comparison src/cpu/x86/vm/methodHandles_x86.cpp @ 710:e5b0439ef4ae

6655638: dynamic languages need method handles Summary: initial implementation, with known omissions (x86/64, sparc, compiler optim., c-oops, C++ interp.) Reviewed-by: kvn, twisti, never
author jrose
date Wed, 08 Apr 2009 10:56:49 -0700
parents
children df6caf649ff7
comparison
equal deleted inserted replaced
709:1d037ecd7960 710:e5b0439ef4ae
1 /*
2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25 #include "incls/_precompiled.incl"
26 #include "incls/_methodHandles_x86.cpp.incl"
27
28 #define __ _masm->
29
30 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
31 address interpreted_entry) {
32 // Just before the actual machine code entry point, allocate space
33 // for a MethodHandleEntry::Data record, so that we can manage everything
34 // from one base pointer.
35 __ align(wordSize);
36 address target = __ pc() + sizeof(Data);
37 while (__ pc() < target) {
38 __ nop();
39 __ align(wordSize);
40 }
41
42 MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
43 me->set_end_address(__ pc()); // set a temporary end_address
44 me->set_from_interpreted_entry(interpreted_entry);
45 me->set_type_checking_entry(NULL);
46
47 return (address) me;
48 }
49
50 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
51 address start_addr) {
52 MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
53 assert(me->end_address() == start_addr, "valid ME");
54
55 // Fill in the real end_address:
56 __ align(wordSize);
57 me->set_end_address(__ pc());
58
59 return me;
60 }
61
62 #ifdef ASSERT
63 static void verify_argslot(MacroAssembler* _masm, Register rax_argslot,
64 const char* error_message) {
65 // Verify that argslot lies within (rsp, rbp].
66 Label L_ok, L_bad;
67 __ cmpptr(rax_argslot, rbp);
68 __ jcc(Assembler::above, L_bad);
69 __ cmpptr(rsp, rax_argslot);
70 __ jcc(Assembler::below, L_ok);
71 __ bind(L_bad);
72 __ stop(error_message);
73 __ bind(L_ok);
74 }
75 #endif
76
77
78 // Code generation
79 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
80 // rbx: methodOop
81 // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
82 // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
83 // rdx: garbage temp, blown away
84
85 Register rbx_method = rbx;
86 Register rcx_recv = rcx;
87 Register rax_mtype = rax;
88 Register rdx_temp = rdx;
89
90 // emit WrongMethodType path first, to enable jccb back-branch from main path
91 Label wrong_method_type;
92 __ bind(wrong_method_type);
93 __ push(rax_mtype); // required mtype
94 __ push(rcx_recv); // bad mh (1st stacked argument)
95 __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
96
97 // here's where control starts out:
98 __ align(CodeEntryAlignment);
99 address entry_point = __ pc();
100
101 // fetch the MethodType from the method handle into rax (the 'check' register)
102 {
103 Register tem = rbx_method;
104 for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
105 __ movptr(rax_mtype, Address(tem, *pchase));
106 tem = rax_mtype; // in case there is another indirection
107 }
108 }
109 Register rbx_temp = rbx_method; // done with incoming methodOop
110
111 // given the MethodType, find out where the MH argument is buried
112 __ movptr(rdx_temp, Address(rax_mtype,
113 __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rbx_temp)));
114 __ movl(rdx_temp, Address(rdx_temp,
115 __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rbx_temp)));
116 __ movptr(rcx_recv, __ argument_address(rdx_temp));
117
118 __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
119 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
120
121 return entry_point;
122 }
123
124 // Helper to insert argument slots into the stack.
125 // arg_slots must be a multiple of stack_move_unit() and <= 0
126 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
127 RegisterOrConstant arg_slots,
128 int arg_mask,
129 Register rax_argslot,
130 Register rbx_temp, Register rdx_temp) {
131 assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
132 (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
133
134 #ifdef ASSERT
135 verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
136 if (arg_slots.is_register()) {
137 Label L_ok, L_bad;
138 __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
139 __ jcc(Assembler::greater, L_bad);
140 __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
141 __ jcc(Assembler::zero, L_ok);
142 __ bind(L_bad);
143 __ stop("assert arg_slots <= 0 and clear low bits");
144 __ bind(L_ok);
145 } else {
146 assert(arg_slots.as_constant() <= 0, "");
147 assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
148 }
149 #endif //ASSERT
150
151 #ifdef _LP64
152 if (arg_slots.is_register()) {
153 // clean high bits of stack motion register (was loaded as an int)
154 __ movslq(arg_slots.as_register(), arg_slots.as_register());
155 }
156 #endif
157
158 // Make space on the stack for the inserted argument(s).
159 // Then pull down everything shallower than rax_argslot.
160 // The stacked return address gets pulled down with everything else.
161 // That is, copy [rsp, argslot) downward by -size words. In pseudo-code:
162 // rsp -= size;
163 // for (rdx = rsp + size; rdx < argslot; rdx++)
164 // rdx[-size] = rdx[0]
165 // argslot -= size;
166 __ mov(rdx_temp, rsp); // source pointer for copy
167 __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
168 {
169 Label loop;
170 __ bind(loop);
171 // pull one word down each time through the loop
172 __ movptr(rbx_temp, Address(rdx_temp, 0));
173 __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
174 __ addptr(rdx_temp, wordSize);
175 __ cmpptr(rdx_temp, rax_argslot);
176 __ jcc(Assembler::less, loop);
177 }
178
179 // Now move the argslot down, to point to the opened-up space.
180 __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
181
182 if (TaggedStackInterpreter && arg_mask != _INSERT_NO_MASK) {
183 // The caller has specified a bitmask of tags to put into the opened space.
184 // This only works when the arg_slots value is an assembly-time constant.
185 int constant_arg_slots = arg_slots.as_constant() / stack_move_unit();
186 int tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
187 for (int slot = 0; slot < constant_arg_slots; slot++) {
188 BasicType slot_type = ((arg_mask & (1 << slot)) == 0 ? T_OBJECT : T_INT);
189 int slot_offset = Interpreter::stackElementSize() * slot;
190 Address tag_addr(rax_argslot, slot_offset + tag_offset);
191 __ movptr(tag_addr, frame::tag_for_basic_type(slot_type));
192 }
193 // Note that the new argument slots are tagged properly but contain
194 // garbage at this point. The value portions must be initialized
195 // by the caller. (Especially references!)
196 }
197 }
198
199 // Helper to remove argument slots from the stack.
200 // arg_slots must be a multiple of stack_move_unit() and >= 0
201 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
202 RegisterOrConstant arg_slots,
203 Register rax_argslot,
204 Register rbx_temp, Register rdx_temp) {
205 assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
206 (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
207
208 #ifdef ASSERT
209 {
210 // Verify that [argslot..argslot+size) lies within (rsp, rbp).
211 Label L_ok, L_bad;
212 __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr));
213 __ cmpptr(rbx_temp, rbp);
214 __ jcc(Assembler::above, L_bad);
215 __ cmpptr(rsp, rax_argslot);
216 __ jcc(Assembler::below, L_ok);
217 __ bind(L_bad);
218 __ stop("deleted argument(s) must fall within current frame");
219 __ bind(L_ok);
220 }
221 if (arg_slots.is_register()) {
222 Label L_ok, L_bad;
223 __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
224 __ jcc(Assembler::less, L_bad);
225 __ testl(arg_slots.as_register(), -stack_move_unit() - 1);
226 __ jcc(Assembler::zero, L_ok);
227 __ bind(L_bad);
228 __ stop("assert arg_slots >= 0 and clear low bits");
229 __ bind(L_ok);
230 } else {
231 assert(arg_slots.as_constant() >= 0, "");
232 assert(arg_slots.as_constant() % -stack_move_unit() == 0, "");
233 }
234 #endif //ASSERT
235
236 #ifdef _LP64
237 if (false) { // not needed, since register is positive
238 // clean high bits of stack motion register (was loaded as an int)
239 if (arg_slots.is_register())
240 __ movslq(arg_slots.as_register(), arg_slots.as_register());
241 }
242 #endif
243
244 // Pull up everything shallower than rax_argslot.
245 // Then remove the excess space on the stack.
246 // The stacked return address gets pulled up with everything else.
247 // That is, copy [rsp, argslot) upward by size words. In pseudo-code:
248 // for (rdx = argslot-1; rdx >= rsp; --rdx)
249 // rdx[size] = rdx[0]
250 // argslot += size;
251 // rsp += size;
252 __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
253 {
254 Label loop;
255 __ bind(loop);
256 // pull one word up each time through the loop
257 __ movptr(rbx_temp, Address(rdx_temp, 0));
258 __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp);
259 __ addptr(rdx_temp, -wordSize);
260 __ cmpptr(rdx_temp, rsp);
261 __ jcc(Assembler::greaterEqual, loop);
262 }
263
264 // Now move the argslot up, to point to the just-copied block.
265 __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr));
266 // And adjust the argslot address to point at the deletion point.
267 __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr));
268 }
269
270 #ifndef PRODUCT
271 void trace_method_handle_stub(const char* adaptername,
272 oop mh,
273 intptr_t* entry_sp,
274 intptr_t* saved_sp) {
275 // called as a leaf from native code: do not block the JVM!
276 printf("MH %s "PTR_FORMAT" "PTR_FORMAT" "INTX_FORMAT"\n", adaptername, mh, entry_sp, entry_sp - saved_sp);
277 }
278 #endif //PRODUCT
279
280 // Generate an "entry" field for a method handle.
281 // This determines how the method handle will respond to calls.
282 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
283 // Here is the register state during an interpreted call,
284 // as set up by generate_method_handle_interpreter_entry():
285 // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
286 // - rcx: receiver method handle
287 // - rax: method handle type (only used by the check_mtype entry point)
288 // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
289 // - rdx: garbage temp, can blow away
290
291 Register rcx_recv = rcx;
292 Register rax_argslot = rax;
293 Register rbx_temp = rbx;
294 Register rdx_temp = rdx;
295
296 guarantee(java_dyn_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
297
298 // some handy addresses
299 Address rbx_method_fie( rbx, methodOopDesc::from_interpreted_offset() );
300
301 Address rcx_mh_vmtarget( rcx_recv, java_dyn_MethodHandle::vmtarget_offset_in_bytes() );
302 Address rcx_dmh_vmindex( rcx_recv, sun_dyn_DirectMethodHandle::vmindex_offset_in_bytes() );
303
304 Address rcx_bmh_vmargslot( rcx_recv, sun_dyn_BoundMethodHandle::vmargslot_offset_in_bytes() );
305 Address rcx_bmh_argument( rcx_recv, sun_dyn_BoundMethodHandle::argument_offset_in_bytes() );
306
307 Address rcx_amh_vmargslot( rcx_recv, sun_dyn_AdapterMethodHandle::vmargslot_offset_in_bytes() );
308 Address rcx_amh_argument( rcx_recv, sun_dyn_AdapterMethodHandle::argument_offset_in_bytes() );
309 Address rcx_amh_conversion( rcx_recv, sun_dyn_AdapterMethodHandle::conversion_offset_in_bytes() );
310 Address vmarg; // __ argument_address(vmargslot)
311
312 int tag_offset = -1;
313 if (TaggedStackInterpreter) {
314 tag_offset = Interpreter::tag_offset_in_bytes() - Interpreter::value_offset_in_bytes();
315 assert(tag_offset = wordSize, "stack grows as expected");
316 }
317
318 if (have_entry(ek)) {
319 __ nop(); // empty stubs make SG sick
320 return;
321 }
322
323 address interp_entry = __ pc();
324 if (UseCompressedOops) __ unimplemented("UseCompressedOops");
325
326 #ifndef PRODUCT
327 if (TraceMethodHandles) {
328 __ push(rax); __ push(rbx); __ push(rcx); __ push(rdx); __ push(rsi); __ push(rdi);
329 __ lea(rax, Address(rsp, wordSize*6)); // entry_sp
330 // arguments:
331 __ push(rsi); // saved_sp
332 __ push(rax); // entry_sp
333 __ push(rcx); // mh
334 __ push(rcx);
335 __ movptr(Address(rsp, 0), (intptr_t)entry_name(ek));
336 __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 4);
337 __ pop(rdi); __ pop(rsi); __ pop(rdx); __ pop(rcx); __ pop(rbx); __ pop(rax);
338 }
339 #endif //PRODUCT
340
341 switch ((int) ek) {
342 case _check_mtype:
343 {
344 // this stub is special, because it requires a live mtype argument
345 Register rax_mtype = rax;
346
347 // emit WrongMethodType path first, to enable jccb back-branch
348 Label wrong_method_type;
349 __ bind(wrong_method_type);
350 __ movptr(rdx_temp, ExternalAddress((address) &_entries[_wrong_method_type]));
351 __ jmp(Address(rdx_temp, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
352 __ hlt();
353
354 interp_entry = __ pc();
355 __ check_method_handle_type(rax_mtype, rcx_recv, rdx_temp, wrong_method_type);
356 // now rax_mtype is dead; subsequent stubs will use it as a temp
357
358 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
359 }
360 break;
361
362 case _wrong_method_type:
363 {
364 // this stub is special, because it requires a live mtype argument
365 Register rax_mtype = rax;
366
367 interp_entry = __ pc();
368 __ push(rax_mtype); // required mtype
369 __ push(rcx_recv); // random mh (1st stacked argument)
370 __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
371 }
372 break;
373
374 case _invokestatic_mh:
375 case _invokespecial_mh:
376 {
377 Register rbx_method = rbx_temp;
378 __ movptr(rbx_method, rcx_mh_vmtarget); // target is a methodOop
379 __ verify_oop(rbx_method);
380 // same as TemplateTable::invokestatic or invokespecial,
381 // minus the CP setup and profiling:
382 if (ek == _invokespecial_mh) {
383 // Must load & check the first argument before entering the target method.
384 __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
385 __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
386 __ null_check(rcx_recv);
387 __ verify_oop(rcx_recv);
388 }
389 __ jmp(rbx_method_fie);
390 }
391 break;
392
393 case _invokevirtual_mh:
394 {
395 // same as TemplateTable::invokevirtual,
396 // minus the CP setup and profiling:
397
398 // pick out the vtable index and receiver offset from the MH,
399 // and then we can discard it:
400 __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
401 Register rbx_index = rbx_temp;
402 __ movl(rbx_index, rcx_dmh_vmindex);
403 // Note: The verifier allows us to ignore rcx_mh_vmtarget.
404 __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
405 __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
406
407 // get receiver klass
408 Register rax_klass = rax_argslot;
409 __ load_klass(rax_klass, rcx_recv);
410 __ verify_oop(rax_klass);
411
412 // get target methodOop & entry point
413 const int base = instanceKlass::vtable_start_offset() * wordSize;
414 assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
415 Address vtable_entry_addr(rax_klass,
416 rbx_index, Address::times_ptr,
417 base + vtableEntry::method_offset_in_bytes());
418 Register rbx_method = rbx_temp;
419 __ movl(rbx_method, vtable_entry_addr);
420
421 __ verify_oop(rbx_method);
422 __ jmp(rbx_method_fie);
423 }
424 break;
425
426 case _invokeinterface_mh:
427 {
428 // same as TemplateTable::invokeinterface,
429 // minus the CP setup and profiling:
430
431 // pick out the interface and itable index from the MH.
432 __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
433 Register rdx_intf = rdx_temp;
434 Register rbx_index = rbx_temp;
435 __ movptr(rdx_intf, rcx_mh_vmtarget);
436 __ movl(rbx_index, rcx_dmh_vmindex);
437 __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
438 __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
439
440 // get receiver klass
441 Register rax_klass = rax_argslot;
442 __ load_klass(rax_klass, rcx_recv);
443 __ verify_oop(rax_klass);
444
445 Register rcx_temp = rcx_recv;
446 Register rbx_method = rbx_index;
447
448 // get interface klass
449 Label no_such_interface;
450 __ verify_oop(rdx_intf);
451 __ lookup_interface_method(rax_klass, rdx_intf,
452 // note: next two args must be the same:
453 rbx_index, rbx_method,
454 rcx_temp,
455 no_such_interface);
456
457 __ verify_oop(rbx_method);
458 __ jmp(rbx_method_fie);
459 __ hlt();
460
461 __ bind(no_such_interface);
462 // Throw an exception.
463 // For historical reasons, it will be IncompatibleClassChangeError.
464 __ should_not_reach_here(); // %%% FIXME NYI
465 }
466 break;
467
468 case _bound_ref_mh:
469 case _bound_int_mh:
470 case _bound_long_mh:
471 case _bound_ref_direct_mh:
472 case _bound_int_direct_mh:
473 case _bound_long_direct_mh:
474 {
475 bool direct_to_method = (ek >= _bound_ref_direct_mh);
476 BasicType arg_type = T_ILLEGAL;
477 if (ek == _bound_long_mh || ek == _bound_long_direct_mh) {
478 arg_type = T_LONG;
479 } else if (ek == _bound_int_mh || ek == _bound_int_direct_mh) {
480 arg_type = T_INT;
481 } else {
482 assert(ek == _bound_ref_mh || ek == _bound_ref_direct_mh, "must be ref");
483 arg_type = T_OBJECT;
484 }
485 int arg_slots = type2size[arg_type];
486 int arg_mask = (arg_type == T_OBJECT ? _INSERT_REF_MASK :
487 arg_slots == 1 ? _INSERT_INT_MASK : _INSERT_LONG_MASK);
488
489 // make room for the new argument:
490 __ movl(rax_argslot, rcx_bmh_vmargslot);
491 __ lea(rax_argslot, __ argument_address(rax_argslot));
492 insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask,
493 rax_argslot, rbx_temp, rdx_temp);
494
495 // store bound argument into the new stack slot:
496 __ movptr(rbx_temp, rcx_bmh_argument);
497 Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
498 if (arg_type == T_OBJECT) {
499 __ movptr(Address(rax_argslot, 0), rbx_temp);
500 } else {
501 __ load_sized_value(rbx_temp, prim_value_addr,
502 type2aelembytes(arg_type), is_signed_subword_type(arg_type));
503 __ movptr(Address(rax_argslot, 0), rbx_temp);
504 #ifndef _LP64
505 if (arg_slots == 2) {
506 __ movl(rbx_temp, prim_value_addr.plus_disp(wordSize));
507 __ movl(Address(rax_argslot, Interpreter::stackElementSize()), rbx_temp);
508 }
509 #endif //_LP64
510 break;
511 }
512
513 if (direct_to_method) {
514 Register rbx_method = rbx_temp;
515 __ movptr(rbx_method, rcx_mh_vmtarget);
516 __ verify_oop(rbx_method);
517 __ jmp(rbx_method_fie);
518 } else {
519 __ movptr(rcx_recv, rcx_mh_vmtarget);
520 __ verify_oop(rcx_recv);
521 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
522 }
523 }
524 break;
525
526 case _adapter_retype_only:
527 // immediately jump to the next MH layer:
528 __ movptr(rcx_recv, rcx_mh_vmtarget);
529 __ verify_oop(rcx_recv);
530 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
531 // This is OK when all parameter types widen.
532 // It is also OK when a return type narrows.
533 break;
534
535 case _adapter_check_cast:
536 {
537 // temps:
538 Register rbx_klass = rbx_temp; // interesting AMH data
539
540 // check a reference argument before jumping to the next layer of MH:
541 __ movl(rax_argslot, rcx_amh_vmargslot);
542 vmarg = __ argument_address(rax_argslot);
543
544 // What class are we casting to?
545 __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
546 __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
547
548 // get the new MH:
549 __ movptr(rcx_recv, rcx_mh_vmtarget);
550 // (now we are done with the old MH)
551
552 Label done;
553 __ movptr(rdx_temp, vmarg);
554 __ testl(rdx_temp, rdx_temp);
555 __ jcc(Assembler::zero, done); // no cast if null
556 __ load_klass(rdx_temp, rdx_temp);
557
558 // live at this point:
559 // - rbx_klass: klass required by the target method
560 // - rdx_temp: argument klass to test
561 // - rcx_recv: method handle to invoke (after cast succeeds)
562 __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
563
564 // If we get here, the type check failed!
565 // Call the wrong_method_type stub, passing the failing argument type in rax.
566 Register rax_mtype = rax_argslot;
567 __ push(rbx_klass); // missed klass (required type)
568 __ push(rdx_temp); // bad actual type (1st stacked argument)
569 __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry()));
570
571 __ bind(done);
572 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
573 }
574 break;
575
576 case _adapter_prim_to_prim:
577 case _adapter_ref_to_prim:
578 // handled completely by optimized cases
579 __ stop("init_AdapterMethodHandle should not issue this");
580 break;
581
582 case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim
583 //case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim
584 case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim
585 case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim
586 {
587 // perform an in-place conversion to int or an int subword
588 __ movl(rax_argslot, rcx_amh_vmargslot);
589 vmarg = __ argument_address(rax_argslot);
590
591 switch (ek) {
592 case _adapter_opt_i2i:
593 __ movl(rdx_temp, vmarg);
594 break;
595 case _adapter_opt_l2i:
596 {
597 // just delete the extra slot; on a little-endian machine we keep the first
598 __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
599 remove_arg_slots(_masm, -stack_move_unit(),
600 rax_argslot, rbx_temp, rdx_temp);
601 vmarg = Address(rax_argslot, -Interpreter::stackElementSize());
602 __ movl(rdx_temp, vmarg);
603 }
604 break;
605 case _adapter_opt_unboxi:
606 {
607 // Load the value up from the heap.
608 __ movptr(rdx_temp, vmarg);
609 int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
610 #ifdef ASSERT
611 for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
612 if (is_subword_type(BasicType(bt)))
613 assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
614 }
615 #endif
616 __ null_check(rdx_temp, value_offset);
617 __ movl(rdx_temp, Address(rdx_temp, value_offset));
618 // We load this as a word. Because we are little-endian,
619 // the low bits will be correct, but the high bits may need cleaning.
620 // The vminfo will guide us to clean those bits.
621 }
622 break;
623 default:
624 assert(false, "");
625 }
626 goto finish_int_conversion;
627 }
628
629 finish_int_conversion:
630 {
631 Register rbx_vminfo = rbx_temp;
632 __ movl(rbx_vminfo, rcx_amh_conversion);
633 assert(CONV_VMINFO_SHIFT == 0, "preshifted");
634
635 // get the new MH:
636 __ movptr(rcx_recv, rcx_mh_vmtarget);
637 // (now we are done with the old MH)
638
639 // original 32-bit vmdata word must be of this form:
640 // | MBZ:16 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
641 __ xchgl(rcx, rbx_vminfo); // free rcx for shifts
642 __ shll(rdx_temp /*, rcx*/);
643 Label zero_extend, done;
644 __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
645 __ jcc(Assembler::zero, zero_extend);
646
647 // this path is taken for int->byte, int->short
648 __ sarl(rdx_temp /*, rcx*/);
649 __ jmp(done);
650
651 __ bind(zero_extend);
652 // this is taken for int->char
653 __ shrl(rdx_temp /*, rcx*/);
654
655 __ bind(done);
656 __ movptr(vmarg, rdx_temp);
657 __ xchgl(rcx, rbx_vminfo); // restore rcx_recv
658
659 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
660 }
661 break;
662
663 case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim
664 case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim
665 {
666 // perform an in-place int-to-long or ref-to-long conversion
667 __ movl(rax_argslot, rcx_amh_vmargslot);
668
669 // on a little-endian machine we keep the first slot and add another after
670 __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
671 insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
672 rax_argslot, rbx_temp, rdx_temp);
673 Address vmarg1(rax_argslot, -Interpreter::stackElementSize());
674 Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize());
675
676 switch (ek) {
677 case _adapter_opt_i2l:
678 {
679 __ movl(rdx_temp, vmarg1);
680 __ sarl(rdx_temp, 31); // __ extend_sign()
681 __ movl(vmarg2, rdx_temp); // store second word
682 }
683 break;
684 case _adapter_opt_unboxl:
685 {
686 // Load the value up from the heap.
687 __ movptr(rdx_temp, vmarg1);
688 int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
689 assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
690 __ null_check(rdx_temp, value_offset);
691 __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
692 __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
693 __ movl(vmarg1, rbx_temp);
694 __ movl(vmarg2, rdx_temp);
695 }
696 break;
697 default:
698 assert(false, "");
699 }
700
701 __ movptr(rcx_recv, rcx_mh_vmtarget);
702 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
703 }
704 break;
705
706 case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim
707 case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim
708 {
709 // perform an in-place floating primitive conversion
710 __ movl(rax_argslot, rcx_amh_vmargslot);
711 __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
712 if (ek == _adapter_opt_f2d) {
713 insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK,
714 rax_argslot, rbx_temp, rdx_temp);
715 }
716 Address vmarg(rax_argslot, -Interpreter::stackElementSize());
717
718 #ifdef _LP64
719 if (ek == _adapter_opt_f2d) {
720 __ movflt(xmm0, vmarg);
721 __ cvtss2sd(xmm0, xmm0);
722 __ movdbl(vmarg, xmm0);
723 } else {
724 __ movdbl(xmm0, vmarg);
725 __ cvtsd2ss(xmm0, xmm0);
726 __ movflt(vmarg, xmm0);
727 }
728 #else //_LP64
729 if (ek == _adapter_opt_f2d) {
730 __ fld_s(vmarg); // load float to ST0
731 __ fstp_s(vmarg); // store single
732 } else if (!TaggedStackInterpreter) {
733 __ fld_d(vmarg); // load double to ST0
734 __ fstp_s(vmarg); // store single
735 } else {
736 Address vmarg_tag = vmarg.plus_disp(tag_offset);
737 Address vmarg2 = vmarg.plus_disp(Interpreter::stackElementSize());
738 // vmarg2_tag does not participate in this code
739 Register rbx_tag = rbx_temp;
740 __ movl(rbx_tag, vmarg_tag); // preserve tag
741 __ movl(rdx_temp, vmarg2); // get second word of double
742 __ movl(vmarg_tag, rdx_temp); // align with first word
743 __ fld_d(vmarg); // load double to ST0
744 __ movl(vmarg_tag, rbx_tag); // restore tag
745 __ fstp_s(vmarg); // store single
746 }
747 #endif //_LP64
748
749 if (ek == _adapter_opt_d2f) {
750 remove_arg_slots(_masm, -stack_move_unit(),
751 rax_argslot, rbx_temp, rdx_temp);
752 }
753
754 __ movptr(rcx_recv, rcx_mh_vmtarget);
755 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
756 }
757 break;
758
759 case _adapter_prim_to_ref:
760 __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
761 break;
762
763 case _adapter_swap_args:
764 case _adapter_rot_args:
765 // handled completely by optimized cases
766 __ stop("init_AdapterMethodHandle should not issue this");
767 break;
768
769 case _adapter_opt_swap_1:
770 case _adapter_opt_swap_2:
771 case _adapter_opt_rot_1_up:
772 case _adapter_opt_rot_1_down:
773 case _adapter_opt_rot_2_up:
774 case _adapter_opt_rot_2_down:
775 {
776 int rotate = 0, swap_slots = 0;
777 switch ((int)ek) {
778 case _adapter_opt_swap_1: swap_slots = 1; break;
779 case _adapter_opt_swap_2: swap_slots = 2; break;
780 case _adapter_opt_rot_1_up: swap_slots = 1; rotate++; break;
781 case _adapter_opt_rot_1_down: swap_slots = 1; rotate--; break;
782 case _adapter_opt_rot_2_up: swap_slots = 2; rotate++; break;
783 case _adapter_opt_rot_2_down: swap_slots = 2; rotate--; break;
784 default: assert(false, "");
785 }
786
787 // the real size of the move must be doubled if TaggedStackInterpreter:
788 int swap_bytes = (int)( swap_slots * Interpreter::stackElementWords() * wordSize );
789
790 // 'argslot' is the position of the first argument to swap
791 __ movl(rax_argslot, rcx_amh_vmargslot);
792 __ lea(rax_argslot, __ argument_address(rax_argslot));
793
794 // 'vminfo' is the second
795 Register rbx_destslot = rbx_temp;
796 __ movl(rbx_destslot, rcx_amh_conversion);
797 assert(CONV_VMINFO_SHIFT == 0, "preshifted");
798 __ andl(rbx_destslot, CONV_VMINFO_MASK);
799 __ lea(rbx_destslot, __ argument_address(rbx_destslot));
800 DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame"));
801
802 if (!rotate) {
803 for (int i = 0; i < swap_bytes; i += wordSize) {
804 __ movptr(rdx_temp, Address(rax_argslot , i));
805 __ push(rdx_temp);
806 __ movptr(rdx_temp, Address(rbx_destslot, i));
807 __ movptr(Address(rax_argslot, i), rdx_temp);
808 __ pop(rdx_temp);
809 __ movptr(Address(rbx_destslot, i), rdx_temp);
810 }
811 } else {
812 // push the first chunk, which is going to get overwritten
813 for (int i = swap_bytes; (i -= wordSize) >= 0; ) {
814 __ movptr(rdx_temp, Address(rax_argslot, i));
815 __ push(rdx_temp);
816 }
817
818 if (rotate > 0) {
819 // rotate upward
820 __ subptr(rax_argslot, swap_bytes);
821 #ifdef ASSERT
822 {
823 // Verify that argslot > destslot, by at least swap_bytes.
824 Label L_ok;
825 __ cmpptr(rax_argslot, rbx_destslot);
826 __ jcc(Assembler::aboveEqual, L_ok);
827 __ stop("source must be above destination (upward rotation)");
828 __ bind(L_ok);
829 }
830 #endif
831 // work argslot down to destslot, copying contiguous data upwards
832 // pseudo-code:
833 // rax = src_addr - swap_bytes
834 // rbx = dest_addr
835 // while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
836 Label loop;
837 __ bind(loop);
838 __ movptr(rdx_temp, Address(rax_argslot, 0));
839 __ movptr(Address(rax_argslot, swap_bytes), rdx_temp);
840 __ addptr(rax_argslot, -wordSize);
841 __ cmpptr(rax_argslot, rbx_destslot);
842 __ jcc(Assembler::aboveEqual, loop);
843 } else {
844 __ addptr(rax_argslot, swap_bytes);
845 #ifdef ASSERT
846 {
847 // Verify that argslot < destslot, by at least swap_bytes.
848 Label L_ok;
849 __ cmpptr(rax_argslot, rbx_destslot);
850 __ jcc(Assembler::belowEqual, L_ok);
851 __ stop("source must be below destination (downward rotation)");
852 __ bind(L_ok);
853 }
854 #endif
855 // work argslot up to destslot, copying contiguous data downwards
856 // pseudo-code:
857 // rax = src_addr + swap_bytes
858 // rbx = dest_addr
859 // while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
860 Label loop;
861 __ bind(loop);
862 __ movptr(rdx_temp, Address(rax_argslot, 0));
863 __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp);
864 __ addptr(rax_argslot, wordSize);
865 __ cmpptr(rax_argslot, rbx_destslot);
866 __ jcc(Assembler::belowEqual, loop);
867 }
868
869 // pop the original first chunk into the destination slot, now free
870 for (int i = 0; i < swap_bytes; i += wordSize) {
871 __ pop(rdx_temp);
872 __ movptr(Address(rbx_destslot, i), rdx_temp);
873 }
874 }
875
876 __ movptr(rcx_recv, rcx_mh_vmtarget);
877 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
878 }
879 break;
880
881 case _adapter_dup_args:
882 {
883 // 'argslot' is the position of the first argument to duplicate
884 __ movl(rax_argslot, rcx_amh_vmargslot);
885 __ lea(rax_argslot, __ argument_address(rax_argslot));
886
887 // 'stack_move' is negative number of words to duplicate
888 Register rdx_stack_move = rdx_temp;
889 __ movl(rdx_stack_move, rcx_amh_conversion);
890 __ sarl(rdx_stack_move, CONV_STACK_MOVE_SHIFT);
891
892 int argslot0_num = 0;
893 Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num));
894 assert(argslot0.base() == rsp, "");
895 int pre_arg_size = argslot0.disp();
896 assert(pre_arg_size % wordSize == 0, "");
897 assert(pre_arg_size > 0, "must include PC");
898
899 // remember the old rsp+1 (argslot[0])
900 Register rbx_oldarg = rbx_temp;
901 __ lea(rbx_oldarg, argslot0);
902
903 // move rsp down to make room for dups
904 __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr));
905
906 // compute the new rsp+1 (argslot[0])
907 Register rdx_newarg = rdx_temp;
908 __ lea(rdx_newarg, argslot0);
909
910 __ push(rdi); // need a temp
911 // (preceding push must be done after arg addresses are taken!)
912
913 // pull down the pre_arg_size data (PC)
914 for (int i = -pre_arg_size; i < 0; i += wordSize) {
915 __ movptr(rdi, Address(rbx_oldarg, i));
916 __ movptr(Address(rdx_newarg, i), rdi);
917 }
918
919 // copy from rax_argslot[0...] down to new_rsp[1...]
920 // pseudo-code:
921 // rbx = old_rsp+1
922 // rdx = new_rsp+1
923 // rax = argslot
924 // while (rdx < rbx) *rdx++ = *rax++
925 Label loop;
926 __ bind(loop);
927 __ movptr(rdi, Address(rax_argslot, 0));
928 __ movptr(Address(rdx_newarg, 0), rdi);
929 __ addptr(rax_argslot, wordSize);
930 __ addptr(rdx_newarg, wordSize);
931 __ cmpptr(rdx_newarg, rbx_oldarg);
932 __ jcc(Assembler::less, loop);
933
934 __ pop(rdi); // restore temp
935
936 __ movptr(rcx_recv, rcx_mh_vmtarget);
937 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
938 }
939 break;
940
941 case _adapter_drop_args:
942 {
943 // 'argslot' is the position of the first argument to nuke
944 __ movl(rax_argslot, rcx_amh_vmargslot);
945 __ lea(rax_argslot, __ argument_address(rax_argslot));
946
947 __ push(rdi); // need a temp
948 // (must do previous push after argslot address is taken)
949
950 // 'stack_move' is number of words to drop
951 Register rdi_stack_move = rdi;
952 __ movl(rdi_stack_move, rcx_amh_conversion);
953 __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
954 remove_arg_slots(_masm, rdi_stack_move,
955 rax_argslot, rbx_temp, rdx_temp);
956
957 __ pop(rdi); // restore temp
958
959 __ movptr(rcx_recv, rcx_mh_vmtarget);
960 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
961 }
962 break;
963
964 case _adapter_collect_args:
965 __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
966 break;
967
968 case _adapter_spread_args:
969 // handled completely by optimized cases
970 __ stop("init_AdapterMethodHandle should not issue this");
971 break;
972
973 case _adapter_opt_spread_0:
974 case _adapter_opt_spread_1:
975 case _adapter_opt_spread_more:
976 {
977 // spread an array out into a group of arguments
978 int length_constant = -1;
979 switch (ek) {
980 case _adapter_opt_spread_0: length_constant = 0; break;
981 case _adapter_opt_spread_1: length_constant = 1; break;
982 }
983
984 // find the address of the array argument
985 __ movl(rax_argslot, rcx_amh_vmargslot);
986 __ lea(rax_argslot, __ argument_address(rax_argslot));
987
988 // grab some temps
989 { __ push(rsi); __ push(rdi); }
990 // (preceding pushes must be done after argslot address is taken!)
991 #define UNPUSH_RSI_RDI \
992 { __ pop(rdi); __ pop(rsi); }
993
994 // arx_argslot points both to the array and to the first output arg
995 vmarg = Address(rax_argslot, 0);
996
997 // Get the array value.
998 Register rsi_array = rsi;
999 Register rdx_array_klass = rdx_temp;
1000 BasicType elem_type = T_OBJECT;
1001 int length_offset = arrayOopDesc::length_offset_in_bytes();
1002 int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type);
1003 __ movptr(rsi_array, vmarg);
1004 Label skip_array_check;
1005 if (length_constant == 0) {
1006 __ testptr(rsi_array, rsi_array);
1007 __ jcc(Assembler::zero, skip_array_check);
1008 }
1009 __ null_check(rsi_array, oopDesc::klass_offset_in_bytes());
1010 __ load_klass(rdx_array_klass, rsi_array);
1011
1012 // Check the array type.
1013 Register rbx_klass = rbx_temp;
1014 __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object!
1015 __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes()));
1016
1017 Label ok_array_klass, bad_array_klass, bad_array_length;
1018 __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass);
1019 // If we get here, the type check failed!
1020 __ jmp(bad_array_klass);
1021 __ bind(ok_array_klass);
1022
1023 // Check length.
1024 if (length_constant >= 0) {
1025 __ cmpl(Address(rsi_array, length_offset), length_constant);
1026 } else {
1027 Register rbx_vminfo = rbx_temp;
1028 __ movl(rbx_vminfo, rcx_amh_conversion);
1029 assert(CONV_VMINFO_SHIFT == 0, "preshifted");
1030 __ andl(rbx_vminfo, CONV_VMINFO_MASK);
1031 __ cmpl(rbx_vminfo, Address(rsi_array, length_offset));
1032 }
1033 __ jcc(Assembler::notEqual, bad_array_length);
1034
1035 Register rdx_argslot_limit = rdx_temp;
1036
1037 // Array length checks out. Now insert any required stack slots.
1038 if (length_constant == -1) {
1039 // Form a pointer to the end of the affected region.
1040 __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize()));
1041 // 'stack_move' is negative number of words to insert
1042 Register rdi_stack_move = rdi;
1043 __ movl(rdi_stack_move, rcx_amh_conversion);
1044 __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
1045 Register rsi_temp = rsi_array; // spill this
1046 insert_arg_slots(_masm, rdi_stack_move, -1,
1047 rax_argslot, rbx_temp, rsi_temp);
1048 // reload the array (since rsi was killed)
1049 __ movptr(rsi_array, vmarg);
1050 } else if (length_constant > 1) {
1051 int arg_mask = 0;
1052 int new_slots = (length_constant - 1);
1053 for (int i = 0; i < new_slots; i++) {
1054 arg_mask <<= 1;
1055 arg_mask |= _INSERT_REF_MASK;
1056 }
1057 insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask,
1058 rax_argslot, rbx_temp, rdx_temp);
1059 } else if (length_constant == 1) {
1060 // no stack resizing required
1061 } else if (length_constant == 0) {
1062 remove_arg_slots(_masm, -stack_move_unit(),
1063 rax_argslot, rbx_temp, rdx_temp);
1064 }
1065
1066 // Copy from the array to the new slots.
1067 // Note: Stack change code preserves integrity of rax_argslot pointer.
1068 // So even after slot insertions, rax_argslot still points to first argument.
1069 if (length_constant == -1) {
1070 // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
1071 Register rsi_source = rsi_array;
1072 __ lea(rsi_source, Address(rsi_array, elem0_offset));
1073 Label loop;
1074 __ bind(loop);
1075 __ movptr(rbx_temp, Address(rsi_source, 0));
1076 __ movptr(Address(rax_argslot, 0), rbx_temp);
1077 __ addptr(rsi_source, type2aelembytes(elem_type));
1078 if (TaggedStackInterpreter) {
1079 __ movptr(Address(rax_argslot, tag_offset),
1080 frame::tag_for_basic_type(elem_type));
1081 }
1082 __ addptr(rax_argslot, Interpreter::stackElementSize());
1083 __ cmpptr(rax_argslot, rdx_argslot_limit);
1084 __ jcc(Assembler::less, loop);
1085 } else if (length_constant == 0) {
1086 __ bind(skip_array_check);
1087 // nothing to copy
1088 } else {
1089 int elem_offset = elem0_offset;
1090 int slot_offset = 0;
1091 for (int index = 0; index < length_constant; index++) {
1092 __ movptr(rbx_temp, Address(rsi_array, elem_offset));
1093 __ movptr(Address(rax_argslot, slot_offset), rbx_temp);
1094 elem_offset += type2aelembytes(elem_type);
1095 if (TaggedStackInterpreter) {
1096 __ movptr(Address(rax_argslot, slot_offset + tag_offset),
1097 frame::tag_for_basic_type(elem_type));
1098 }
1099 slot_offset += Interpreter::stackElementSize();
1100 }
1101 }
1102
1103 // Arguments are spread. Move to next method handle.
1104 UNPUSH_RSI_RDI;
1105 __ movptr(rcx_recv, rcx_mh_vmtarget);
1106 __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
1107
1108 __ bind(bad_array_klass);
1109 UNPUSH_RSI_RDI;
1110 __ stop("bad array klass NYI");
1111
1112 __ bind(bad_array_length);
1113 UNPUSH_RSI_RDI;
1114 __ stop("bad array length NYI");
1115
1116 #undef UNPUSH_RSI_RDI
1117 }
1118 break;
1119
1120 case _adapter_flyby:
1121 case _adapter_ricochet:
1122 __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
1123 break;
1124
1125 default: ShouldNotReachHere();
1126 }
1127 __ hlt();
1128
1129 address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
1130 __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
1131
1132 init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
1133 }