comparison graal/com.oracle.max.asmdis/src/com/sun/max/asm/dis/x86/X86Disassembler.java @ 3733:e233f5660da4

Added Java files from Maxine project.
author Thomas Wuerthinger <thomas.wuerthinger@oracle.com>
date Sat, 17 Dec 2011 19:59:18 +0100
parents
children bc8527f3071c
comparison
equal deleted inserted replaced
3732:3e2e8b8abdaf 3733:e233f5660da4
1 /*
2 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 */
23 package com.sun.max.asm.dis.x86;
24
25 import java.io.*;
26 import java.util.*;
27
28 import com.sun.max.*;
29 import com.sun.max.asm.*;
30 import com.sun.max.asm.amd64.*;
31 import com.sun.max.asm.dis.*;
32 import com.sun.max.asm.gen.*;
33 import com.sun.max.asm.gen.cisc.x86.*;
34 import com.sun.max.asm.x86.*;
35 import com.sun.max.io.*;
36 import com.sun.max.lang.*;
37 import com.sun.max.program.*;
38 import com.sun.max.util.*;
39
40 /**
41 * An x86 instruction disassembler.
42 *
43 * The string representation for disassembler output has the following format,
44 * which borrows from both Intel and AT&T syntax and differs from either
45 * regarding indirect addressing and indexing.
46 *
47 * Operand order follows Intel syntax:
48 *
49 * mnemonic argument
50 * mnemonic destination, source
51 * mnemonic argument1, argument2, argument3
52 *
53 * Some mnemonics may have operand size suffixes as in AT&T (gas) syntax.
54 * Suffix Intel size Java size # bits
55 * ------ ----------- --------- ------
56 * b byte byte 8
57 * w word short 16
58 * l long word int 32
59 * q quad word long 64
60 *
61 * Using this AT&T syntax feature, there is no need for operand size indicators
62 * (e.g. DWORD PTR) for pointers as in Intel syntax.
63 *
64 * Registers etc. are named as in Intel syntax,
65 * in lower case without AT&T's "%" prefix.
66 *
67 * Indexing is indicated by '[' and ']', similiar to array access in the Java(TM) Programming Language:
68 *
69 * base[index], e.g. eax[ebx]
70 *
71 * Indirect access looks like indexing without a base (or with implicit base 0):
72 *
73 * [indirect], e.g. [ecx]
74 *
75 * Displacements are added/subtracted from the index/indirect operand:
76 *
77 * base[index + displacement], e.g. ebp[eax - 12]
78 * [indirect + displacement], e.g. [esi + 100]
79 *
80 * Scale is displayed as multiplication of the index:
81 *
82 * [base[index * scale] or base[index * scale + displacement], e.g. ecx[ebx * 4 + 10]
83 *
84 * A scale of 1 is left implicit, i.e. not printed.
85 * Scale literals are the unsigned decimal integer numbers 2, 4, 8.
86 *
87 * Displacement literals are signed decimal integer numbers.
88 *
89 * Direct memory references (pointer literals) are unsigned hexadecimal integer numbers, e.g.:
90 *
91 * [0x12345678], 0x12345678[eax]
92 *
93 * Immediate operands are unsigned hexadecimal integer numbers, e.g.:
94 *
95 * 0x12, 0xffff, 0x0, 0x123456789abcdef
96 *
97 * Offset operands are signed decimal integer numbers, like displacements, but without space between the sign and the number, e.g.:
98 *
99 * jmp +12
100 * call -2048
101 *
102 * RIP (Relative to Instruction Pointer) addressing is a combination of an offset operand and indirect addressing, e.g.:
103 *
104 * add [+20], eax
105 * mov ebx, [-200]
106 *
107 * The disassembler displays synthetic labels for all target addresses
108 * within the disassembled address range that hit the start address of an instruction.
109 * Operands that coincide with such a label are displayed with the respective Label prepended. e.g.:
110 *
111 * jmp L1: +100
112 * adc [L2: +128], ESI
113 *
114 * @see Disassembler
115 * @see X86DisassembledInstruction
116 */
117 public abstract class X86Disassembler extends Disassembler {
118
119 private X86Assembly<? extends X86Template> assembly;
120
121 protected X86Disassembler(ImmediateArgument startAddress, X86Assembly<? extends X86Template> assembly, InlineDataDecoder inlineDataDecoder) {
122 super(startAddress, Endianness.LITTLE, inlineDataDecoder);
123 this.assembly = assembly;
124 }
125
126 protected abstract boolean isRexPrefix(HexByte opcode);
127
128 private X86InstructionHeader scanInstructionHeader(BufferedInputStream stream, boolean justSkip) throws IOException {
129 int byteValue = stream.read();
130 if (byteValue < 0) {
131 return null;
132 }
133 final X86InstructionHeader header = new X86InstructionHeader();
134
135 do {
136 final HexByte hexByte = HexByte.VALUES.get(byteValue);
137 if (header.opcode1 == null) {
138 if (hexByte == X86Opcode.ADDRESS_SIZE) {
139 header.hasAddressSizePrefix = true;
140 } else if (hexByte == X86Opcode.OPERAND_SIZE) {
141 if (header.instructionSelectionPrefix != null) {
142 return X86InstructionHeader.INVALID;
143 }
144 header.instructionSelectionPrefix = hexByte;
145 } else if (hexByte == X86Opcode.REPE || hexByte == X86Opcode.REPNE) {
146 if (header.instructionSelectionPrefix != null) {
147 return X86InstructionHeader.INVALID;
148 }
149 header.instructionSelectionPrefix = hexByte;
150 } else if (isRexPrefix(hexByte)) {
151 header.rexPrefix = hexByte;
152 } else {
153 header.opcode1 = hexByte;
154 if (hexByte != HexByte._0F) {
155 break;
156 }
157 }
158 } else {
159 header.opcode2 = hexByte;
160 break;
161 }
162 byteValue = stream.read();
163 } while (byteValue >= 0);
164
165 if (TRACE && !justSkip) {
166 System.out.println("Scanned header: " + header);
167 }
168
169 return justSkip ? null : header;
170 }
171
172 private List<Argument> scanArguments(BufferedInputStream stream, X86Template template, X86InstructionHeader header, byte modRMByte, byte sibByte) throws IOException {
173 final List<Argument> arguments = new ArrayList<Argument>();
174 final byte rexByte = (header.rexPrefix != null) ? header.rexPrefix.byteValue() : 0;
175 for (X86Parameter parameter : template.parameters()) {
176 int value = 0;
177 switch (parameter.place()) {
178 case MOD_REG_REXR:
179 value = X86Field.extractRexValue(X86Field.REX_R_BIT_INDEX, rexByte);
180 // fall through...
181 case MOD_REG:
182 value += X86Field.REG.extract(modRMByte);
183 break;
184 case MOD_RM_REXB:
185 value = X86Field.extractRexValue(X86Field.REX_B_BIT_INDEX, rexByte);
186 // fall through...
187 case MOD_RM:
188 value += X86Field.RM.extract(modRMByte);
189 break;
190 case SIB_BASE_REXB:
191 value = X86Field.extractRexValue(X86Field.REX_B_BIT_INDEX, rexByte);
192 // fall through...
193 case SIB_BASE:
194 value += X86Field.BASE.extract(sibByte);
195 break;
196 case SIB_INDEX_REXX:
197 value = X86Field.extractRexValue(X86Field.REX_X_BIT_INDEX, rexByte);
198 // fall through...
199 case SIB_INDEX:
200 value += X86Field.INDEX.extract(sibByte);
201 break;
202 case SIB_SCALE:
203 value = X86Field.SCALE.extract(sibByte);
204 break;
205 case APPEND:
206 if (parameter instanceof X86EnumerableParameter) {
207 final X86EnumerableParameter enumerableParameter = (X86EnumerableParameter) parameter;
208 final Enumerator enumerator = enumerableParameter.enumerator();
209 arguments.add((Argument) enumerator.fromValue(endianness().readByte(stream)));
210 continue;
211 }
212 final X86NumericalParameter numericalParameter = (X86NumericalParameter) parameter;
213 switch (numericalParameter.width()) {
214 case BITS_8:
215 arguments.add(new Immediate8Argument(endianness().readByte(stream)));
216 break;
217 case BITS_16:
218 arguments.add(new Immediate16Argument(endianness().readShort(stream)));
219 break;
220 case BITS_32:
221 arguments.add(new Immediate32Argument(endianness().readInt(stream)));
222 break;
223 case BITS_64:
224 arguments.add(new Immediate64Argument(endianness().readLong(stream)));
225 break;
226 }
227 continue;
228 case OPCODE1_REXB:
229 value = X86Field.extractRexValue(X86Field.REX_B_BIT_INDEX, rexByte);
230 // fall through...
231 case OPCODE1:
232 value += header.opcode1.ordinal() & 7;
233 break;
234 case OPCODE2_REXB:
235 value = X86Field.extractRexValue(X86Field.REX_B_BIT_INDEX, rexByte);
236 // fall through...
237 case OPCODE2:
238 value += header.opcode2.ordinal() & 7;
239 break;
240 }
241 final X86EnumerableParameter enumerableParameter = (X86EnumerableParameter) parameter;
242 final Enumerator enumerator = enumerableParameter.enumerator();
243 if (enumerator == AMD64GeneralRegister8.ENUMERATOR) {
244 arguments.add(AMD64GeneralRegister8.fromValue(value, header.rexPrefix != null));
245 } else {
246 arguments.add((Argument) enumerator.fromValue(value));
247 }
248 }
249 return arguments;
250 }
251
252 private int getModVariantParameterIndex(X86Template template, byte modRMByte, byte sibByte) {
253 if (template.modCase() == X86TemplateContext.ModCase.MOD_0 && X86Field.MOD.extract(modRMByte) != X86TemplateContext.ModCase.MOD_0.value()) {
254 switch (template.rmCase()) {
255 case NORMAL: {
256 if (template.addressSizeAttribute() == WordWidth.BITS_16) {
257 if (X86Field.RM.extract(modRMByte) != X86TemplateContext.RMCase.SWORD.value()) {
258 return -1;
259 }
260 } else if (X86Field.RM.extract(modRMByte) != X86TemplateContext.RMCase.SDWORD.value()) {
261 return -1;
262 }
263 for (int i = 0; i < template.parameters().size(); i++) {
264 switch (template.parameters().get(i).place()) {
265 case MOD_RM_REXB:
266 case MOD_RM:
267 return i;
268 default:
269 break;
270 }
271 }
272 break;
273 }
274 case SIB: {
275 if (template.sibBaseCase() == X86TemplateContext.SibBaseCase.GENERAL_REGISTER && X86Field.BASE.extract(sibByte) == 5) {
276 for (int i = 0; i < template.parameters().size(); i++) {
277 switch (template.parameters().get(i).place()) {
278 case SIB_BASE_REXB:
279 case SIB_BASE:
280 return i;
281 default:
282 break;
283 }
284 }
285 }
286 break;
287 }
288 default: {
289 break;
290 }
291 }
292 }
293 return -1;
294 }
295
296 private byte getSibByte(BufferedInputStream stream, X86Template template, byte modRMByte) throws IOException {
297 if (template.addressSizeAttribute() == WordWidth.BITS_16) {
298 return 0;
299 }
300 if (template.hasSibByte()) {
301 return endianness().readByte(stream);
302 }
303 if (template.hasModRMByte() && X86Field.RM.extract(modRMByte) == X86TemplateContext.RMCase.SIB.value() &&
304 X86Field.MOD.extract(modRMByte) != X86TemplateContext.ModCase.MOD_3.value()) {
305 return endianness().readByte(stream);
306 }
307 return 0;
308 }
309
310 protected abstract Map<X86InstructionHeader, List<X86Template>> headerToTemplates();
311
312 private static int serial;
313
314 public DisassembledObject scanInstruction(BufferedInputStream stream, X86InstructionHeader header) throws IOException, AssemblyException {
315 if (header != X86InstructionHeader.INVALID) {
316 serial++;
317 Trace.line(4, "instruction: " + serial);
318 if (header.opcode1 != null) {
319 boolean isFloatingPointEscape = false;
320 if (X86Opcode.isFloatingPointEscape(header.opcode1)) {
321 final int byte2 = stream.read();
322 if (byte2 >= 0xC0) {
323 isFloatingPointEscape = true;
324 header.opcode2 = HexByte.VALUES.get(byte2);
325 }
326 }
327 final List<X86Template> templates = headerToTemplates().get(header);
328 if (templates != null) {
329 for (X86Template template : templates) {
330 stream.reset();
331 scanInstructionHeader(stream, true);
332 if (isFloatingPointEscape) {
333 stream.read();
334 }
335 try {
336 byte modRMByte = 0;
337 byte sibByte = 0;
338 int modVariantParameterIndex = -1;
339 List<Argument> arguments = null;
340 if (template.hasModRMByte()) {
341 modRMByte = endianness().readByte(stream);
342 sibByte = getSibByte(stream, template, modRMByte);
343 modVariantParameterIndex = getModVariantParameterIndex(template, modRMByte, sibByte);
344 if (modVariantParameterIndex >= 0) {
345 final X86Template modVariantTemplate = X86Assembly.getModVariantTemplate(templates, template, template.parameters().get(modVariantParameterIndex).type());
346 arguments = scanArguments(stream, modVariantTemplate, header, modRMByte, sibByte);
347 }
348 }
349 if (arguments == null) {
350 arguments = scanArguments(stream, template, header, modRMByte, sibByte);
351 }
352 if (modVariantParameterIndex >= 0) {
353 final Immediate8Argument immediateArgument = (Immediate8Argument) arguments.get(modVariantParameterIndex);
354 if (immediateArgument.value() != 0) {
355 continue;
356 }
357
358 // Remove the mod variant argument
359 final Argument modVariantArgument = arguments.get(modVariantParameterIndex);
360 final List<Argument> result = new ArrayList<Argument>();
361 for (Argument argument : arguments) {
362 if (modVariantArgument != argument) {
363 result.add(argument);
364 }
365 }
366 arguments = result;
367 }
368 if (!(Utils.indexOfIdentical(arguments, null) != -1)) {
369 byte[] bytes;
370 if (true) {
371 final Assembler assembler = createAssembler(currentPosition);
372 try {
373 assembly.assemble(assembler, template, arguments);
374 } catch (AssemblyException e) {
375 // try the next template
376 continue;
377 }
378 bytes = assembler.toByteArray();
379 } else { // TODO: does not work yet
380 final X86TemplateAssembler templateAssembler = new X86TemplateAssembler(template, addressWidth());
381 bytes = templateAssembler.assemble(arguments);
382 }
383 if (bytes != null) {
384 stream.reset();
385 if (Streams.startsWith(stream, bytes)) {
386 final DisassembledInstruction disassembledInstruction = createDisassembledInstruction(currentPosition, bytes, template, arguments);
387 currentPosition += bytes.length;
388 return disassembledInstruction;
389 }
390 }
391 }
392 } catch (NoSuchAssemblerMethodError e) {
393 // Until the X86TemplateAssembler is complete, only templates for which a generated assembler
394 // method exists can be disassembled
395 } catch (IOException ioException) {
396 // this one did not work, so loop back up and try another template
397 }
398 }
399 }
400 }
401 if (header.instructionSelectionPrefix == X86Opcode.REPE || header.instructionSelectionPrefix == X86Opcode.REPNE) {
402
403 stream.reset();
404 final int size = 1;
405 final byte[] data = new byte[size];
406 Streams.readFully(stream, data);
407
408 final X86InstructionHeader prefixHeader = new X86InstructionHeader();
409 prefixHeader.opcode1 = header.instructionSelectionPrefix;
410 final List<X86Template> prefixTemplates = headerToTemplates().get(prefixHeader);
411 final X86Template template = Utils.first(prefixTemplates);
412 final byte[] bytes = new byte[]{header.instructionSelectionPrefix.byteValue()};
413 List<Argument> empty = Collections.emptyList();
414 final DisassembledInstruction disassembledInstruction = createDisassembledInstruction(currentPosition, bytes, template, empty);
415 currentPosition++;
416 return disassembledInstruction;
417 }
418 }
419 if (INLINE_INVALID_INSTRUCTIONS_AS_BYTES) {
420 stream.reset();
421 final int size = 1;
422 final byte[] data = new byte[size];
423 Streams.readFully(stream, data);
424 final InlineData inlineData = new InlineData(currentPosition, data);
425 final DisassembledData disassembledData = createDisassembledDataObjects(inlineData).iterator().next();
426 currentPosition += size;
427 return disassembledData;
428 }
429 throw new AssemblyException("unknown instruction");
430 }
431
432 /**
433 * Creates a disassembled instruction based on a given sequence of bytes, a template and a set of arguments. The
434 * caller has performed the necessary decoding of the bytes to derive the template and arguments.
435 *
436 * @param position the position an instruction stream from which the bytes were read
437 * @param bytes the bytes of an instruction
438 * @param template the template that corresponds to the instruction encoded in {@code bytes}
439 * @param arguments the arguments of the instruction encoded in {@code bytes}
440 * @return a disassembled instruction representing the result of decoding {@code bytes} into an instruction
441 */
442 protected X86DisassembledInstruction createDisassembledInstruction(int position, byte[] bytes, X86Template template, List<Argument> arguments) {
443 return new X86DisassembledInstruction(this, position, bytes, template, arguments);
444 }
445
446 private static final int MORE_THAN_ANY_INSTRUCTION_LENGTH = 100;
447 private static final boolean INLINE_INVALID_INSTRUCTIONS_AS_BYTES = true;
448
449 @Override
450 public List<DisassembledObject> scanOne0(BufferedInputStream stream) throws IOException, AssemblyException {
451 final List<DisassembledObject> disassembledObjects = new ArrayList<DisassembledObject>();
452 stream.mark(MORE_THAN_ANY_INSTRUCTION_LENGTH);
453 final X86InstructionHeader header = scanInstructionHeader(stream, false);
454 if (header == null) {
455 throw new AssemblyException("unknown instruction");
456 }
457 disassembledObjects.add(scanInstruction(stream, header));
458 return disassembledObjects;
459 }
460
461 @Override
462 public List<DisassembledObject> scan0(BufferedInputStream stream) throws IOException, AssemblyException {
463 final SortedSet<Integer> knownGoodCodePositions = new TreeSet<Integer>();
464 final List<DisassembledObject> result = new ArrayList<DisassembledObject>();
465 boolean processingKnownValidCode = true;
466
467 while (true) {
468 while (knownGoodCodePositions.size() > 0 && knownGoodCodePositions.first().intValue() < currentPosition) {
469 knownGoodCodePositions.remove(knownGoodCodePositions.first());
470 }
471
472 scanInlineData(stream, result);
473
474 stream.mark(MORE_THAN_ANY_INSTRUCTION_LENGTH);
475
476 final X86InstructionHeader header = scanInstructionHeader(stream, false);
477 if (header == null) {
478 return result;
479 }
480 final DisassembledObject disassembledObject = scanInstruction(stream, header);
481
482 if (knownGoodCodePositions.size() > 0) {
483 final int firstKnownGoodCodePosition = knownGoodCodePositions.first().intValue();
484 final int startPosition = disassembledObject.startPosition();
485 if (firstKnownGoodCodePosition > startPosition && firstKnownGoodCodePosition < disassembledObject.endPosition()) {
486 // there is a known valid code location in the middle of this instruction - assume that it is an invalid instruction
487 stream.reset();
488 final int size = firstKnownGoodCodePosition - startPosition;
489 final byte[] data = new byte[size];
490 Streams.readFully(stream, data);
491 final InlineData inlineData = new InlineData(startPosition, data);
492 currentPosition += addDisassembledDataObjects(result, inlineData);
493 processingKnownValidCode = true;
494 } else {
495 result.add(disassembledObject);
496 if (firstKnownGoodCodePosition == startPosition) {
497 processingKnownValidCode = true;
498 }
499 }
500 } else {
501 if (processingKnownValidCode && disassembledObject instanceof DisassembledInstruction) {
502 final DisassembledInstruction disassembledInstruction = (DisassembledInstruction) disassembledObject;
503 if (isRelativeJumpForward(disassembledInstruction)) {
504 int jumpOffset;
505 if (Utils.first(disassembledInstruction.arguments()) instanceof Immediate32Argument) {
506 jumpOffset = ((Immediate32Argument) Utils.first(disassembledInstruction.arguments())).value();
507 } else {
508 assert Utils.first(disassembledInstruction.arguments()) instanceof Immediate8Argument;
509 jumpOffset = ((Immediate8Argument) Utils.first(disassembledInstruction.arguments())).value();
510 }
511 final int targetPosition = disassembledInstruction.endPosition() + jumpOffset;
512 knownGoodCodePositions.add(targetPosition);
513 processingKnownValidCode = false;
514 }
515 }
516 result.add(disassembledObject);
517 }
518 }
519 }
520
521 private boolean isRelativeJumpForward(DisassembledInstruction instruction) {
522 return instruction.template().internalName().equals("jmp") && // check if this is a jump instruction...
523 instruction.arguments().size() == 1 && // that accepts one operand...
524 ((Utils.first(instruction.arguments()) instanceof Immediate32Argument && // which is a relative offset...
525 ((Immediate32Argument) Utils.first(instruction.arguments())).value() >= 0) || // forward in the code stream
526 (Utils.first(instruction.arguments()) instanceof Immediate8Argument && // which is a relative offset...
527 ((Immediate8Argument) Utils.first(instruction.arguments())).value() >= 0)); // forward in the code stream
528 }
529
530 @Override
531 public ImmediateArgument addressForRelativeAddressing(DisassembledInstruction di) {
532 return startAddress().plus(di.endPosition());
533 }
534
535 @Override
536 public String mnemonic(DisassembledInstruction di) {
537 return di.template().externalName();
538 }
539
540 @Override
541 public String operandsToString(DisassembledInstruction di, AddressMapper addressMapper) {
542 final LinkedList<X86Operand> operandQueue = new LinkedList<X86Operand>();
543 for (Operand operand : di.template().operands()) {
544 operandQueue.add((X86Operand) operand);
545 }
546 final LinkedList<Argument> argumentQueue = new LinkedList<Argument>(di.arguments());
547 String result = "";
548 String separator = "";
549 while (!operandQueue.isEmpty()) {
550 result += separator + getOperand(di, operandQueue, argumentQueue, addressMapper);
551 separator = ", ";
552 }
553 return result;
554 }
555
556 @Override
557 public String toString(DisassembledInstruction di, AddressMapper addressMapper) {
558 String s = operandsToString(di, addressMapper);
559 if (s.length() > 0) {
560 s = " " + s;
561 }
562 return Strings.padLengthWithSpaces(mnemonic(di), 8) + s;
563 }
564
565 private String getSibIndexAndScale(Queue<X86Operand> operands, Queue<Argument> arguments) {
566 X86Parameter parameter = (X86Parameter) operands.remove();
567 assert parameter.place() == ParameterPlace.SIB_INDEX || parameter.place() == ParameterPlace.SIB_INDEX_REXX;
568 final String result = arguments.remove().disassembledValue();
569 parameter = (X86Parameter) operands.remove();
570 assert parameter.place() == ParameterPlace.SIB_SCALE;
571 final Scale scale = (Scale) arguments.remove();
572 if (scale == Scale.SCALE_1) {
573 return result;
574 }
575 return result + " * " + scale.disassembledValue();
576 }
577
578 private String addition(Argument argument, String space) {
579 assert argument instanceof ImmediateArgument;
580 final long value = argument.asLong();
581 final String s = Long.toString(value);
582 if (value >= 0) {
583 return "+" + space + s;
584 }
585 return "-" + space + s.substring(1);
586 }
587
588 private String getOperand(DisassembledInstruction di, Queue<X86Operand> operands, Queue<Argument> arguments, AddressMapper addressMapper) {
589 final X86Operand operand = operands.remove();
590 if (operand instanceof ImplicitOperand) {
591 final ImplicitOperand implicitOperand = (ImplicitOperand) operand;
592 return implicitOperand.argument().disassembledValue();
593 }
594 final X86Parameter parameter = (X86Parameter) operand;
595 final Argument argument = arguments.remove();
596 if (parameter instanceof X86DisplacementParameter) {
597 assert parameter.place() == ParameterPlace.APPEND;
598 final X86Parameter nextParameter = (X86Parameter) operands.element();
599 String prefix = "";
600 if (IndirectRegister.class.isAssignableFrom(nextParameter.type())) {
601 operands.remove();
602 prefix += "[" + arguments.remove().disassembledValue();
603 } else {
604 if (nextParameter.place() == ParameterPlace.SIB_BASE || nextParameter.place() == ParameterPlace.SIB_BASE_REXB) {
605 operands.remove();
606 prefix += arguments.remove().disassembledValue();
607 }
608 prefix += "[" + getSibIndexAndScale(operands, arguments);
609 }
610 return prefix + " " + addition(argument, " ") + "]";
611 }
612 if (parameter.place() == ParameterPlace.SIB_BASE || parameter.place() == ParameterPlace.SIB_BASE_REXB) {
613 return argument.disassembledValue() + "[" + getSibIndexAndScale(operands, arguments) + "]";
614 }
615 if (IndirectRegister.class.isAssignableFrom(parameter.type())) {
616 return "[" + argument.disassembledValue() + "]";
617 }
618 if (parameter instanceof X86AddressParameter) {
619 String address = argument.disassembledValue();
620 final DisassembledLabel label = addressMapper.labelAt((ImmediateArgument) argument);
621 if (label != null) {
622 address = label.name() + ": " + address;
623 }
624 final X86Operand nextOperand = operands.peek();
625 if (nextOperand instanceof X86Parameter) {
626 final X86Parameter nextParameter = (X86Parameter) nextOperand;
627 if (nextParameter.place() == ParameterPlace.SIB_INDEX || nextParameter.place() == ParameterPlace.SIB_INDEX_REXX) {
628 return address + "[" + getSibIndexAndScale(operands, arguments) + "]";
629 }
630 }
631 return "[" + address + "]";
632 }
633 if (parameter instanceof X86OffsetParameter) {
634 String offset = addition(argument, "");
635 final ImmediateArgument targetAddress = di.addressForRelativeAddressing().plus((ImmediateArgument) argument);
636 final DisassembledLabel label = addressMapper.labelAt(targetAddress);
637 if (label != null) {
638 offset = label.name() + ": " + offset;
639 }
640 if (((X86Template) di.template()).addressSizeAttribute() == WordWidth.BITS_64 && ((X86Template) di.template()).rmCase() == X86TemplateContext.RMCase.SDWORD) {
641 return "[" + offset + "]"; // RIP
642 }
643 return offset;
644 }
645 if (parameter.getClass() == X86ImmediateParameter.class) {
646 return argument.disassembledValue();
647 }
648 return argument.disassembledValue();
649 }
650 }