comparison src/cpu/ppc/vm/interp_masm_ppc_64.cpp @ 17804:fd1b9f02cc91

8036976: PPC64: implement the template interpreter Reviewed-by: kvn, coleenp Contributed-by: axel.siebenborn@sap.com, martin.doerr@sap.com
author goetz
date Mon, 10 Mar 2014 12:58:02 +0100
parents 67fa91961822
children 92aa6797d639 b384ba33c9a0
comparison
equal deleted inserted replaced
17803:31e80afe3fed 17804:fd1b9f02cc91
1 /* 1 /*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. 2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2013 SAP AG. All rights reserved. 3 * Copyright 2012, 2014 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 * 5 *
6 * This code is free software; you can redistribute it and/or modify it 6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as 7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation. 8 * published by the Free Software Foundation.
27 #include "precompiled.hpp" 27 #include "precompiled.hpp"
28 #include "asm/assembler.hpp" 28 #include "asm/assembler.hpp"
29 #include "asm/macroAssembler.inline.hpp" 29 #include "asm/macroAssembler.inline.hpp"
30 #include "interp_masm_ppc_64.hpp" 30 #include "interp_masm_ppc_64.hpp"
31 #include "interpreter/interpreterRuntime.hpp" 31 #include "interpreter/interpreterRuntime.hpp"
32 #include "prims/jvmtiThreadState.hpp"
32 33
33 #ifdef PRODUCT 34 #ifdef PRODUCT
34 #define BLOCK_COMMENT(str) // nothing 35 #define BLOCK_COMMENT(str) // nothing
35 #else 36 #else
36 #define BLOCK_COMMENT(str) block_comment(str) 37 #define BLOCK_COMMENT(str) block_comment(str)
42 #else 43 #else
43 address exception_entry = Interpreter::throw_NullPointerException_entry(); 44 address exception_entry = Interpreter::throw_NullPointerException_entry();
44 #endif 45 #endif
45 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); 46 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
46 } 47 }
48
49 void InterpreterMacroAssembler::branch_to_entry(address entry, Register Rscratch) {
50 assert(entry, "Entry must have been generated by now");
51 if (is_within_range_of_b(entry, pc())) {
52 b(entry);
53 } else {
54 load_const_optimized(Rscratch, entry, R0);
55 mtctr(Rscratch);
56 bctr();
57 }
58 }
59
60 #ifndef CC_INTERP
61
62 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
63 Register bytecode = R12_scratch2;
64 if (bcp_incr != 0) {
65 lbzu(bytecode, bcp_incr, R14_bcp);
66 } else {
67 lbz(bytecode, 0, R14_bcp);
68 }
69
70 dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
71 }
72
73 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
74 // Load current bytecode.
75 Register bytecode = R12_scratch2;
76 lbz(bytecode, 0, R14_bcp);
77 dispatch_Lbyte_code(state, bytecode, table);
78 }
79
80 // Dispatch code executed in the prolog of a bytecode which does not do it's
81 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
82 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
83 Register bytecode = R12_scratch2;
84 lbz(bytecode, bcp_incr, R14_bcp);
85
86 load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
87
88 sldi(bytecode, bytecode, LogBytesPerWord);
89 ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
90 }
91
92 // Dispatch code executed in the epilog of a bytecode which does not do it's
93 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
94 // dispatch.
95 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
96 mtctr(R24_dispatch_addr);
97 addi(R14_bcp, R14_bcp, bcp_incr);
98 bctr();
99 }
100
101 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
102 assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
103 if (JvmtiExport::can_pop_frame()) {
104 Label L;
105
106 // Check the "pending popframe condition" flag in the current thread.
107 lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
108
109 // Initiate popframe handling only if it is not already being
110 // processed. If the flag has the popframe_processing bit set, it
111 // means that this code is called *during* popframe handling - we
112 // don't want to reenter.
113 andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
114 beq(CCR0, L);
115
116 andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
117 bne(CCR0, L);
118
119 // Call the Interpreter::remove_activation_preserving_args_entry()
120 // func to get the address of the same-named entrypoint in the
121 // generated interpreter code.
122 call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
123 Interpreter::remove_activation_preserving_args_entry),
124 relocInfo::none);
125
126 // Jump to Interpreter::_remove_activation_preserving_args_entry.
127 mtctr(R3_RET);
128 bctr();
129
130 align(32, 12);
131 bind(L);
132 }
133 }
134
135 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
136 const Register Rthr_state_addr = scratch_reg;
137 if (JvmtiExport::can_force_early_return()) {
138 Label Lno_early_ret;
139 ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
140 cmpdi(CCR0, Rthr_state_addr, 0);
141 beq(CCR0, Lno_early_ret);
142
143 lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
144 cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
145 bne(CCR0, Lno_early_ret);
146
147 // Jump to Interpreter::_earlyret_entry.
148 lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
149 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
150 mtlr(R3_RET);
151 blr();
152
153 align(32, 12);
154 bind(Lno_early_ret);
155 }
156 }
157
158 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
159 const Register RjvmtiState = Rscratch1;
160 const Register Rscratch2 = R0;
161
162 ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
163 li(Rscratch2, 0);
164
165 switch (state) {
166 case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
167 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
168 break;
169 case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
170 break;
171 case btos: // fall through
172 case ctos: // fall through
173 case stos: // fall through
174 case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
175 break;
176 case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
177 break;
178 case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
179 break;
180 case vtos: break;
181 default : ShouldNotReachHere();
182 }
183
184 // Clean up tos value in the jvmti thread state.
185 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
186 // Set tos state field to illegal value.
187 li(Rscratch2, ilgl);
188 stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
189 }
190
191 // Common code to dispatch and dispatch_only.
192 // Dispatch value in Lbyte_code and increment Lbcp.
193
194 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
195 address table_base = (address)Interpreter::dispatch_table((TosState)0);
196 intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
197 if (is_simm16(table_offs)) {
198 addi(dst, R25_templateTableBase, (int)table_offs);
199 } else {
200 load_const_optimized(dst, table, R0);
201 }
202 }
203
204 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) {
205 if (verify) {
206 unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
207 }
208
209 #ifdef FAST_DISPATCH
210 unimplemented("dispatch_Lbyte_code FAST_DISPATCH");
211 #else
212 assert_different_registers(bytecode, R11_scratch1);
213
214 // Calc dispatch table address.
215 load_dispatch_table(R11_scratch1, table);
216
217 sldi(R12_scratch2, bytecode, LogBytesPerWord);
218 ldx(R11_scratch1, R11_scratch1, R12_scratch2);
219
220 // Jump off!
221 mtctr(R11_scratch1);
222 bctr();
223 #endif
224 }
225
226 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
227 sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
228 ldx(Rrecv_dst, Rrecv_dst, R15_esp);
229 }
230
231 // helpers for expression stack
232
233 void InterpreterMacroAssembler::pop_i(Register r) {
234 lwzu(r, Interpreter::stackElementSize, R15_esp);
235 }
236
237 void InterpreterMacroAssembler::pop_ptr(Register r) {
238 ldu(r, Interpreter::stackElementSize, R15_esp);
239 }
240
241 void InterpreterMacroAssembler::pop_l(Register r) {
242 ld(r, Interpreter::stackElementSize, R15_esp);
243 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
244 }
245
246 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
247 lfsu(f, Interpreter::stackElementSize, R15_esp);
248 }
249
250 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
251 lfd(f, Interpreter::stackElementSize, R15_esp);
252 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
253 }
254
255 void InterpreterMacroAssembler::push_i(Register r) {
256 stw(r, 0, R15_esp);
257 addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
258 }
259
260 void InterpreterMacroAssembler::push_ptr(Register r) {
261 std(r, 0, R15_esp);
262 addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
263 }
264
265 void InterpreterMacroAssembler::push_l(Register r) {
266 std(r, - Interpreter::stackElementSize, R15_esp);
267 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
268 }
269
270 void InterpreterMacroAssembler::push_f(FloatRegister f) {
271 stfs(f, 0, R15_esp);
272 addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
273 }
274
275 void InterpreterMacroAssembler::push_d(FloatRegister f) {
276 stfd(f, - Interpreter::stackElementSize, R15_esp);
277 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
278 }
279
280 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
281 std(first, 0, R15_esp);
282 std(second, -Interpreter::stackElementSize, R15_esp);
283 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
284 }
285
286 void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
287 std(l, 0, R15_esp);
288 lfd(d, 0, R15_esp);
289 }
290
291 void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
292 stfd(d, 0, R15_esp);
293 ld(l, 0, R15_esp);
294 }
295
296 void InterpreterMacroAssembler::push(TosState state) {
297 switch (state) {
298 case atos: push_ptr(); break;
299 case btos:
300 case ctos:
301 case stos:
302 case itos: push_i(); break;
303 case ltos: push_l(); break;
304 case ftos: push_f(); break;
305 case dtos: push_d(); break;
306 case vtos: /* nothing to do */ break;
307 default : ShouldNotReachHere();
308 }
309 }
310
311 void InterpreterMacroAssembler::pop(TosState state) {
312 switch (state) {
313 case atos: pop_ptr(); break;
314 case btos:
315 case ctos:
316 case stos:
317 case itos: pop_i(); break;
318 case ltos: pop_l(); break;
319 case ftos: pop_f(); break;
320 case dtos: pop_d(); break;
321 case vtos: /* nothing to do */ break;
322 default : ShouldNotReachHere();
323 }
324 verify_oop(R17_tos, state);
325 }
326
327 void InterpreterMacroAssembler::empty_expression_stack() {
328 addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
329 }
330
331 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset,
332 Register Rdst,
333 signedOrNot is_signed) {
334 // Read Java big endian format.
335 if (is_signed == Signed) {
336 lha(Rdst, bcp_offset, R14_bcp);
337 } else {
338 lhz(Rdst, bcp_offset, R14_bcp);
339 }
340 #if 0
341 assert(Rtmp != Rdst, "need separate temp register");
342 Register Rfirst = Rtmp;
343 lbz(Rfirst, bcp_offset, R14_bcp); // first byte
344 lbz(Rdst, bcp_offset+1, R14_bcp); // second byte
345
346 // Rdst = ((Rfirst<<8) & 0xFF00) | (Rdst &~ 0xFF00)
347 rldimi(/*RA=*/Rdst, /*RS=*/Rfirst, /*sh=*/8, /*mb=*/48);
348 if (is_signed == Signed) {
349 extsh(Rdst, Rdst);
350 }
351 #endif
352 }
353
354 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset,
355 Register Rdst,
356 signedOrNot is_signed) {
357 // Read Java big endian format.
358 if (bcp_offset & 3) { // Offset unaligned?
359 load_const_optimized(Rdst, bcp_offset);
360 if (is_signed == Signed) {
361 lwax(Rdst, R14_bcp, Rdst);
362 } else {
363 lwzx(Rdst, R14_bcp, Rdst);
364 }
365 } else {
366 if (is_signed == Signed) {
367 lwa(Rdst, bcp_offset, R14_bcp);
368 } else {
369 lwz(Rdst, bcp_offset, R14_bcp);
370 }
371 }
372 }
373
374 // Load the constant pool cache index from the bytecode stream.
375 //
376 // Kills / writes:
377 // - Rdst, Rscratch
378 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) {
379 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
380 if (index_size == sizeof(u2)) {
381 get_2_byte_integer_at_bcp(bcp_offset, Rdst, Unsigned);
382 } else if (index_size == sizeof(u4)) {
383 assert(EnableInvokeDynamic, "giant index used only for JSR 292");
384 get_4_byte_integer_at_bcp(bcp_offset, Rdst, Signed);
385 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
386 nand(Rdst, Rdst, Rdst); // convert to plain index
387 } else if (index_size == sizeof(u1)) {
388 lbz(Rdst, bcp_offset, R14_bcp);
389 } else {
390 ShouldNotReachHere();
391 }
392 // Rdst now contains cp cache index.
393 }
394
395 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) {
396 get_cache_index_at_bcp(cache, bcp_offset, index_size);
397 sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
398 add(cache, R27_constPoolCache, cache);
399 }
400
401 // Load object from cpool->resolved_references(index).
402 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
403 assert_different_registers(result, index);
404 get_constant_pool(result);
405
406 // Convert from field index to resolved_references() index and from
407 // word index to byte offset. Since this is a java object, it can be compressed.
408 Register tmp = index; // reuse
409 sldi(tmp, index, LogBytesPerHeapOop);
410 // Load pointer for resolved_references[] objArray.
411 ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
412 // JNIHandles::resolve(result)
413 ld(result, 0, result);
414 #ifdef ASSERT
415 Label index_ok;
416 lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
417 sldi(R0, R0, LogBytesPerHeapOop);
418 cmpd(CCR0, tmp, R0);
419 blt(CCR0, index_ok);
420 stop("resolved reference index out of bounds", 0x09256);
421 bind(index_ok);
422 #endif
423 // Add in the index.
424 add(result, tmp, result);
425 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
426 }
427
428 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
429 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
430 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
431 Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
432 // Profile the not-null value's klass.
433 profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
434 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
435 profile_typecheck_failed(Rtmp1, Rtmp2);
436 }
437
438 void InterpreterMacroAssembler::generate_stack_overflow_check_with_compare_and_throw(Register Rmem_frame_size, Register Rscratch1) {
439 Label done;
440 sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
441 ld(Rscratch1, thread_(stack_overflow_limit));
442 cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
443 bgt(CCR0/*is_stack_overflow*/, done);
444
445 // Load target address of the runtime stub.
446 assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
447 load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
448 mtctr(Rscratch1);
449 // Restore caller_sp.
450 #ifdef ASSERT
451 ld(Rscratch1, 0, R1_SP);
452 ld(R0, 0, R21_sender_SP);
453 cmpd(CCR0, R0, Rscratch1);
454 asm_assert_eq("backlink", 0x547);
455 #endif // ASSERT
456 mr(R1_SP, R21_sender_SP);
457 bctr();
458
459 align(32, 12);
460 bind(done);
461 }
462
463 // Separate these two to allow for delay slot in middle.
464 // These are used to do a test and full jump to exception-throwing code.
465
466 // Check that index is in range for array, then shift index by index_shift,
467 // and put arrayOop + shifted_index into res.
468 // Note: res is still shy of address by array offset into object.
469
470 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) {
471 // Check that index is in range for array, then shift index by index_shift,
472 // and put arrayOop + shifted_index into res.
473 // Note: res is still shy of address by array offset into object.
474 // Kills:
475 // - Rindex
476 // Writes:
477 // - Rres: Address that corresponds to the array index if check was successful.
478 verify_oop(Rarray);
479 const Register Rlength = R0;
480 const Register RsxtIndex = Rtmp;
481 Label LisNull, LnotOOR;
482
483 // Array nullcheck
484 if (!ImplicitNullChecks) {
485 cmpdi(CCR0, Rarray, 0);
486 beq(CCR0, LisNull);
487 } else {
488 null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
489 }
490
491 // Rindex might contain garbage in upper bits (remember that we don't sign extend
492 // during integer arithmetic operations). So kill them and put value into same register
493 // where ArrayIndexOutOfBounds would expect the index in.
494 rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
495
496 // Index check
497 lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
498 cmplw(CCR0, Rindex, Rlength);
499 sldi(RsxtIndex, RsxtIndex, index_shift);
500 blt(CCR0, LnotOOR);
501 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
502 mtctr(Rtmp);
503 bctr();
504
505 if (!ImplicitNullChecks) {
506 bind(LisNull);
507 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
508 mtctr(Rtmp);
509 bctr();
510 }
511
512 align(32, 16);
513 bind(LnotOOR);
514
515 // Calc address
516 add(Rres, RsxtIndex, Rarray);
517 }
518
519 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
520 // pop array
521 pop_ptr(array);
522
523 // check array
524 index_check_without_pop(array, index, index_shift, tmp, res);
525 }
526
527 void InterpreterMacroAssembler::get_const(Register Rdst) {
528 ld(Rdst, in_bytes(Method::const_offset()), R19_method);
529 }
530
531 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
532 get_const(Rdst);
533 ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
534 }
535
536 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
537 get_constant_pool(Rdst);
538 ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
539 }
540
541 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
542 get_constant_pool(Rcpool);
543 ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
544 }
545
546 // Unlock if synchronized method.
547 //
548 // Unlock the receiver if this is a synchronized method.
549 // Unlock any Java monitors from synchronized blocks.
550 //
551 // If there are locked Java monitors
552 // If throw_monitor_exception
553 // throws IllegalMonitorStateException
554 // Else if install_monitor_exception
555 // installs IllegalMonitorStateException
556 // Else
557 // no error processing
558 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
559 bool throw_monitor_exception,
560 bool install_monitor_exception) {
561 Label Lunlocked, Lno_unlock;
562 {
563 Register Rdo_not_unlock_flag = R11_scratch1;
564 Register Raccess_flags = R12_scratch2;
565
566 // Check if synchronized method or unlocking prevented by
567 // JavaThread::do_not_unlock_if_synchronized flag.
568 lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
569 lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
570 li(R0, 0);
571 stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
572
573 push(state);
574
575 // Skip if we don't have to unlock.
576 rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
577 beq(CCR0, Lunlocked);
578
579 cmpwi(CCR0, Rdo_not_unlock_flag, 0);
580 bne(CCR0, Lno_unlock);
581 }
582
583 // Unlock
584 {
585 Register Rmonitor_base = R11_scratch1;
586
587 Label Lunlock;
588 // If it's still locked, everything is ok, unlock it.
589 ld(Rmonitor_base, 0, R1_SP);
590 addi(Rmonitor_base, Rmonitor_base, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
591
592 ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
593 cmpdi(CCR0, R0, 0);
594 bne(CCR0, Lunlock);
595
596 // If it's already unlocked, throw exception.
597 if (throw_monitor_exception) {
598 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
599 should_not_reach_here();
600 } else {
601 if (install_monitor_exception) {
602 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
603 b(Lunlocked);
604 }
605 }
606
607 bind(Lunlock);
608 unlock_object(Rmonitor_base);
609 }
610
611 // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
612 bind(Lunlocked);
613 {
614 Label Lexception, Lrestart;
615 Register Rcurrent_obj_addr = R11_scratch1;
616 const int delta = frame::interpreter_frame_monitor_size_in_bytes();
617 assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
618
619 bind(Lrestart);
620 // Set up search loop: Calc num of iterations.
621 {
622 Register Riterations = R12_scratch2;
623 Register Rmonitor_base = Rcurrent_obj_addr;
624 ld(Rmonitor_base, 0, R1_SP);
625 addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base
626
627 subf_(Riterations, R26_monitor, Rmonitor_base);
628 ble(CCR0, Lno_unlock);
629
630 addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
631 // Check if any monitor is on stack, bail out if not
632 srdi(Riterations, Riterations, exact_log2(delta));
633 mtctr(Riterations);
634 }
635
636 // The search loop: Look for locked monitors.
637 {
638 const Register Rcurrent_obj = R0;
639 Label Lloop;
640
641 ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
642 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
643 bind(Lloop);
644
645 // Check if current entry is used.
646 cmpdi(CCR0, Rcurrent_obj, 0);
647 bne(CCR0, Lexception);
648 // Preload next iteration's compare value.
649 ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
650 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
651 bdnz(Lloop);
652 }
653 // Fell through: Everything's unlocked => finish.
654 b(Lno_unlock);
655
656 // An object is still locked => need to throw exception.
657 bind(Lexception);
658 if (throw_monitor_exception) {
659 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
660 should_not_reach_here();
661 } else {
662 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
663 // Unlock does not block, so don't have to worry about the frame.
664 Register Rmonitor_addr = R11_scratch1;
665 addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
666 unlock_object(Rmonitor_addr);
667 if (install_monitor_exception) {
668 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
669 }
670 b(Lrestart);
671 }
672 }
673
674 align(32, 12);
675 bind(Lno_unlock);
676 pop(state);
677 }
678
679 // Support function for remove_activation & Co.
680 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) {
681 // Pop interpreter frame.
682 ld(Rscratch1, 0, R1_SP); // *SP
683 ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
684 ld(Rscratch2, 0, Rscratch1); // **SP
685 #ifdef ASSERT
686 {
687 Label Lok;
688 ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
689 cmpdi(CCR0, R0, 0x5afe);
690 beq(CCR0, Lok);
691 stop("frame corrupted (remove activation)", 0x5afe);
692 bind(Lok);
693 }
694 #endif
695 if (return_pc!=noreg) {
696 ld(return_pc, _abi(lr), Rscratch1); // LR
697 }
698
699 // Merge top frames.
700 subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
701 stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
702 }
703
704 // Remove activation.
705 //
706 // Unlock the receiver if this is a synchronized method.
707 // Unlock any Java monitors from synchronized blocks.
708 // Remove the activation from the stack.
709 //
710 // If there are locked Java monitors
711 // If throw_monitor_exception
712 // throws IllegalMonitorStateException
713 // Else if install_monitor_exception
714 // installs IllegalMonitorStateException
715 // Else
716 // no error processing
717 void InterpreterMacroAssembler::remove_activation(TosState state,
718 bool throw_monitor_exception,
719 bool install_monitor_exception) {
720 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
721
722 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
723 notify_method_exit(false, state, NotifyJVMTI, true);
724
725 verify_oop(R17_tos, state);
726 verify_thread();
727
728 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
729 mtlr(R0);
730 }
731
732 #endif // !CC_INTERP
47 733
48 // Lock object 734 // Lock object
49 // 735 //
50 // Registers alive 736 // Registers alive
51 // monitor - Address of the BasicObjectLock to be used for locking, 737 // monitor - Address of the BasicObjectLock to be used for locking,
79 Label done; 765 Label done;
80 Label cas_failed, slow_case; 766 Label cas_failed, slow_case;
81 767
82 assert_different_registers(displaced_header, object_mark_addr, current_header, tmp); 768 assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
83 769
84
85 // markOop displaced_header = obj->mark().set_unlocked(); 770 // markOop displaced_header = obj->mark().set_unlocked();
86 771
87 // Load markOop from object into displaced_header. 772 // Load markOop from object into displaced_header.
88 ld(displaced_header, oopDesc::mark_offset_in_bytes(), object); 773 ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
89 774
91 biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case); 776 biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
92 } 777 }
93 778
94 // Set displaced_header to be (markOop of object | UNLOCK_VALUE). 779 // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
95 ori(displaced_header, displaced_header, markOopDesc::unlocked_value); 780 ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
96
97 781
98 // monitor->lock()->set_displaced_header(displaced_header); 782 // monitor->lock()->set_displaced_header(displaced_header);
99 783
100 // Initialize the box (Must happen before we update the object mark!). 784 // Initialize the box (Must happen before we update the object mark!).
101 std(displaced_header, BasicObjectLock::lock_offset_in_bytes() + 785 std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
145 release(); 829 release();
146 std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() + 830 std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
147 BasicLock::displaced_header_offset_in_bytes(), monitor); 831 BasicLock::displaced_header_offset_in_bytes(), monitor);
148 b(done); 832 b(done);
149 833
150
151 // } else { 834 // } else {
152 // // Slow path. 835 // // Slow path.
153 // InterpreterRuntime::monitorenter(THREAD, monitor); 836 // InterpreterRuntime::monitorenter(THREAD, monitor);
154 837
155 // None of the above fast optimizations worked so we have to get into the 838 // None of the above fast optimizations worked so we have to get into the
156 // slow case of monitor enter. 839 // slow case of monitor enter.
157 bind(slow_case); 840 bind(slow_case);
158 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 841 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
159 monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false)); 842 monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
160 // } 843 // }
161 844 align(32, 12);
162 bind(done); 845 bind(done);
163 } 846 }
164 } 847 }
165 848
166 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 849 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
171 // 854 //
172 // Throw IllegalMonitorException if object is not locked by current thread. 855 // Throw IllegalMonitorException if object is not locked by current thread.
173 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) { 856 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
174 if (UseHeavyMonitors) { 857 if (UseHeavyMonitors) {
175 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), 858 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
176 monitor, /*check_for_exceptions=*/false); 859 monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
177 } else { 860 } else {
178 861
179 // template code: 862 // template code:
180 // 863 //
181 // if ((displaced_header = monitor->displaced_header()) == NULL) { 864 // if ((displaced_header = monitor->displaced_header()) == NULL) {
182 // // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL. 865 // // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
183 // monitor->set_obj(NULL); 866 // monitor->set_obj(NULL);
184 // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) { 867 // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
185 // // We swapped the unlocked mark in displaced_header into the object's mark word. 868 // // We swapped the unlocked mark in displaced_header into the object's mark word.
186 // monitor->set_obj(NULL); 869 // monitor->set_obj(NULL);
187 // } else { 870 // } else {
219 // monitor->set_obj(NULL); 902 // monitor->set_obj(NULL);
220 903
221 // If we still have a lightweight lock, unlock the object and be done. 904 // If we still have a lightweight lock, unlock the object and be done.
222 905
223 // The object address from the monitor is in object. 906 // The object address from the monitor is in object.
224 if (!UseBiasedLocking) ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); 907 if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
225 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 908 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
226 909
227 // We have the displaced header in displaced_header. If the lock is still 910 // We have the displaced header in displaced_header. If the lock is still
228 // lightweight, it will contain the monitor address and we'll store the 911 // lightweight, it will contain the monitor address and we'll store the
229 // displaced header back into the object's mark word. 912 // displaced header back into the object's mark word.
258 li(R0, 0); 941 li(R0, 0);
259 std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor); 942 std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
260 bind(done); 943 bind(done);
261 } 944 }
262 } 945 }
946
947 #ifndef CC_INTERP
948
949 // Load compiled (i2c) or interpreter entry when calling from interpreted and
950 // do the call. Centralized so that all interpreter calls will do the same actions.
951 // If jvmti single stepping is on for a thread we must not call compiled code.
952 //
953 // Input:
954 // - Rtarget_method: method to call
955 // - Rret_addr: return address
956 // - 2 scratch regs
957 //
958 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) {
959 assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
960 // Assume we want to go compiled if available.
961 const Register Rtarget_addr = Rscratch1;
962 const Register Rinterp_only = Rscratch2;
963
964 ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
965
966 if (JvmtiExport::can_post_interpreter_events()) {
967 lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
968
969 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
970 // compiled code in threads for which the event is enabled. Check here for
971 // interp_only_mode if these events CAN be enabled.
972 Label done;
973 verify_thread();
974 cmpwi(CCR0, Rinterp_only, 0);
975 beq(CCR0, done);
976 ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
977 align(32, 12);
978 bind(done);
979 }
980
981 #ifdef ASSERT
982 {
983 Label Lok;
984 cmpdi(CCR0, Rtarget_addr, 0);
985 bne(CCR0, Lok);
986 stop("null entry point");
987 bind(Lok);
988 }
989 #endif // ASSERT
990
991 mr(R21_sender_SP, R1_SP);
992
993 // Calc a precise SP for the call. The SP value we calculated in
994 // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
995 // if esp is not max. Also, the i2c adapter extends the stack space without restoring
996 // our pre-calced value, so repeating calls via i2c would result in stack overflow.
997 // Since esp already points to an empty slot, we just have to sub 1 additional slot
998 // to meet the abi scratch requirements.
999 // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1000 // the return entry of the interpreter.
1001 addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1002 clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1003 resize_frame_absolute(Rscratch2, Rscratch2, R0);
1004
1005 mr_if_needed(R19_method, Rtarget_method);
1006 mtctr(Rtarget_addr);
1007 mtlr(Rret_addr);
1008
1009 save_interpreter_state(Rscratch2);
1010 #ifdef ASSERT
1011 ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1012 cmpd(CCR0, R21_sender_SP, Rscratch1);
1013 asm_assert_eq("top_frame_sp incorrect", 0x951);
1014 #endif
1015
1016 bctr();
1017 }
1018
1019 // Set the method data pointer for the current bcp.
1020 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1021 assert(ProfileInterpreter, "must be profiling interpreter");
1022 Label get_continue;
1023 ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1024 test_method_data_pointer(get_continue);
1025 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1026
1027 addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1028 add(R28_mdx, R28_mdx, R3_RET);
1029 bind(get_continue);
1030 }
1031
1032 // Test ImethodDataPtr. If it is null, continue at the specified label.
1033 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1034 assert(ProfileInterpreter, "must be profiling interpreter");
1035 cmpdi(CCR0, R28_mdx, 0);
1036 beq(CCR0, zero_continue);
1037 }
1038
1039 void InterpreterMacroAssembler::verify_method_data_pointer() {
1040 assert(ProfileInterpreter, "must be profiling interpreter");
1041 #ifdef ASSERT
1042 Label verify_continue;
1043 test_method_data_pointer(verify_continue);
1044
1045 // If the mdp is valid, it will point to a DataLayout header which is
1046 // consistent with the bcp. The converse is highly probable also.
1047 lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1048 ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1049 addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1050 add(R11_scratch1, R12_scratch2, R12_scratch2);
1051 cmpd(CCR0, R11_scratch1, R14_bcp);
1052 beq(CCR0, verify_continue);
1053
1054 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1055
1056 bind(verify_continue);
1057 #endif
1058 }
1059
1060 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1061 Register Rscratch,
1062 Label &profile_continue) {
1063 assert(ProfileInterpreter, "must be profiling interpreter");
1064 // Control will flow to "profile_continue" if the counter is less than the
1065 // limit or if we call profile_method().
1066 Label done;
1067
1068 // If no method data exists, and the counter is high enough, make one.
1069 int ipl_offs = load_const_optimized(Rscratch, &InvocationCounter::InterpreterProfileLimit, R0, true);
1070 lwz(Rscratch, ipl_offs, Rscratch);
1071
1072 cmpdi(CCR0, R28_mdx, 0);
1073 // Test to see if we should create a method data oop.
1074 cmpd(CCR1, Rscratch /* InterpreterProfileLimit */, invocation_count);
1075 bne(CCR0, done);
1076 bge(CCR1, profile_continue);
1077
1078 // Build it now.
1079 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1080 set_method_data_pointer_for_bcp();
1081 b(profile_continue);
1082
1083 align(32, 12);
1084 bind(done);
1085 }
1086
1087 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register branch_bcp, Register Rtmp) {
1088 assert_different_registers(backedge_count, Rtmp, branch_bcp);
1089 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1090
1091 Label did_not_overflow;
1092 Label overflow_with_error;
1093
1094 int ibbl_offs = load_const_optimized(Rtmp, &InvocationCounter::InterpreterBackwardBranchLimit, R0, true);
1095 lwz(Rtmp, ibbl_offs, Rtmp);
1096 cmpw(CCR0, backedge_count, Rtmp);
1097
1098 blt(CCR0, did_not_overflow);
1099
1100 // When ProfileInterpreter is on, the backedge_count comes from the
1101 // methodDataOop, which value does not get reset on the call to
1102 // frequency_counter_overflow(). To avoid excessive calls to the overflow
1103 // routine while the method is being compiled, add a second test to make sure
1104 // the overflow function is called only once every overflow_frequency.
1105 if (ProfileInterpreter) {
1106 const int overflow_frequency = 1024;
1107 li(Rtmp, overflow_frequency-1);
1108 andr(Rtmp, Rtmp, backedge_count);
1109 cmpwi(CCR0, Rtmp, 0);
1110 bne(CCR0, did_not_overflow);
1111 }
1112
1113 // Overflow in loop, pass branch bytecode.
1114 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, true);
1115
1116 // Was an OSR adapter generated?
1117 // O0 = osr nmethod
1118 cmpdi(CCR0, R3_RET, 0);
1119 beq(CCR0, overflow_with_error);
1120
1121 // Has the nmethod been invalidated already?
1122 lwz(Rtmp, nmethod::entry_bci_offset(), R3_RET);
1123 cmpwi(CCR0, Rtmp, InvalidOSREntryBci);
1124 beq(CCR0, overflow_with_error);
1125
1126 // Migrate the interpreter frame off of the stack.
1127 // We can use all registers because we will not return to interpreter from this point.
1128
1129 // Save nmethod.
1130 const Register osr_nmethod = R31;
1131 mr(osr_nmethod, R3_RET);
1132 set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1133 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1134 reset_last_Java_frame();
1135 // OSR buffer is in ARG1
1136
1137 // Remove the interpreter frame.
1138 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1139
1140 // Jump to the osr code.
1141 ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1142 mtlr(R0);
1143 mtctr(R11_scratch1);
1144 bctr();
1145
1146 align(32, 12);
1147 bind(overflow_with_error);
1148 bind(did_not_overflow);
1149 }
1150
1151 // Store a value at some constant offset from the method data pointer.
1152 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1153 assert(ProfileInterpreter, "must be profiling interpreter");
1154
1155 std(value, constant, R28_mdx);
1156 }
1157
1158 // Increment the value at some constant offset from the method data pointer.
1159 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1160 Register counter_addr,
1161 Register Rbumped_count,
1162 bool decrement) {
1163 // Locate the counter at a fixed offset from the mdp:
1164 addi(counter_addr, R28_mdx, constant);
1165 increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1166 }
1167
1168 // Increment the value at some non-fixed (reg + constant) offset from
1169 // the method data pointer.
1170 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1171 int constant,
1172 Register scratch,
1173 Register Rbumped_count,
1174 bool decrement) {
1175 // Add the constant to reg to get the offset.
1176 add(scratch, R28_mdx, reg);
1177 // Then calculate the counter address.
1178 addi(scratch, scratch, constant);
1179 increment_mdp_data_at(scratch, Rbumped_count, decrement);
1180 }
1181
1182 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1183 Register Rbumped_count,
1184 bool decrement) {
1185 assert(ProfileInterpreter, "must be profiling interpreter");
1186
1187 // Load the counter.
1188 ld(Rbumped_count, 0, counter_addr);
1189
1190 if (decrement) {
1191 // Decrement the register. Set condition codes.
1192 addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1193 // Store the decremented counter, if it is still negative.
1194 std(Rbumped_count, 0, counter_addr);
1195 // Note: add/sub overflow check are not ported, since 64 bit
1196 // calculation should never overflow.
1197 } else {
1198 // Increment the register. Set carry flag.
1199 addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1200 // Store the incremented counter.
1201 std(Rbumped_count, 0, counter_addr);
1202 }
1203 }
1204
1205 // Set a flag value at the current method data pointer position.
1206 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1207 Register scratch) {
1208 assert(ProfileInterpreter, "must be profiling interpreter");
1209 // Load the data header.
1210 lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1211 // Set the flag.
1212 ori(scratch, scratch, flag_constant);
1213 // Store the modified header.
1214 stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1215 }
1216
1217 // Test the location at some offset from the method data pointer.
1218 // If it is not equal to value, branch to the not_equal_continue Label.
1219 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1220 Register value,
1221 Label& not_equal_continue,
1222 Register test_out) {
1223 assert(ProfileInterpreter, "must be profiling interpreter");
1224
1225 ld(test_out, offset, R28_mdx);
1226 cmpd(CCR0, value, test_out);
1227 bne(CCR0, not_equal_continue);
1228 }
1229
1230 // Update the method data pointer by the displacement located at some fixed
1231 // offset from the method data pointer.
1232 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1233 Register scratch) {
1234 assert(ProfileInterpreter, "must be profiling interpreter");
1235
1236 ld(scratch, offset_of_disp, R28_mdx);
1237 add(R28_mdx, scratch, R28_mdx);
1238 }
1239
1240 // Update the method data pointer by the displacement located at the
1241 // offset (reg + offset_of_disp).
1242 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1243 int offset_of_disp,
1244 Register scratch) {
1245 assert(ProfileInterpreter, "must be profiling interpreter");
1246
1247 add(scratch, reg, R28_mdx);
1248 ld(scratch, offset_of_disp, scratch);
1249 add(R28_mdx, scratch, R28_mdx);
1250 }
1251
1252 // Update the method data pointer by a simple constant displacement.
1253 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1254 assert(ProfileInterpreter, "must be profiling interpreter");
1255 addi(R28_mdx, R28_mdx, constant);
1256 }
1257
1258 // Update the method data pointer for a _ret bytecode whose target
1259 // was not among our cached targets.
1260 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1261 Register return_bci) {
1262 assert(ProfileInterpreter, "must be profiling interpreter");
1263
1264 push(state);
1265 assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1266 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1267 pop(state);
1268 }
1269
1270 // Increments the backedge counter.
1271 // Returns backedge counter + invocation counter in Rdst.
1272 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1273 const Register Rtmp1, Register Rscratch) {
1274 assert(UseCompiler, "incrementing must be useful");
1275 assert_different_registers(Rdst, Rtmp1);
1276 const Register invocation_counter = Rtmp1;
1277 const Register counter = Rdst;
1278 // TODO ppc port assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1279
1280 // Load backedge counter.
1281 lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1282 in_bytes(InvocationCounter::counter_offset()), Rcounters);
1283 // Load invocation counter.
1284 lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1285 in_bytes(InvocationCounter::counter_offset()), Rcounters);
1286
1287 // Add the delta to the backedge counter.
1288 addi(counter, counter, InvocationCounter::count_increment);
1289
1290 // Mask the invocation counter.
1291 li(Rscratch, InvocationCounter::count_mask_value);
1292 andr(invocation_counter, invocation_counter, Rscratch);
1293
1294 // Store new counter value.
1295 stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1296 in_bytes(InvocationCounter::counter_offset()), Rcounters);
1297 // Return invocation counter + backedge counter.
1298 add(counter, counter, invocation_counter);
1299 }
1300
1301 // Count a taken branch in the bytecodes.
1302 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1303 if (ProfileInterpreter) {
1304 Label profile_continue;
1305
1306 // If no method data exists, go to profile_continue.
1307 test_method_data_pointer(profile_continue);
1308
1309 // We are taking a branch. Increment the taken count.
1310 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1311
1312 // The method data pointer needs to be updated to reflect the new target.
1313 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1314 bind (profile_continue);
1315 }
1316 }
1317
1318 // Count a not-taken branch in the bytecodes.
1319 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1320 if (ProfileInterpreter) {
1321 Label profile_continue;
1322
1323 // If no method data exists, go to profile_continue.
1324 test_method_data_pointer(profile_continue);
1325
1326 // We are taking a branch. Increment the not taken count.
1327 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1328
1329 // The method data pointer needs to be updated to correspond to the
1330 // next bytecode.
1331 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1332 bind (profile_continue);
1333 }
1334 }
1335
1336 // Count a non-virtual call in the bytecodes.
1337 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1338 if (ProfileInterpreter) {
1339 Label profile_continue;
1340
1341 // If no method data exists, go to profile_continue.
1342 test_method_data_pointer(profile_continue);
1343
1344 // We are making a call. Increment the count.
1345 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1346
1347 // The method data pointer needs to be updated to reflect the new target.
1348 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1349 bind (profile_continue);
1350 }
1351 }
1352
1353 // Count a final call in the bytecodes.
1354 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1355 if (ProfileInterpreter) {
1356 Label profile_continue;
1357
1358 // If no method data exists, go to profile_continue.
1359 test_method_data_pointer(profile_continue);
1360
1361 // We are making a call. Increment the count.
1362 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1363
1364 // The method data pointer needs to be updated to reflect the new target.
1365 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1366 bind (profile_continue);
1367 }
1368 }
1369
1370 // Count a virtual call in the bytecodes.
1371 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1372 Register Rscratch1,
1373 Register Rscratch2,
1374 bool receiver_can_be_null) {
1375 if (!ProfileInterpreter) { return; }
1376 Label profile_continue;
1377
1378 // If no method data exists, go to profile_continue.
1379 test_method_data_pointer(profile_continue);
1380
1381 Label skip_receiver_profile;
1382 if (receiver_can_be_null) {
1383 Label not_null;
1384 cmpdi(CCR0, Rreceiver, 0);
1385 bne(CCR0, not_null);
1386 // We are making a call. Increment the count for null receiver.
1387 increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1388 b(skip_receiver_profile);
1389 bind(not_null);
1390 }
1391
1392 // Record the receiver type.
1393 record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1394 bind(skip_receiver_profile);
1395
1396 // The method data pointer needs to be updated to reflect the new target.
1397 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1398 bind (profile_continue);
1399 }
1400
1401 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1402 if (ProfileInterpreter) {
1403 Label profile_continue;
1404
1405 // If no method data exists, go to profile_continue.
1406 test_method_data_pointer(profile_continue);
1407
1408 int mdp_delta = in_bytes(BitData::bit_data_size());
1409 if (TypeProfileCasts) {
1410 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1411
1412 // Record the object type.
1413 record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1414 }
1415
1416 // The method data pointer needs to be updated.
1417 update_mdp_by_constant(mdp_delta);
1418
1419 bind (profile_continue);
1420 }
1421 }
1422
1423 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1424 if (ProfileInterpreter && TypeProfileCasts) {
1425 Label profile_continue;
1426
1427 // If no method data exists, go to profile_continue.
1428 test_method_data_pointer(profile_continue);
1429
1430 int count_offset = in_bytes(CounterData::count_offset());
1431 // Back up the address, since we have already bumped the mdp.
1432 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1433
1434 // *Decrement* the counter. We expect to see zero or small negatives.
1435 increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1436
1437 bind (profile_continue);
1438 }
1439 }
1440
1441 // Count a ret in the bytecodes.
1442 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) {
1443 if (ProfileInterpreter) {
1444 Label profile_continue;
1445 uint row;
1446
1447 // If no method data exists, go to profile_continue.
1448 test_method_data_pointer(profile_continue);
1449
1450 // Update the total ret count.
1451 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1452
1453 for (row = 0; row < RetData::row_limit(); row++) {
1454 Label next_test;
1455
1456 // See if return_bci is equal to bci[n]:
1457 test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1458
1459 // return_bci is equal to bci[n]. Increment the count.
1460 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1461
1462 // The method data pointer needs to be updated to reflect the new target.
1463 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1464 b(profile_continue);
1465 bind(next_test);
1466 }
1467
1468 update_mdp_for_ret(state, return_bci);
1469
1470 bind (profile_continue);
1471 }
1472 }
1473
1474 // Count the default case of a switch construct.
1475 void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) {
1476 if (ProfileInterpreter) {
1477 Label profile_continue;
1478
1479 // If no method data exists, go to profile_continue.
1480 test_method_data_pointer(profile_continue);
1481
1482 // Update the default case count
1483 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1484 scratch1, scratch2);
1485
1486 // The method data pointer needs to be updated.
1487 update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1488 scratch1);
1489
1490 bind (profile_continue);
1491 }
1492 }
1493
1494 // Count the index'th case of a switch construct.
1495 void InterpreterMacroAssembler::profile_switch_case(Register index,
1496 Register scratch1,
1497 Register scratch2,
1498 Register scratch3) {
1499 if (ProfileInterpreter) {
1500 assert_different_registers(index, scratch1, scratch2, scratch3);
1501 Label profile_continue;
1502
1503 // If no method data exists, go to profile_continue.
1504 test_method_data_pointer(profile_continue);
1505
1506 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1507 li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1508
1509 assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1510 sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1511 add(scratch1, scratch1, scratch3);
1512
1513 // Update the case count.
1514 increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1515
1516 // The method data pointer needs to be updated.
1517 update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1518
1519 bind (profile_continue);
1520 }
1521 }
1522
1523 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1524 if (ProfileInterpreter) {
1525 assert_different_registers(Rscratch1, Rscratch2);
1526 Label profile_continue;
1527
1528 // If no method data exists, go to profile_continue.
1529 test_method_data_pointer(profile_continue);
1530
1531 set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1532
1533 // The method data pointer needs to be updated.
1534 int mdp_delta = in_bytes(BitData::bit_data_size());
1535 if (TypeProfileCasts) {
1536 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1537 }
1538 update_mdp_by_constant(mdp_delta);
1539
1540 bind (profile_continue);
1541 }
1542 }
1543
1544 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1545 Register Rscratch1, Register Rscratch2,
1546 bool is_virtual_call) {
1547 assert(ProfileInterpreter, "must be profiling");
1548 assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1549
1550 Label done;
1551 record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1552 bind (done);
1553 }
1554
1555 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1556 Register receiver, Register scratch1, Register scratch2,
1557 int start_row, Label& done, bool is_virtual_call) {
1558 if (TypeProfileWidth == 0) {
1559 if (is_virtual_call) {
1560 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1561 }
1562 return;
1563 }
1564
1565 int last_row = VirtualCallData::row_limit() - 1;
1566 assert(start_row <= last_row, "must be work left to do");
1567 // Test this row for both the receiver and for null.
1568 // Take any of three different outcomes:
1569 // 1. found receiver => increment count and goto done
1570 // 2. found null => keep looking for case 1, maybe allocate this cell
1571 // 3. found something else => keep looking for cases 1 and 2
1572 // Case 3 is handled by a recursive call.
1573 for (int row = start_row; row <= last_row; row++) {
1574 Label next_test;
1575 bool test_for_null_also = (row == start_row);
1576
1577 // See if the receiver is receiver[n].
1578 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1579 test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1580 // delayed()->tst(scratch);
1581
1582 // The receiver is receiver[n]. Increment count[n].
1583 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1584 increment_mdp_data_at(count_offset, scratch1, scratch2);
1585 b(done);
1586 bind(next_test);
1587
1588 if (test_for_null_also) {
1589 Label found_null;
1590 // Failed the equality check on receiver[n]... Test for null.
1591 if (start_row == last_row) {
1592 // The only thing left to do is handle the null case.
1593 if (is_virtual_call) {
1594 // Scratch1 contains test_out from test_mdp_data_at.
1595 cmpdi(CCR0, scratch1, 0);
1596 beq(CCR0, found_null);
1597 // Receiver did not match any saved receiver and there is no empty row for it.
1598 // Increment total counter to indicate polymorphic case.
1599 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1600 b(done);
1601 bind(found_null);
1602 } else {
1603 cmpdi(CCR0, scratch1, 0);
1604 bne(CCR0, done);
1605 }
1606 break;
1607 }
1608 // Since null is rare, make it be the branch-taken case.
1609 cmpdi(CCR0, scratch1, 0);
1610 beq(CCR0, found_null);
1611
1612 // Put all the "Case 3" tests here.
1613 record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1614
1615 // Found a null. Keep searching for a matching receiver,
1616 // but remember that this is an empty (unused) slot.
1617 bind(found_null);
1618 }
1619 }
1620
1621 // In the fall-through case, we found no matching receiver, but we
1622 // observed the receiver[start_row] is NULL.
1623
1624 // Fill in the receiver field and increment the count.
1625 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1626 set_mdp_data_at(recvr_offset, receiver);
1627 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1628 li(scratch1, DataLayout::counter_increment);
1629 set_mdp_data_at(count_offset, scratch1);
1630 if (start_row > 0) {
1631 b(done);
1632 }
1633 }
1634
1635 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1636 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1637
1638 // Very-local scratch registers.
1639 const Register esp = Rtemp1;
1640 const Register slot = Rtemp2;
1641
1642 // Extracted monitor_size.
1643 int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1644 assert(Assembler::is_aligned((unsigned int)monitor_size,
1645 (unsigned int)frame::alignment_in_bytes),
1646 "size of a monitor must respect alignment of SP");
1647
1648 resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1649 std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1650
1651 // Shuffle expression stack down. Recall that stack_base points
1652 // just above the new expression stack bottom. Old_tos and new_tos
1653 // are used to scan thru the old and new expression stacks.
1654 if (!stack_is_empty) {
1655 Label copy_slot, copy_slot_finished;
1656 const Register n_slots = slot;
1657
1658 addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1659 subf(n_slots, esp, R26_monitor);
1660 srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy.
1661 assert(LogBytesPerWord == 3, "conflicts assembler instructions");
1662 beq(CCR0, copy_slot_finished); // Nothing to copy.
1663
1664 mtctr(n_slots);
1665
1666 // loop
1667 bind(copy_slot);
1668 ld(slot, 0, esp); // Move expression stack down.
1669 std(slot, -monitor_size, esp); // distance = monitor_size
1670 addi(esp, esp, BytesPerWord);
1671 bdnz(copy_slot);
1672
1673 bind(copy_slot_finished);
1674 }
1675
1676 addi(R15_esp, R15_esp, -monitor_size);
1677 addi(R26_monitor, R26_monitor, -monitor_size);
1678
1679 // Restart interpreter
1680 }
1681
1682 // ============================================================================
1683 // Java locals access
1684
1685 // Load a local variable at index in Rindex into register Rdst_value.
1686 // Also puts address of local into Rdst_address as a service.
1687 // Kills:
1688 // - Rdst_value
1689 // - Rdst_address
1690 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
1691 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1692 subf(Rdst_address, Rdst_address, R18_locals);
1693 lwz(Rdst_value, 0, Rdst_address);
1694 }
1695
1696 // Load a local variable at index in Rindex into register Rdst_value.
1697 // Also puts address of local into Rdst_address as a service.
1698 // Kills:
1699 // - Rdst_value
1700 // - Rdst_address
1701 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
1702 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1703 subf(Rdst_address, Rdst_address, R18_locals);
1704 ld(Rdst_value, -8, Rdst_address);
1705 }
1706
1707 // Load a local variable at index in Rindex into register Rdst_value.
1708 // Also puts address of local into Rdst_address as a service.
1709 // Input:
1710 // - Rindex: slot nr of local variable
1711 // Kills:
1712 // - Rdst_value
1713 // - Rdst_address
1714 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) {
1715 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1716 subf(Rdst_address, Rdst_address, R18_locals);
1717 ld(Rdst_value, 0, Rdst_address);
1718 }
1719
1720 // Load a local variable at index in Rindex into register Rdst_value.
1721 // Also puts address of local into Rdst_address as a service.
1722 // Kills:
1723 // - Rdst_value
1724 // - Rdst_address
1725 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
1726 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1727 subf(Rdst_address, Rdst_address, R18_locals);
1728 lfs(Rdst_value, 0, Rdst_address);
1729 }
1730
1731 // Load a local variable at index in Rindex into register Rdst_value.
1732 // Also puts address of local into Rdst_address as a service.
1733 // Kills:
1734 // - Rdst_value
1735 // - Rdst_address
1736 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
1737 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1738 subf(Rdst_address, Rdst_address, R18_locals);
1739 lfd(Rdst_value, -8, Rdst_address);
1740 }
1741
1742 // Store an int value at local variable slot Rindex.
1743 // Kills:
1744 // - Rindex
1745 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
1746 sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1747 subf(Rindex, Rindex, R18_locals);
1748 stw(Rvalue, 0, Rindex);
1749 }
1750
1751 // Store a long value at local variable slot Rindex.
1752 // Kills:
1753 // - Rindex
1754 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
1755 sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1756 subf(Rindex, Rindex, R18_locals);
1757 std(Rvalue, -8, Rindex);
1758 }
1759
1760 // Store an oop value at local variable slot Rindex.
1761 // Kills:
1762 // - Rindex
1763 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
1764 sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1765 subf(Rindex, Rindex, R18_locals);
1766 std(Rvalue, 0, Rindex);
1767 }
1768
1769 // Store an int value at local variable slot Rindex.
1770 // Kills:
1771 // - Rindex
1772 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
1773 sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1774 subf(Rindex, Rindex, R18_locals);
1775 stfs(Rvalue, 0, Rindex);
1776 }
1777
1778 // Store an int value at local variable slot Rindex.
1779 // Kills:
1780 // - Rindex
1781 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
1782 sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1783 subf(Rindex, Rindex, R18_locals);
1784 stfd(Rvalue, -8, Rindex);
1785 }
1786
1787 // Read pending exception from thread and jump to interpreter.
1788 // Throw exception entry if one if pending. Fall through otherwise.
1789 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
1790 assert_different_registers(Rscratch1, Rscratch2, R3);
1791 Register Rexception = Rscratch1;
1792 Register Rtmp = Rscratch2;
1793 Label Ldone;
1794 // Get pending exception oop.
1795 ld(Rexception, thread_(pending_exception));
1796 cmpdi(CCR0, Rexception, 0);
1797 beq(CCR0, Ldone);
1798 li(Rtmp, 0);
1799 mr_if_needed(R3, Rexception);
1800 std(Rtmp, thread_(pending_exception)); // Clear exception in thread
1801 if (Interpreter::rethrow_exception_entry() != NULL) {
1802 // Already got entry address.
1803 load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
1804 } else {
1805 // Dynamically load entry address.
1806 int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
1807 ld(Rtmp, simm16_rest, Rtmp);
1808 }
1809 mtctr(Rtmp);
1810 save_interpreter_state(Rtmp);
1811 bctr();
1812
1813 align(32, 12);
1814 bind(Ldone);
1815 }
1816
1817 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1818 save_interpreter_state(R11_scratch1);
1819
1820 MacroAssembler::call_VM(oop_result, entry_point, false);
1821
1822 restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
1823
1824 check_and_handle_popframe(R11_scratch1);
1825 check_and_handle_earlyret(R11_scratch1);
1826 // Now check exceptions manually.
1827 if (check_exceptions) {
1828 check_and_forward_exception(R11_scratch1, R12_scratch2);
1829 }
1830 }
1831
1832 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1833 // ARG1 is reserved for the thread.
1834 mr_if_needed(R4_ARG2, arg_1);
1835 call_VM(oop_result, entry_point, check_exceptions);
1836 }
1837
1838 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1839 // ARG1 is reserved for the thread.
1840 mr_if_needed(R4_ARG2, arg_1);
1841 assert(arg_2 != R4_ARG2, "smashed argument");
1842 mr_if_needed(R5_ARG3, arg_2);
1843 call_VM(oop_result, entry_point, check_exceptions);
1844 }
1845
1846 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1847 // ARG1 is reserved for the thread.
1848 mr_if_needed(R4_ARG2, arg_1);
1849 assert(arg_2 != R4_ARG2, "smashed argument");
1850 mr_if_needed(R5_ARG3, arg_2);
1851 assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
1852 mr_if_needed(R6_ARG4, arg_3);
1853 call_VM(oop_result, entry_point, check_exceptions);
1854 }
1855
1856 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
1857 ld(scratch, 0, R1_SP);
1858 std(R15_esp, _ijava_state_neg(esp), scratch);
1859 std(R14_bcp, _ijava_state_neg(bcp), scratch);
1860 std(R26_monitor, _ijava_state_neg(monitors), scratch);
1861 if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
1862 // Other entries should be unchanged.
1863 }
1864
1865 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
1866 ld(scratch, 0, R1_SP);
1867 ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
1868 if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
1869 if (!bcp_and_mdx_only) {
1870 // Following ones are Metadata.
1871 ld(R19_method, _ijava_state_neg(method), scratch);
1872 ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
1873 // Following ones are stack addresses and don't require reload.
1874 ld(R15_esp, _ijava_state_neg(esp), scratch);
1875 ld(R18_locals, _ijava_state_neg(locals), scratch);
1876 ld(R26_monitor, _ijava_state_neg(monitors), scratch);
1877 }
1878 #ifdef ASSERT
1879 {
1880 Label Lok;
1881 subf(R0, R1_SP, scratch);
1882 cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
1883 bge(CCR0, Lok);
1884 stop("frame too small (restore istate)", 0x5432);
1885 bind(Lok);
1886 }
1887 {
1888 Label Lok;
1889 ld(R0, _ijava_state_neg(ijava_reserved), scratch);
1890 cmpdi(CCR0, R0, 0x5afe);
1891 beq(CCR0, Lok);
1892 stop("frame corrupted (restore istate)", 0x5afe);
1893 bind(Lok);
1894 }
1895 #endif
1896 }
1897
1898 #endif // !CC_INTERP
263 1899
264 void InterpreterMacroAssembler::get_method_counters(Register method, 1900 void InterpreterMacroAssembler::get_method_counters(Register method,
265 Register Rcounters, 1901 Register Rcounters,
266 Label& skip) { 1902 Label& skip) {
267 BLOCK_COMMENT("Load and ev. allocate counter object {"); 1903 BLOCK_COMMENT("Load and ev. allocate counter object {");
318 } 1954 }
319 1955
320 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 1956 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
321 if (state == atos) { MacroAssembler::verify_oop(reg); } 1957 if (state == atos) { MacroAssembler::verify_oop(reg); }
322 } 1958 }
1959
1960 #ifndef CC_INTERP
1961 // Local helper function for the verify_oop_or_return_address macro.
1962 static bool verify_return_address(Method* m, int bci) {
1963 #ifndef PRODUCT
1964 address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
1965 // Assume it is a valid return address if it is inside m and is preceded by a jsr.
1966 if (!m->contains(pc)) return false;
1967 address jsr_pc;
1968 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
1969 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
1970 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
1971 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
1972 #endif // PRODUCT
1973 return false;
1974 }
1975
1976 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1977 if (VerifyFPU) {
1978 unimplemented("verfiyFPU");
1979 }
1980 }
1981
1982 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
1983 if (!VerifyOops) return;
1984
1985 // The VM documentation for the astore[_wide] bytecode allows
1986 // the TOS to be not only an oop but also a return address.
1987 Label test;
1988 Label skip;
1989 // See if it is an address (in the current method):
1990
1991 const int log2_bytecode_size_limit = 16;
1992 srdi_(Rtmp, reg, log2_bytecode_size_limit);
1993 bne(CCR0, test);
1994
1995 address fd = CAST_FROM_FN_PTR(address, verify_return_address);
1996 unsigned int nbytes_save = 10*8; // 10 volatile gprs
1997
1998 save_LR_CR(Rtmp);
1999 push_frame_reg_args(nbytes_save, Rtmp);
2000 save_volatile_gprs(R1_SP, 112); // except R0
2001
2002 load_const_optimized(Rtmp, fd, R0);
2003 mr_if_needed(R4_ARG2, reg);
2004 mr(R3_ARG1, R19_method);
2005 call_c(Rtmp); // call C
2006
2007 restore_volatile_gprs(R1_SP, 112); // except R0
2008 pop_frame();
2009 restore_LR_CR(Rtmp);
2010 b(skip);
2011
2012 // Perform a more elaborate out-of-line call.
2013 // Not an address; verify it:
2014 bind(test);
2015 verify_oop(reg);
2016 bind(skip);
2017 }
2018 #endif // !CC_INTERP
323 2019
324 // Inline assembly for: 2020 // Inline assembly for:
325 // 2021 //
326 // if (thread is in interp_only_mode) { 2022 // if (thread is in interp_only_mode) {
327 // InterpreterRuntime::post_method_entry(); 2023 // InterpreterRuntime::post_method_entry();
341 2037
342 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2038 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
343 cmpwi(CCR0, R0, 0); 2039 cmpwi(CCR0, R0, 0);
344 beq(CCR0, jvmti_post_done); 2040 beq(CCR0, jvmti_post_done);
345 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), 2041 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
346 /*check_exceptions=*/false); 2042 /*check_exceptions=*/true CC_INTERP_ONLY(&& false));
347 2043
348 bind(jvmti_post_done); 2044 bind(jvmti_post_done);
349 } 2045 }
350 } 2046 }
351
352 2047
353 // Inline assembly for: 2048 // Inline assembly for:
354 // 2049 //
355 // if (thread is in interp_only_mode) { 2050 // if (thread is in interp_only_mode) {
356 // // save result 2051 // // save result
363 // // restore result 2058 // // restore result
364 // } 2059 // }
365 // 2060 //
366 // Native methods have their result stored in d_tmp and l_tmp. 2061 // Native methods have their result stored in d_tmp and l_tmp.
367 // Java methods have their result stored in the expression stack. 2062 // Java methods have their result stored in the expression stack.
368 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state) { 2063 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2064 NotifyMethodExitMode mode, bool check_exceptions) {
369 // JVMTI 2065 // JVMTI
370 // Whenever JVMTI puts a thread in interp_only_mode, method 2066 // Whenever JVMTI puts a thread in interp_only_mode, method
371 // entry/exit events are sent for that thread to track stack 2067 // entry/exit events are sent for that thread to track stack
372 // depth. If it is possible to enter interp_only_mode we add 2068 // depth. If it is possible to enter interp_only_mode we add
373 // the code to check if the event should be sent. 2069 // the code to check if the event should be sent.
374 if (JvmtiExport::can_post_interpreter_events()) { 2070 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
375 Label jvmti_post_done; 2071 Label jvmti_post_done;
376 2072
377 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2073 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
378 cmpwi(CCR0, R0, 0); 2074 cmpwi(CCR0, R0, 0);
379 beq(CCR0, jvmti_post_done); 2075 beq(CCR0, jvmti_post_done);
2076 CC_INTERP_ONLY(assert(is_native_method && !check_exceptions, "must not push state"));
2077 if (!is_native_method) push(state); // Expose tos to GC.
380 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), 2078 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
381 /*check_exceptions=*/false); 2079 /*check_exceptions=*/check_exceptions);
2080 if (!is_native_method) pop(state);
382 2081
383 align(32, 12); 2082 align(32, 12);
384 bind(jvmti_post_done); 2083 bind(jvmti_post_done);
385 } 2084 }
386 } 2085
387 2086 // Dtrace support not implemented.
2087 }
2088
2089 #ifdef CC_INTERP
388 // Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME 2090 // Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME
389 // (using parent_frame_resize) and push a new interpreter 2091 // (using parent_frame_resize) and push a new interpreter
390 // TOP_IJAVA_FRAME (using frame_size). 2092 // TOP_IJAVA_FRAME (using frame_size).
391 void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize, 2093 void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize,
392 Register tmp1, Register tmp2, Register tmp3, 2094 Register tmp1, Register tmp2, Register tmp3,
440 2142
441 // Store the top-frame stack-pointer for c2i adapters. 2143 // Store the top-frame stack-pointer for c2i adapters.
442 std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP); 2144 std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP);
443 } 2145 }
444 2146
445 #ifdef CC_INTERP
446 // Turn state's interpreter frame into the current TOP_IJAVA_FRAME. 2147 // Turn state's interpreter frame into the current TOP_IJAVA_FRAME.
447 void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) { 2148 void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) {
448 assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3); 2149 assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3);
449 2150
450 if (state == R14_state) { 2151 if (state == R14_state) {
469 get_PC_trash_LR(tmp3); 2170 get_PC_trash_LR(tmp3);
470 std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP); 2171 std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
471 // Used for non-initial callers by unextended_sp(). 2172 // Used for non-initial callers by unextended_sp().
472 std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP); 2173 std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
473 } 2174 }
474 #endif // CC_INTERP
475 2175
476 // Set SP to initial caller's sp, but before fix the back chain. 2176 // Set SP to initial caller's sp, but before fix the back chain.
477 void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) { 2177 void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) {
478 ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP); 2178 ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
479 ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP); 2179 ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP);
480 std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ... 2180 std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ...
481 mr(R1_SP, tmp1); // ... and resize to initial caller. 2181 mr(R1_SP, tmp1); // ... and resize to initial caller.
482 } 2182 }
483 2183
484 #ifdef CC_INTERP
485 // Pop the current interpreter state (without popping the correspoding 2184 // Pop the current interpreter state (without popping the correspoding
486 // frame) and restore R14_state and R15_prev_state accordingly. 2185 // frame) and restore R14_state and R15_prev_state accordingly.
487 // Use prev_state_may_be_0 to indicate whether prev_state may be 0 2186 // Use prev_state_may_be_0 to indicate whether prev_state may be 0
488 // in order to generate an extra check before retrieving prev_state_(_prev_link). 2187 // in order to generate an extra check before retrieving prev_state_(_prev_link).
489 void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0) 2188 void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0)