);
2044 void set64(jlong value, Register d, Register tmp);
2045 static int insts_for_set64(jlong value);
2046
2047 // sign-extend 32 to 64
2048 inline void signx( Register s, Register d ) { sra( s, G0, d); }
2049 inline void signx( Register d ) { sra( d, G0, d); }
2050
2051 inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
2052 inline void not1( Register d ) { xnor( d, G0, d ); }
2053
2054 inline void neg( Register s, Register d ) { sub( G0, s, d ); }
2055 inline void neg( Register d ) { sub( G0, d, d ); }
2056
2057 inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
2058 inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
2059 // Functions for isolating 64 bit atomic swaps for LP64
2060 // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
2061 inline void cas_ptr( Register s1, Register s2, Register d) {
2062 #ifdef _LP64
2063 casx( s1, s2, d );
2064 #else
2065 cas( s1, s2, d );
2066 #endif
2067 }
2068
2069 // Functions for isolating 64 bit shifts for LP64
2070 inline void sll_ptr( Register s1, Register s2, Register d );
2071 inline void sll_ptr( Register s1, int imm6a, Register d );
2072 inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
2073 inline void srl_ptr( Register s1, Register s2, Register d );
2074 inline void srl_ptr( Register s1, int imm6a, Register d );
2075
2076 // little-endian
2077 inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
2078 inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
2079
2080 inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); }
2081 inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); }
2082
2083 inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); }
2084 inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); }
2085
2086 inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); }
2087 inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); }
2088
2089 inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); }
2090 inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); }
2091
2092 inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); }
2093 inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); }
2094
2095 inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); }
2096 inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); }
2097
2098 inline void clr( Register d ) { or3( G0, G0, d ); }
2099
2100 inline void clrb( Register s1, Register s2);
2101 inline void clrh( Register s1, Register s2);
2102 inline void clr( Register s1, Register s2);
2103 inline void clrx( Register s1, Register s2);
2104
2105 inline void clrb( Register s1, int simm13a);
2106 inline void clrh( Register s1, int simm13a);
2107 inline void clr( Register s1, int simm13a);
2108 inline void clrx( Register s1, int simm13a);
2109
2110 // copy & clear upper word
2111 inline void clruw( Register s, Register d ) { srl( s, G0, d); }
2112 // clear upper word
2113 inline void clruwu( Register d ) { srl( d, G0, d); }
2114
2115 // membar psuedo instruction. takes into account target memory model.
2116 inline void membar( Assembler::Membar_mask_bits const7a );
2117
2118 // returns if membar generates anything.
2119 inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
2120
2121 // mov pseudo instructions
2122 inline void mov( Register s, Register d) {
2123 if ( s != d ) or3( G0, s, d);
2124 else assert_not_delayed(); // Put something useful in the delay slot!
2125 }
2126
2127 inline void mov_or_nop( Register s, Register d) {
2128 if ( s != d ) or3( G0, s, d);
2129 else nop();
2130 }
2131
2132 inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
2133
2134 // address pseudos: make these names unlike instruction names to avoid confusion
2135 inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
2136 inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
2137 inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
2138 inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
2139 inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
2140 inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
2141 inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
2142 inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
2143 inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
2144
2145 // ring buffer traceable jumps
2146
2147 void jmp2( Register r1, Register r2, const char* file, int line );
2148 void jmp ( Register r1, int offset, const char* file, int line );
2149
2150 void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
2151 void jump (const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line);
2152
2153
2154 // argument pseudos:
2155
2156 inline void load_argument( Argument& a, Register d );
2157 inline void store_argument( Register s, Argument& a );
2158 inline void store_ptr_argument( Register s, Argument& a );
2159 inline void store_float_argument( FloatRegister s, Argument& a );
2160 inline void store_double_argument( FloatRegister s, Argument& a );
2161 inline void store_long_argument( Register s, Argument& a );
2162
2163 // handy macros:
2164
2165 inline void round_to( Register r, int modulus ) {
2166 assert_not_delayed();
2167 inc( r, modulus - 1 );
2168 and3( r, -modulus, r );
2169 }
2170
2171 // --------------------------------------------------
2172
2173 // Functions for isolating 64 bit loads for LP64
2174 // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
2175 // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
2176 inline void ld_ptr(Register s1, Register s2, Register d);
2177 inline void ld_ptr(Register s1, int simm13a, Register d);
2178 inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
2179 inline void ld_ptr(const Address& a, Register d, int offset = 0);
2180 inline void st_ptr(Register d, Register s1, Register s2);
2181 inline void st_ptr(Register d, Register s1, int simm13a);
2182 inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
2183 inline void st_ptr(Register d, const Address& a, int offset = 0);
2184
2185 #ifdef ASSERT
2186 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
2187 inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
2188 inline void st_ptr(Register d, Register s1, ByteSize simm13a);
2189 #endif
2190
2191 // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
2192 // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
2193 inline void ld_long(Register s1, Register s2, Register d);
2194 inline void ld_long(Register s1, int simm13a, Register d);
2195 inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
2196 inline void ld_long(const Address& a, Register d, int offset = 0);
2197 inline void st_long(Register d, Register s1, Register s2);
2198 inline void st_long(Register d, Register s1, int simm13a);
2199 inline void st_long(Register d, Register s1, RegisterOrConstant s2);
2200 inline void st_long(Register d, const Address& a, int offset = 0);
2201
2202 // Helpers for address formation.
2203 // - They emit only a move if s2 is a constant zero.
2204 // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
2205 // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
2206 RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2207 RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2208 RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2209
2210 RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
2211 if (is_simm13(src.constant_or_zero()))
2212 return src; // register or short constant
2213 guarantee(temp != noreg, "constant offset overflow");
2214 set(src.as_constant(), temp);
2215 return temp;
2216 }
2217
2218 // --------------------------------------------------
2219
2220 public:
2221 // traps as per trap.h (SPARC ABI?)
2222
2223 void breakpoint_trap();
2224 void breakpoint_trap(Condition c, CC cc);
2225 void flush_windows_trap();
2226 void clean_windows_trap();
2227 void get_psr_trap();
2228 void set_psr_trap();
2229
2230 // V8/V9 flush_windows
2231 void flush_windows();
2232
2233 // Support for serializing memory accesses between threads
2234 void serialize_memory(Register thread, Register tmp1, Register tmp2);
2235
2236 // Stack frame creation/removal
2237 void enter();
2238 void leave();
2239
2240 // V8/V9 integer multiply
2241 void mult(Register s1, Register s2, Register d);
2242 void mult(Register s1, int simm13a, Register d);
2243
2244 // V8/V9 read and write of condition codes.
2245 void read_ccr(Register d);
2246 void write_ccr(Register s);
2247
2248 // Manipulation of C++ bools
2249 // These are idioms to flag the need for care with accessing bools but on
2250 // this platform we assume byte size
2251
2252 inline void stbool(Register d, const Address& a) { stb(d, a); }
2253 inline void ldbool(const Address& a, Register d) { ldub(a, d); }
2254 inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
2255
2256 // klass oop manipulations if compressed
2257 void load_klass(Register src_oop, Register klass);
2258 void store_klass(Register klass, Register dst_oop);
2259 void store_klass_gap(Register s, Register dst_oop);
2260
2261 // oop manipulations
2262 void load_heap_oop(const Address& s, Register d);
2263 void load_heap_oop(Register s1, Register s2, Register d);
2264 void load_heap_oop(Register s1, int simm13a, Register d);
2265 void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
2266 void store_heap_oop(Register d, Register s1, Register s2);
2267 void store_heap_oop(Register d, Register s1, int simm13a);
2268 void store_heap_oop(Register d, const Address& a, int offset = 0);
2269
2270 void encode_heap_oop(Register src, Register dst);
2271 void encode_heap_oop(Register r) {
2272 encode_heap_oop(r, r);
2273 }
2274 void decode_heap_oop(Register src, Register dst);
2275 void decode_heap_oop(Register r) {
2276 decode_heap_oop(r, r);
2277 }
2278 void encode_heap_oop_not_null(Register r);
2279 void decode_heap_oop_not_null(Register r);
2280 void encode_heap_oop_not_null(Register src, Register dst);
2281 void decode_heap_oop_not_null(Register src, Register dst);
2282
2283 void encode_klass_not_null(Register r);
2284 void decode_klass_not_null(Register r);
2285 void encode_klass_not_null(Register src, Register dst);
2286 void decode_klass_not_null(Register src, Register dst);
2287
2288 // Support for managing the JavaThread pointer (i.e.; the reference to
2289 // thread-local information).
2290 void get_thread(); // load G2_thread
2291 void verify_thread(); // verify G2_thread contents
2292 void save_thread (const Register threache); // save to cache
2293 void restore_thread(const Register thread_cache); // restore from cache
2294
2295 // Support for last Java frame (but use call_VM instead where possible)
2296 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
2297 void reset_last_Java_frame(void);
2298
2299 // Call into the VM.
2300 // Passes the thread pointer (in O0) as a prepended argument.
2301 // Makes sure oop return values are visible to the GC.
2302 void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2303 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
2304 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2305 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2306
2307 // these overloadings are not presently used on SPARC:
2308 void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2309 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
2310 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2311 void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2312
2313 void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
2314 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
2315 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
2316 void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
2317
2318 void get_vm_result (Register oop_result);
2319 void get_vm_result_2(Register metadata_result);
2320
2321 // vm result is currently getting hijacked to for oop preservation
2322 void set_vm_result(Register oop_result);
2323
2324 // Emit the CompiledIC call idiom
2325 void ic_call(address entry, bool emit_delay = true);
2326
2327 // if call_VM_base was called with check_exceptions=false, then call
2328 // check_and_forward_exception to handle exceptions when it is safe
2329 void check_and_forward_exception(Register scratch_reg);
2330
2331 private:
2332 // For V8
2333 void read_ccr_trap(Register ccr_save);
2334 void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
2335
2336 #ifdef ASSERT
2337 // For V8 debugging. Uses V8 instruction sequence and checks
2338 // result with V9 insturctions rdccr and wrccr.
2339 // Uses Gscatch and Gscatch2
2340 void read_ccr_v8_assert(Register ccr_save);
2341 void write_ccr_v8_assert(Register ccr_save);
2342 #endif // ASSERT
2343
2344 public:
2345
2346 // Write to card table for - register is destroyed afterwards.
2347 void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
2348
2349 void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2350
2351 #ifndef SERIALGC
2352 // General G1 pre-barrier generator.
2353 void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
2354
2355 // General G1 post-barrier generator
2356 void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2357 #endif // SERIALGC
2358
2359 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2360 void push_fTOS();
2361
2362 // pops double TOS element from CPU stack and pushes on FPU stack
2363 void pop_fTOS();
2364
2365 void empty_FPU_stack();
2366
2367 void push_IU_state();
2368 void pop_IU_state();
2369
2370 void push_FPU_state();
2371 void pop_FPU_state();
2372
2373 void push_CPU_state();
2374 void pop_CPU_state();
2375
2376 // if heap base register is used - reinit it with the correct value
2377 void reinit_heapbase();
2378
2379 // Debugging
2380 void _verify_oop(Register reg, const char * msg, const char * file, int line);
2381 void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
2382
2383 // TODO: verify_method and klass metadata (compare against vptr?)
2384 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
2385 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
2386
2387 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
2388 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
2389 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
2390 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
2391
2392 // only if +VerifyOops
2393 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2394 // only if +VerifyFPU
2395 void stop(const char* msg); // prints msg, dumps registers and stops execution
2396 void warn(const char* msg); // prints msg, but don't stop
2397 void untested(const char* what = "");
2398 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); }
2399 void should_not_reach_here() { stop("should not reach here"); }
2400 void print_CPU_state();
2401
2402 // oops in code
2403 AddressLiteral allocate_oop_address(jobject obj); // allocate_index
2404 AddressLiteral constant_oop_address(jobject obj); // find_index
2405 inline void set_oop (jobject obj, Register d); // uses allocate_oop_address
2406 inline void set_oop_constant (jobject obj, Register d); // uses constant_oop_address
2407 inline void set_oop (const AddressLiteral& obj_addr, Register d); // same as load_address
2408
2409 // metadata in code that we have to keep track of
2410 AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
2411 AddressLiteral constant_metadata_address(Metadata* obj); // find_index
2412 inline void set_metadata (Metadata* obj, Register d); // uses allocate_metadata_address
2413 inline void set_metadata_constant (Metadata* obj, Register d); // uses constant_metadata_address
2414 inline void set_metadata (const AddressLiteral& obj_addr, Register d); // same as load_address
2415
2416 void set_narrow_oop( jobject obj, Register d );
2417 void set_narrow_klass( Klass* k, Register d );
2418
2419 // nop padding
2420 void align(int modulus);
2421
2422 // declare a safepoint
2423 void safepoint();
2424
2425 // factor out part of stop into subroutine to save space
2426 void stop_subroutine();
2427 // factor out part of verify_oop into subroutine to save space
2428 void verify_oop_subroutine();
2429
2430 // side-door communication with signalHandler in os_solaris.cpp
2431 static address _verify_oop_implicit_branch[3];
2432
2433 #ifndef PRODUCT
2434 static void test();
2435 #endif
2436
2437 int total_frame_size_in_bytes(int extraWords);
2438
2439 // used when extraWords known statically
2440 void save_frame(int extraWords = 0);
2441 void save_frame_c1(int size_in_bytes);
2442 // make a frame, and simultaneously pass up one or two register value
2443 // into the new register window
2444 void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
2445
2446 // give no. (outgoing) params, calc # of words will need on frame
2447 void calc_mem_param_words(Register Rparam_words, Register Rresult);
2448
2449 // used to calculate frame size dynamically
2450 // result is in bytes and must be negated for save inst
2451 void calc_frame_size(Register extraWords, Register resultReg);
2452
2453 // calc and also save
2454 void calc_frame_size_and_save(Register extraWords, Register resultReg);
2455
2456 static void debug(char* msg, RegistersForDebugging* outWindow);
2457
2458 // implementations of bytecodes used by both interpreter and compiler
2459
2460 void lcmp( Register Ra_hi, Register Ra_low,
2461 Register Rb_hi, Register Rb_low,
2462 Register Rresult);
2463
2464 void lneg( Register Rhi, Register Rlow );
2465
2466 void lshl( Register Rin_high, Register Rin_low, Register Rcount,
2467 Register Rout_high, Register Rout_low, Register Rtemp );
2468
2469 void lshr( Register Rin_high, Register Rin_low, Register Rcount,
2470 Register Rout_high, Register Rout_low, Register Rtemp );
2471
2472 void lushr( Register Rin_high, Register Rin_low, Register Rcount,
2473 Register Rout_high, Register Rout_low, Register Rtemp );
2474
2475 #ifdef _LP64
2476 void lcmp( Register Ra, Register Rb, Register Rresult);
2477 #endif
2478
2479 // Load and store values by size and signed-ness
2480 void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
2481 void store_sized_value(Register src, Address dst, size_t size_in_bytes);
2482
2483 void float_cmp( bool is_float, int unordered_result,
2484 FloatRegister Fa, FloatRegister Fb,
2485 Register Rresult);
2486
2487 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2488 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
2489 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2490 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2491
2492 void save_all_globals_into_locals();
2493 void restore_globals_from_locals();
2494
2495 void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2496 address lock_addr=0, bool use_call_vm=false);
2497 void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2498 address lock_addr=0, bool use_call_vm=false);
2499 void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
2500
2501 // These set the icc condition code to equal if the lock succeeded
2502 // and notEqual if it failed and requires a slow case
2503 void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
2504 Register Rscratch,
2505 BiasedLockingCounters* counters = NULL,
2506 bool try_bias = UseBiasedLocking);
2507 void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
2508 Register Rscratch,
2509 bool try_bias = UseBiasedLocking);
2510
2511 // Biased locking support
2512 // Upon entry, lock_reg must point to the lock record on the stack,
2513 // obj_reg must contain the target object, and mark_reg must contain
2514 // the target object's header.
2515 // Destroys mark_reg if an attempt is made to bias an anonymously
2516 // biased lock. In this case a failure will go either to the slow
2517 // case or fall through with the notEqual condition code set with
2518 // the expectation that the slow case in the runtime will be called.
2519 // In the fall-through case where the CAS-based lock is done,
2520 // mark_reg is not destroyed.
2521 void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2522 Label& done, Label* slow_case = NULL,
2523 BiasedLockingCounters* counters = NULL);
2524 // Upon entry, the base register of mark_addr must contain the oop.
2525 // Destroys temp_reg.
2526
2527 // If allow_delay_slot_filling is set to true, the next instruction
2528 // emitted after this one will go in an annulled delay slot if the
2529 // biased locking exit case failed.
2530 void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
2531
2532 // allocation
2533 void eden_allocate(
2534 Register obj, // result: pointer to object after successful allocation
2535 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
2536 int con_size_in_bytes, // object size in bytes if known at compile time
2537 Register t1, // temp register
2538 Register t2, // temp register
2539 Label& slow_case // continuation point if fast allocation fails
2540 );
2541 void tlab_allocate(
2542 Register obj, // result: pointer to object after successful allocation
2543 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
2544 int con_size_in_bytes, // object size in bytes if known at compile time
2545 Register t1, // temp register
2546 Label& slow_case // continuation point if fast allocation fails
2547 );
2548 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
2549 void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
2550 Register t1, Register t2);
2551
2552 // interface method calling
2553 void lookup_interface_method(Register recv_klass,
2554 Register intf_klass,
2555 RegisterOrConstant itable_index,
2556 Register method_result,
2557 Register temp_reg, Register temp2_reg,
2558 Label& no_such_interface);
2559
2560 // virtual method calling
2561 void lookup_virtual_method(Register recv_klass,
2562 RegisterOrConstant vtable_index,
2563 Register method_result);
2564
2565 // Test sub_klass against super_klass, with fast and slow paths.
2566
2567 // The fast path produces a tri-state answer: yes / no / maybe-slow.
2568 // One of the three labels can be NULL, meaning take the fall-through.
2569 // If super_check_offset is -1, the value is loaded up from super_klass.
2570 // No registers are killed, except temp_reg and temp2_reg.
2571 // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
2572 void check_klass_subtype_fast_path(Register sub_klass,
2573 Register super_klass,
2574 Register temp_reg,
2575 Register temp2_reg,
2576 Label* L_success,
2577 Label* L_failure,
2578 Label* L_slow_path,
2579 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
2580
2581 // The rest of the type check; must be wired to a corresponding fast path.
2582 // It does not repeat the fast path logic, so don't use it standalone.
2583 // The temp_reg can be noreg, if no temps are available.
2584 // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
2585 // Updates the sub's secondary super cache as necessary.
2586 void check_klass_subtype_slow_path(Register sub_klass,
2587 Register super_klass,
2588 Register temp_reg,
2589 Register temp2_reg,
2590 Register temp3_reg,
2591 Register temp4_reg,
2592 Label* L_success,
2593 Label* L_failure);
2594
2595 // Simplified, combined version, good for typical uses.
2596 // Falls through on failure.
2597 void check_klass_subtype(Register sub_klass,
2598 Register super_klass,
2599 Register temp_reg,
2600 Register temp2_reg,
2601 Label& L_success);
2602
2603 // method handles (JSR 292)
2604 // offset relative to Gargs of argument at tos[arg_slot].
2605 // (arg_slot == 0 means the last argument, not the first).
2606 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
2607 Register temp_reg,
2608 int extra_slot_offset = 0);
2609 // Address of Gargs and argument_offset.
2610 Address argument_address(RegisterOrConstant arg_slot,
2611 Register temp_reg = noreg,
2612 int extra_slot_offset = 0);
2613
2614 // Stack overflow checking
2615
2616 // Note: this clobbers G3_scratch
2617 void bang_stack_with_offset(int offset) {
2618 // stack grows down, caller passes positive offset
2619 assert(offset > 0, "must bang with negative offset");
2620 set((-offset)+STACK_BIAS, G3_scratch);
2621 st(G0, SP, G3_scratch);
2622 }
2623
2624 // Writes to stack successive pages until offset reached to check for
2625 // stack overflow + shadow pages. Clobbers tsp and scratch registers.
2626 void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
2627
2628 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
2629
2630 void verify_tlab();
2631
2632 Condition negate_condition(Condition cond);
2633
2634 // Helper functions for statistics gathering.
2635 // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
2636 void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
2637 // Unconditional increment.
2638 void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
2639 void inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2);
2640
2641 // Compare char[] arrays aligned to 4 bytes.
2642 void char_arrays_equals(Register ary1, Register ary2,
2643 Register limit, Register result,
2644 Register chr1, Register chr2, Label& Ldone);
2645 // Use BIS for zeroing
2646 void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
2647
2648 #undef VIRTUAL
2649
2650 };
2651
2652 /**
2653 * class SkipIfEqual:
2654 *
2655 * Instantiating this class will result in assembly code being output that will
2656 * jump around any code emitted between the creation of the instance and it's
2657 * automatic destruction at the end of a scope block, depending on the value of
2658 * the flag passed to the constructor, which will be checked at run-time.
2659 */
2660 class SkipIfEqual : public StackObj {
2661 private:
2662 MacroAssembler* _masm;
2663 Label _label;
2664
2665 public:
2666 // 'temp' is a temp register that this object can use (and trash)
2667 SkipIfEqual(MacroAssembler*, Register temp,
2668 const bool* flag_addr, Assembler::Condition condition);
2669 ~SkipIfEqual();
2670 };
2671
2672 #ifdef ASSERT
2673 // On RISC, there's no benefit to verifying instruction boundaries.
2674 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
2675 #endif
2676
2677 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP 1207 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP