diff src/cpu/sparc/vm/cppInterpreter_sparc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 9e5a7340635e
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/sparc/vm/cppInterpreter_sparc.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2243 @@
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_cppInterpreter_sparc.cpp.incl"
+
+#ifdef CC_INTERP
+
+// Routine exists to make tracebacks look decent in debugger
+// while "shadow" interpreter frames are on stack. It is also
+// used to distinguish interpreter frames.
+
+extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
+  ShouldNotReachHere();
+}
+
+bool CppInterpreter::contains(address pc) {
+  return ( _code->contains(pc) ||
+         ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
+}
+
+#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
+#define __ _masm->
+
+Label frame_manager_entry;
+Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
+                                      // c++ interpreter entry point this holds that entry point label.
+
+static address unctrap_frame_manager_entry  = NULL;
+
+static address interpreter_return_address  = NULL;
+static address deopt_frame_manager_return_atos  = NULL;
+static address deopt_frame_manager_return_btos  = NULL;
+static address deopt_frame_manager_return_itos  = NULL;
+static address deopt_frame_manager_return_ltos  = NULL;
+static address deopt_frame_manager_return_ftos  = NULL;
+static address deopt_frame_manager_return_dtos  = NULL;
+static address deopt_frame_manager_return_vtos  = NULL;
+
+const Register prevState = G1_scratch;
+
+void InterpreterGenerator::save_native_result(void) {
+  // result potentially in O0/O1: save it across calls
+  __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
+#ifdef _LP64
+  __ stx(O0, STATE(_native_lresult));
+#else
+  __ std(O0, STATE(_native_lresult));
+#endif
+}
+
+void InterpreterGenerator::restore_native_result(void) {
+
+  // Restore any method result value
+  __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
+#ifdef _LP64
+  __ ldx(STATE(_native_lresult), O0);
+#else
+  __ ldd(STATE(_native_lresult), O0);
+#endif
+}
+
+// A result handler converts/unboxes a native call result into
+// a java interpreter/compiler result. The current frame is an
+// interpreter frame. The activation frame unwind code must be
+// consistent with that of TemplateTable::_return(...). In the
+// case of native methods, the caller's SP was not modified.
+address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
+  address entry = __ pc();
+  Register Itos_i  = Otos_i ->after_save();
+  Register Itos_l  = Otos_l ->after_save();
+  Register Itos_l1 = Otos_l1->after_save();
+  Register Itos_l2 = Otos_l2->after_save();
+  switch (type) {
+    case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
+    case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
+    case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
+    case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
+    case T_LONG   :
+#ifndef _LP64
+                    __ mov(O1, Itos_l2);  // move other half of long
+#endif              // ifdef or no ifdef, fall through to the T_INT case
+    case T_INT    : __ mov(O0, Itos_i);                         break;
+    case T_VOID   : /* nothing to do */                         break;
+    case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
+    case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
+    case T_OBJECT :
+      __ ld_ptr(STATE(_oop_temp), Itos_i);
+      __ verify_oop(Itos_i);
+      break;
+    default       : ShouldNotReachHere();
+  }
+  __ ret();                           // return from interpreter activation
+  __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
+  NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
+  return entry;
+}
+
+// tosca based result to c++ interpreter stack based result.
+// Result goes to address in L1_scratch
+
+address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
+  // A result is in the native abi result register from a native method call.
+  // We need to return this result to the interpreter by pushing the result on the interpreter's
+  // stack. This is relatively simple the destination is in L1_scratch
+  // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
+  // adjust L1_scratch
+  address entry = __ pc();
+  switch (type) {
+    case T_BOOLEAN:
+      // !0 => true; 0 => false
+      __ subcc(G0, O0, G0);
+      __ addc(G0, 0, O0);
+      __ st(O0, L1_scratch, 0);
+      __ sub(L1_scratch, wordSize, L1_scratch);
+      break;
+
+    // cannot use and3, 0xFFFF too big as immediate value!
+    case T_CHAR   :
+      __ sll(O0, 16, O0);
+      __ srl(O0, 16, O0);
+      __ st(O0, L1_scratch, 0);
+      __ sub(L1_scratch, wordSize, L1_scratch);
+      break;
+
+    case T_BYTE   :
+      __ sll(O0, 24, O0);
+      __ sra(O0, 24, O0);
+      __ st(O0, L1_scratch, 0);
+      __ sub(L1_scratch, wordSize, L1_scratch);
+      break;
+
+    case T_SHORT  :
+      __ sll(O0, 16, O0);
+      __ sra(O0, 16, O0);
+      __ st(O0, L1_scratch, 0);
+      __ sub(L1_scratch, wordSize, L1_scratch);
+      break;
+    case T_LONG   :
+#ifndef _LP64
+#if !defined(_LP64) && defined(COMPILER2)
+  // All return values are where we want them, except for Longs.  C2 returns
+  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
+  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
+  // build even if we are returning from interpreted we just do a little
+  // stupid shuffing.
+  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
+  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
+  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
+      __ stx(G1, L1_scratch, -wordSize);
+#else
+      // native result is in O0, O1
+      __ st(O1, L1_scratch, 0);                      // Low order
+      __ st(O0, L1_scratch, -wordSize);              // High order
+#endif /* !_LP64 && COMPILER2 */
+#else
+      __ stx(O0, L1_scratch, 0);
+__ breakpoint_trap();
+#endif
+      __ sub(L1_scratch, 2*wordSize, L1_scratch);
+      break;
+
+    case T_INT    :
+      __ st(O0, L1_scratch, 0);
+      __ sub(L1_scratch, wordSize, L1_scratch);
+      break;
+
+    case T_VOID   : /* nothing to do */
+      break;
+
+    case T_FLOAT  :
+      __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
+      __ sub(L1_scratch, wordSize, L1_scratch);
+      break;
+
+    case T_DOUBLE :
+      // Every stack slot is aligned on 64 bit, However is this
+      // the correct stack slot on 64bit?? QQQ
+      __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
+      __ sub(L1_scratch, 2*wordSize, L1_scratch);
+      break;
+    case T_OBJECT :
+      __ verify_oop(O0);
+      __ st_ptr(O0, L1_scratch, 0);
+      __ sub(L1_scratch, wordSize, L1_scratch);
+      break;
+    default       : ShouldNotReachHere();
+  }
+  __ retl();                          // return from interpreter activation
+  __ delayed()->nop();                // schedule this better
+  NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
+  return entry;
+}
+
+address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
+  // A result is in the java expression stack of the interpreted method that has just
+  // returned. Place this result on the java expression stack of the caller.
+  //
+  // The current interpreter activation in Lstate is for the method just returning its
+  // result. So we know that the result of this method is on the top of the current
+  // execution stack (which is pre-pushed) and will be return to the top of the caller
+  // stack. The top of the callers stack is the bottom of the locals of the current
+  // activation.
+  // Because of the way activation are managed by the frame manager the value of esp is
+  // below both the stack top of the current activation and naturally the stack top
+  // of the calling activation. This enable this routine to leave the return address
+  // to the frame manager on the stack and do a vanilla return.
+  //
+  // On entry: O0 - points to source (callee stack top)
+  //           O1 - points to destination (caller stack top [i.e. free location])
+  // destroys O2, O3
+  //
+
+  address entry = __ pc();
+  switch (type) {
+    case T_VOID:  break;
+      break;
+    case T_FLOAT  :
+      __ breakpoint_trap(Assembler::zero);
+    case T_BOOLEAN:
+    case T_CHAR   :
+    case T_BYTE   :
+    case T_SHORT  :
+    case T_INT    :
+      // 1 word result
+      __ ld(O0, 0, O2);
+      __ st(O2, O1, 0);
+      __ sub(O1, wordSize, O1);
+      break;
+    case T_DOUBLE  :
+    case T_LONG    :
+      // return top two words on current expression stack to caller's expression stack
+      // The caller's expression stack is adjacent to the current frame manager's intepretState
+      // except we allocated one extra word for this intepretState so we won't overwrite it
+      // when we return a two word result.
+#ifdef _LP64
+__ breakpoint_trap();
+      // Hmm now that longs are in one entry should "_ptr" really be "x"?
+      __ ld_ptr(O0, 0, O2);
+      __ ld_ptr(O0, wordSize, O3);
+      __ st_ptr(O3, O1, 0);
+      __ st_ptr(O2, O1, -wordSize);
+#else
+      __ ld(O0, 0, O2);
+      __ ld(O0, wordSize, O3);
+      __ st(O3, O1, 0);
+      __ st(O2, O1, -wordSize);
+#endif
+      __ sub(O1, 2*wordSize, O1);
+      break;
+    case T_OBJECT :
+      __ ld_ptr(O0, 0, O2);
+      __ verify_oop(O2);                                               // verify it
+      __ st_ptr(O2, O1, 0);
+      __ sub(O1, wordSize, O1);
+      break;
+    default       : ShouldNotReachHere();
+  }
+  __ retl();
+  __ delayed()->nop(); // QQ schedule this better
+  return entry;
+}
+
+address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
+  // A result is in the java expression stack of the interpreted method that has just
+  // returned. Place this result in the native abi that the caller expects.
+  // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
+  //
+  // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
+  // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
+  // and so rather than return result onto caller's java expression stack we return the
+  // result in the expected location based on the native abi.
+  // On entry: O0 - source (stack top)
+  // On exit result in expected output register
+  // QQQ schedule this better
+
+  address entry = __ pc();
+  switch (type) {
+    case T_VOID:  break;
+      break;
+    case T_FLOAT  :
+      __ ldf(FloatRegisterImpl::S, O0, 0, F0);
+      break;
+    case T_BOOLEAN:
+    case T_CHAR   :
+    case T_BYTE   :
+    case T_SHORT  :
+    case T_INT    :
+      // 1 word result
+      __ ld(O0, 0, O0->after_save());
+      break;
+    case T_DOUBLE  :
+      __ ldf(FloatRegisterImpl::D, O0, 0, F0);
+      break;
+    case T_LONG    :
+      // return top two words on current expression stack to caller's expression stack
+      // The caller's expression stack is adjacent to the current frame manager's interpretState
+      // except we allocated one extra word for this intepretState so we won't overwrite it
+      // when we return a two word result.
+#ifdef _LP64
+__ breakpoint_trap();
+      // Hmm now that longs are in one entry should "_ptr" really be "x"?
+      __ ld_ptr(O0, 0, O0->after_save());
+      __ ld_ptr(O0, wordSize, O1->after_save());
+#else
+      __ ld(O0, wordSize, O1->after_save());
+      __ ld(O0, 0, O0->after_save());
+#endif
+#if defined(COMPILER2) && !defined(_LP64)
+      // C2 expects long results in G1 we can't tell if we're returning to interpreted
+      // or compiled so just be safe use G1 and O0/O1
+
+      // Shift bits into high (msb) of G1
+      __ sllx(Otos_l1->after_save(), 32, G1);
+      // Zero extend low bits
+      __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
+      __ or3 (Otos_l2->after_save(), G1, G1);
+#endif /* COMPILER2 */
+      break;
+    case T_OBJECT :
+      __ ld_ptr(O0, 0, O0->after_save());
+      __ verify_oop(O0->after_save());                                               // verify it
+      break;
+    default       : ShouldNotReachHere();
+  }
+  __ retl();
+  __ delayed()->nop();
+  return entry;
+}
+
+address CppInterpreter::return_entry(TosState state, int length) {
+  // make it look good in the debugger
+  return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
+}
+
+address CppInterpreter::deopt_entry(TosState state, int length) {
+  address ret = NULL;
+  if (length != 0) {
+    switch (state) {
+      case atos: ret = deopt_frame_manager_return_atos; break;
+      case btos: ret = deopt_frame_manager_return_btos; break;
+      case ctos:
+      case stos:
+      case itos: ret = deopt_frame_manager_return_itos; break;
+      case ltos: ret = deopt_frame_manager_return_ltos; break;
+      case ftos: ret = deopt_frame_manager_return_ftos; break;
+      case dtos: ret = deopt_frame_manager_return_dtos; break;
+      case vtos: ret = deopt_frame_manager_return_vtos; break;
+    }
+  } else {
+    ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
+  }
+  assert(ret != NULL, "Not initialized");
+  return ret;
+}
+
+//
+// Helpers for commoning out cases in the various type of method entries.
+//
+
+// increment invocation count & check for overflow
+//
+// Note: checking for negative value instead of overflow
+//       so we have a 'sticky' overflow test
+//
+// Lmethod: method
+// ??: invocation counter
+//
+void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
+  // Update standard invocation counters
+  __ increment_invocation_counter(O0, G3_scratch);
+  if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
+    __ ld_ptr(STATE(_method), G3_scratch);
+    Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
+    __ ld(interpreter_invocation_counter, G3_scratch);
+    __ inc(G3_scratch);
+    __ st(G3_scratch, interpreter_invocation_counter);
+  }
+
+  Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
+  __ sethi(invocation_limit);
+  __ ld(invocation_limit, G3_scratch);
+  __ cmp(O0, G3_scratch);
+  __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
+  __ delayed()->nop();
+
+}
+
+address InterpreterGenerator::generate_empty_entry(void) {
+
+  // A method that does nothing but return...
+
+  address entry = __ pc();
+  Label slow_path;
+
+  __ verify_oop(G5_method);
+
+  // do nothing for empty methods (do not even increment invocation counter)
+  if ( UseFastEmptyMethods) {
+    // If we need a safepoint check, generate full interpreter entry.
+    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
+    __ load_contents(sync_state, G3_scratch);
+    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
+    __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
+    __ delayed()->nop();
+
+    // Code: _return
+    __ retl();
+    __ delayed()->mov(O5_savedSP, SP);
+    return entry;
+  }
+  return NULL;
+}
+
+// Call an accessor method (assuming it is resolved, otherwise drop into
+// vanilla (slow path) entry
+
+// Generates code to elide accessor methods
+// Uses G3_scratch and G1_scratch as scratch
+address InterpreterGenerator::generate_accessor_entry(void) {
+
+  // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
+  // parameter size = 1
+  // Note: We can only use this code if the getfield has been resolved
+  //       and if we don't have a null-pointer exception => check for
+  //       these conditions first and use slow path if necessary.
+  address entry = __ pc();
+  Label slow_path;
+
+  if ( UseFastAccessorMethods) {
+    // Check if we need to reach a safepoint and generate full interpreter
+    // frame if so.
+    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
+    __ load_contents(sync_state, G3_scratch);
+    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
+    __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
+    __ delayed()->nop();
+
+    // Check if local 0 != NULL
+    __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
+    __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
+    __ brx(Assembler::zero, false, Assembler::pn, slow_path);
+    __ delayed()->nop();
+
+
+    // read first instruction word and extract bytecode @ 1 and index @ 2
+    // get first 4 bytes of the bytecodes (big endian!)
+    __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
+    __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
+
+    // move index @ 2 far left then to the right most two bytes.
+    __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
+    __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
+                      ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
+
+    // get constant pool cache
+    __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
+    __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
+
+    // get specific constant pool cache entry
+    __ add(G3_scratch, G1_scratch, G3_scratch);
+
+    // Check the constant Pool cache entry to see if it has been resolved.
+    // If not, need the slow path.
+    ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
+    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
+    __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
+    __ and3(G1_scratch, 0xFF, G1_scratch);
+    __ cmp(G1_scratch, Bytecodes::_getfield);
+    __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
+    __ delayed()->nop();
+
+    // Get the type and return field offset from the constant pool cache
+    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
+    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
+
+    Label xreturn_path;
+    // Need to differentiate between igetfield, agetfield, bgetfield etc.
+    // because they are different sizes.
+    // Get the type from the constant pool cache
+    __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
+    // Make sure we don't need to mask G1_scratch for tosBits after the above shift
+    ConstantPoolCacheEntry::verify_tosBits();
+    __ cmp(G1_scratch, atos );
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
+    __ cmp(G1_scratch, itos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
+    __ cmp(G1_scratch, stos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
+    __ cmp(G1_scratch, ctos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
+#ifdef ASSERT
+    __ cmp(G1_scratch, btos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
+    __ should_not_reach_here();
+#endif
+    __ ldsb(Otos_i, G3_scratch, Otos_i);
+    __ bind(xreturn_path);
+
+    // _ireturn/_areturn
+    __ retl();                      // return from leaf routine
+    __ delayed()->mov(O5_savedSP, SP);
+
+    // Generate regular method entry
+    __ bind(slow_path);
+    __ ba(false, fast_accessor_slow_entry_path);
+    __ delayed()->nop();
+    return entry;
+  }
+  return NULL;
+}
+
+//
+// Interpreter stub for calling a native method. (C++ interpreter)
+// This sets up a somewhat different looking stack for calling the native method
+// than the typical interpreter frame setup.
+//
+
+address InterpreterGenerator::generate_native_entry(bool synchronized) {
+  address entry = __ pc();
+
+  // the following temporary registers are used during frame creation
+  const Register Gtmp1 = G3_scratch ;
+  const Register Gtmp2 = G1_scratch;
+  const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
+
+  bool inc_counter  = UseCompiler || CountCompiledCalls;
+
+  // make sure registers are different!
+  assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
+
+  const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
+
+  Label Lentry;
+  __ bind(Lentry);
+
+  __ verify_oop(G5_method);
+
+  const Register Glocals_size = G3;
+  assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
+
+  // make sure method is native & not abstract
+  // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
+#ifdef ASSERT
+  __ ld(access_flags, Gtmp1);
+  {
+    Label L;
+    __ btst(JVM_ACC_NATIVE, Gtmp1);
+    __ br(Assembler::notZero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("tried to execute non-native method as native");
+    __ bind(L);
+  }
+  { Label L;
+    __ btst(JVM_ACC_ABSTRACT, Gtmp1);
+    __ br(Assembler::zero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("tried to execute abstract method as non-abstract");
+    __ bind(L);
+  }
+#endif // ASSERT
+
+  __ lduh(size_of_parameters, Gtmp1);
+  __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
+  __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
+  // NEW
+  __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
+  // generate the code to allocate the interpreter stack frame
+  // NEW FRAME ALLOCATED HERE
+  // save callers original sp
+  // __ mov(SP, I5_savedSP->after_restore());
+
+  generate_compute_interpreter_state(Lstate, G0, true);
+
+  // At this point Lstate points to new interpreter state
+  //
+
+  const Address do_not_unlock_if_synchronized(G2_thread, 0,
+      in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
+  // Since at this point in the method invocation the exception handler
+  // would try to exit the monitor of synchronized methods which hasn't
+  // been entered yet, we set the thread local variable
+  // _do_not_unlock_if_synchronized to true. If any exception was thrown by
+  // runtime, exception handling i.e. unlock_if_synchronized_method will
+  // check this thread local flag.
+  // This flag has two effects, one is to force an unwind in the topmost
+  // interpreter frame and not perform an unlock while doing so.
+
+  __ movbool(true, G3_scratch);
+  __ stbool(G3_scratch, do_not_unlock_if_synchronized);
+
+
+  // increment invocation counter and check for overflow
+  //
+  // Note: checking for negative value instead of overflow
+  //       so we have a 'sticky' overflow test (may be of
+  //       importance as soon as we have true MT/MP)
+  Label invocation_counter_overflow;
+  if (inc_counter) {
+    generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
+  }
+  Label Lcontinue;
+  __ bind(Lcontinue);
+
+  bang_stack_shadow_pages(true);
+  // reset the _do_not_unlock_if_synchronized flag
+  __ stbool(G0, do_not_unlock_if_synchronized);
+
+  // check for synchronized methods
+  // Must happen AFTER invocation_counter check, so method is not locked
+  // if counter overflows.
+
+  if (synchronized) {
+    lock_method();
+    // Don't see how G2_thread is preserved here...
+    // __ verify_thread(); QQQ destroys L0,L1 can't use
+  } else {
+#ifdef ASSERT
+    { Label ok;
+      __ ld_ptr(STATE(_method), G5_method);
+      __ ld(access_flags, O0);
+      __ btst(JVM_ACC_SYNCHRONIZED, O0);
+      __ br( Assembler::zero, false, Assembler::pt, ok);
+      __ delayed()->nop();
+      __ stop("method needs synchronization");
+      __ bind(ok);
+    }
+#endif // ASSERT
+  }
+
+  // start execution
+
+//   __ verify_thread(); kills L1,L2 can't  use at the moment
+
+  // jvmti/jvmpi support
+  __ notify_method_entry();
+
+  // native call
+
+  // (note that O0 is never an oop--at most it is a handle)
+  // It is important not to smash any handles created by this call,
+  // until any oop handle in O0 is dereferenced.
+
+  // (note that the space for outgoing params is preallocated)
+
+  // get signature handler
+
+  Label pending_exception_present;
+
+  { Label L;
+    __ ld_ptr(STATE(_method), G5_method);
+    __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
+    __ tst(G3_scratch);
+    __ brx(Assembler::notZero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
+    __ ld_ptr(STATE(_method), G5_method);
+
+    Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+    __ ld_ptr(exception_addr, G3_scratch);
+    __ br_notnull(G3_scratch, false, Assembler::pn, pending_exception_present);
+    __ delayed()->nop();
+    __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
+    __ bind(L);
+  }
+
+  // Push a new frame so that the args will really be stored in
+  // Copy a few locals across so the new frame has the variables
+  // we need but these values will be dead at the jni call and
+  // therefore not gc volatile like the values in the current
+  // frame (Lstate in particular)
+
+  // Flush the state pointer to the register save area
+  // Which is the only register we need for a stack walk.
+  __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
+
+  __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
+
+  // Calculate current frame size
+  __ sub(SP, FP, O3);         // Calculate negative of current frame size
+  __ save(SP, O3, SP);        // Allocate an identical sized frame
+
+  __ mov(I1, Lstate);          // In the "natural" register.
+
+  // Note I7 has leftover trash. Slow signature handler will fill it in
+  // should we get there. Normal jni call will set reasonable last_Java_pc
+  // below (and fix I7 so the stack trace doesn't have a meaningless frame
+  // in it).
+
+
+  // call signature handler
+  __ ld_ptr(STATE(_method), Lmethod);
+  __ ld_ptr(STATE(_locals), Llocals);
+
+  __ callr(G3_scratch, 0);
+  __ delayed()->nop();
+  __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
+
+  { Label not_static;
+
+    __ ld_ptr(STATE(_method), G5_method);
+    __ ld(access_flags, O0);
+    __ btst(JVM_ACC_STATIC, O0);
+    __ br( Assembler::zero, false, Assembler::pt, not_static);
+    __ delayed()->
+      // get native function entry point(O0 is a good temp until the very end)
+       ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
+    // for static methods insert the mirror argument
+    const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
+
+    __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
+    __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
+    __ ld_ptr(O1, mirror_offset, O1);
+    // where the mirror handle body is allocated:
+#ifdef ASSERT
+    if (!PrintSignatureHandlers)  // do not dirty the output with this
+    { Label L;
+      __ tst(O1);
+      __ brx(Assembler::notZero, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ stop("mirror is missing");
+      __ bind(L);
+    }
+#endif // ASSERT
+    __ st_ptr(O1, STATE(_oop_temp));
+    __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
+    __ bind(not_static);
+  }
+
+  // At this point, arguments have been copied off of stack into
+  // their JNI positions, which are O1..O5 and SP[68..].
+  // Oops are boxed in-place on the stack, with handles copied to arguments.
+  // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
+
+#ifdef ASSERT
+  { Label L;
+    __ tst(O0);
+    __ brx(Assembler::notZero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("native entry point is missing");
+    __ bind(L);
+  }
+#endif // ASSERT
+
+  //
+  // setup the java frame anchor
+  //
+  // The scavenge function only needs to know that the PC of this frame is
+  // in the interpreter method entry code, it doesn't need to know the exact
+  // PC and hence we can use O7 which points to the return address from the
+  // previous call in the code stream (signature handler function)
+  //
+  // The other trick is we set last_Java_sp to FP instead of the usual SP because
+  // we have pushed the extra frame in order to protect the volatile register(s)
+  // in that frame when we return from the jni call
+  //
+
+
+  __ set_last_Java_frame(FP, O7);
+  __ mov(O7, I7);  // make dummy interpreter frame look like one above,
+                   // not meaningless information that'll confuse me.
+
+  // flush the windows now. We don't care about the current (protection) frame
+  // only the outer frames
+
+  __ flush_windows();
+
+  // mark windows as flushed
+  Address flags(G2_thread,
+                0,
+                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
+  __ set(JavaFrameAnchor::flushed, G3_scratch);
+  __ st(G3_scratch, flags);
+
+  // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
+
+  Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
+#ifdef ASSERT
+  { Label L;
+    __ ld(thread_state, G3_scratch);
+    __ cmp(G3_scratch, _thread_in_Java);
+    __ br(Assembler::equal, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("Wrong thread state in native stub");
+    __ bind(L);
+  }
+#endif // ASSERT
+  __ set(_thread_in_native, G3_scratch);
+  __ st(G3_scratch, thread_state);
+
+  // Call the jni method, using the delay slot to set the JNIEnv* argument.
+  __ callr(O0, 0);
+  __ delayed()->
+     add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
+  __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
+
+  // must we block?
+
+  // Block, if necessary, before resuming in _thread_in_Java state.
+  // In order for GC to work, don't clear the last_Java_sp until after blocking.
+  { Label no_block;
+    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
+
+    // Switch thread to "native transition" state before reading the synchronization state.
+    // This additional state is necessary because reading and testing the synchronization
+    // state is not atomic w.r.t. GC, as this scenario demonstrates:
+    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
+    //     VM thread changes sync state to synchronizing and suspends threads for GC.
+    //     Thread A is resumed to finish this native method, but doesn't block here since it
+    //     didn't see any synchronization is progress, and escapes.
+    __ set(_thread_in_native_trans, G3_scratch);
+    __ st(G3_scratch, thread_state);
+    if(os::is_MP()) {
+      // Write serialization page so VM thread can do a pseudo remote membar.
+      // We use the current thread pointer to calculate a thread specific
+      // offset to write to within the page. This minimizes bus traffic
+      // due to cache line collision.
+      __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
+    }
+    __ load_contents(sync_state, G3_scratch);
+    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
+
+
+    Label L;
+    Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
+    __ br(Assembler::notEqual, false, Assembler::pn, L);
+    __ delayed()->
+      ld(suspend_state, G3_scratch);
+    __ cmp(G3_scratch, 0);
+    __ br(Assembler::equal, false, Assembler::pt, no_block);
+    __ delayed()->nop();
+    __ bind(L);
+
+    // Block.  Save any potential method result value before the operation and
+    // use a leaf call to leave the last_Java_frame setup undisturbed.
+    save_native_result();
+    __ call_VM_leaf(noreg,
+                    CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
+                    G2_thread);
+    __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
+    // Restore any method result value
+    restore_native_result();
+    __ bind(no_block);
+  }
+
+  // Clear the frame anchor now
+
+  __ reset_last_Java_frame();
+
+  // Move the result handler address
+  __ mov(Lscratch, G3_scratch);
+  // return possible result to the outer frame
+#ifndef __LP64
+  __ mov(O0, I0);
+  __ restore(O1, G0, O1);
+#else
+  __ restore(O0, G0, O0);
+#endif /* __LP64 */
+
+  // Move result handler to expected register
+  __ mov(G3_scratch, Lscratch);
+
+
+  // thread state is thread_in_native_trans. Any safepoint blocking has
+  // happened in the trampoline we are ready to switch to thread_in_Java.
+
+  __ set(_thread_in_Java, G3_scratch);
+  __ st(G3_scratch, thread_state);
+
+  // If we have an oop result store it where it will be safe for any further gc
+  // until we return now that we've released the handle it might be protected by
+
+  {
+    Label no_oop, store_result;
+
+    __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
+    __ cmp(G3_scratch, Lscratch);
+    __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
+    __ delayed()->nop();
+    __ addcc(G0, O0, O0);
+    __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
+    __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
+    __ mov(G0, O0);
+
+    __ bind(store_result);
+    // Store it where gc will look for it and result handler expects it.
+    __ st_ptr(O0, STATE(_oop_temp));
+
+    __ bind(no_oop);
+
+  }
+
+  // reset handle block
+  __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
+  __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
+
+
+  // handle exceptions (exception handling will handle unlocking!)
+  { Label L;
+    Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+
+    __ ld_ptr(exception_addr, Gtemp);
+    __ tst(Gtemp);
+    __ brx(Assembler::equal, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ bind(pending_exception_present);
+    // With c++ interpreter we just leave it pending caller will do the correct thing. However...
+    // Like x86 we ignore the result of the native call and leave the method locked. This
+    // seems wrong to leave things locked.
+
+    __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
+    __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
+
+    __ bind(L);
+  }
+
+  // jvmdi/jvmpi support (preserves thread register)
+  __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
+
+  if (synchronized) {
+    // save and restore any potential method result value around the unlocking operation
+    save_native_result();
+
+    const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
+    // Get the initial monitor we allocated
+    __ sub(Lstate, entry_size, O1);                        // initial monitor
+    __ unlock_object(O1);
+    restore_native_result();
+  }
+
+#if defined(COMPILER2) && !defined(_LP64)
+
+  // C2 expects long results in G1 we can't tell if we're returning to interpreted
+  // or compiled so just be safe.
+
+  __ sllx(O0, 32, G1);          // Shift bits into high G1
+  __ srl (O1, 0, O1);           // Zero extend O1
+  __ or3 (O1, G1, G1);          // OR 64 bits into G1
+
+#endif /* COMPILER2 && !_LP64 */
+
+#ifdef ASSERT
+  {
+    Label ok;
+    __ cmp(I5_savedSP, FP);
+    __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
+    __ delayed()->nop();
+    __ stop("bad I5_savedSP value");
+    __ should_not_reach_here();
+    __ bind(ok);
+  }
+#endif
+  // Calls result handler which POPS FRAME
+  if (TraceJumps) {
+    // Move target to register that is recordable
+    __ mov(Lscratch, G3_scratch);
+    __ JMP(G3_scratch, 0);
+  } else {
+    __ jmp(Lscratch, 0);
+  }
+  __ delayed()->nop();
+
+  if (inc_counter) {
+    // handle invocation counter overflow
+    __ bind(invocation_counter_overflow);
+    generate_counter_overflow(Lcontinue);
+  }
+
+
+  return entry;
+}
+
+void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
+                                                              const Register prev_state,
+                                                              bool native) {
+
+  // On entry
+  // G5_method - caller's method
+  // Gargs - points to initial parameters (i.e. locals[0])
+  // G2_thread - valid? (C1 only??)
+  // "prev_state" - contains any previous frame manager state which we must save a link
+  //
+  // On return
+  // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
+  // a new interpretState object and the method expression stack.
+
+  assert_different_registers(state, prev_state);
+  assert_different_registers(prev_state, G3_scratch);
+  const Register Gtmp = G3_scratch;
+  const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
+  const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
+  const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
+  const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
+  const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
+
+  // slop factor is two extra slots on the expression stack so that
+  // we always have room to store a result when returning from a call without parameters
+  // that returns a result.
+
+  const int slop_factor = 2*wordSize;
+
+  const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
+                         frame::memory_parameter_word_sp_offset +  // register save area + param window
+                         (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
+
+  // XXX G5_method valid
+
+  // Now compute new frame size
+
+  if (native) {
+    __ lduh( size_of_parameters, Gtmp );
+    __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
+  } else {
+    __ lduh(max_stack, Gtmp);                // Full size expression stack
+  }
+  __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
+
+  __ neg(Gtmp);                               // negative space for stack/parameters in words
+  __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
+  __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
+
+  // Need to do stack size check here before we fault on large frames
+
+  Label stack_ok;
+
+  const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
+                                                                              (StackRedPages+StackYellowPages);
+
+
+  __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
+  __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
+  // compute stack bottom
+  __ sub(O0, O1, O0);
+
+  // Avoid touching the guard pages
+  // Also a fudge for frame size of BytecodeInterpreter::run
+  // It varies from 1k->4k depending on build type
+  const int fudge = 6 * K;
+
+  __ set(fudge + (max_pages * os::vm_page_size()), O1);
+
+  __ add(O0, O1, O0);
+  __ sub(O0, Gtmp, O0);
+  __ cmp(SP, O0);
+  __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
+  __ delayed()->nop();
+
+     // throw exception return address becomes throwing pc
+
+  __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
+  __ stop("never reached");
+
+  __ bind(stack_ok);
+
+  __ save(SP, Gtmp, SP);                      // setup new frame and register window
+
+  // New window I7 call_stub or previous activation
+  // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
+  //
+  __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
+  __ add(state, STACK_BIAS, state );         // Account for 64bit bias
+
+#define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
+
+  // Initialize a new Interpreter state
+  // orig_sp - caller's original sp
+  // G2_thread - thread
+  // Gargs - &locals[0] (unbiased?)
+  // G5_method - method
+  // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
+
+
+  __ set(0xdead0004, O1);
+
+
+  __ st_ptr(Gargs, XXX_STATE(_locals));
+  __ st_ptr(G0, XXX_STATE(_oop_temp));
+
+  __ st_ptr(state, XXX_STATE(_self_link));                // point to self
+  __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
+  __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
+
+  if (native) {
+    __ st_ptr(G0, XXX_STATE(_bcp));
+  } else {
+    __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), O2); // get constMethodOop
+    __ add(O2, in_bytes(constMethodOopDesc::codes_offset()), O2);        // get bcp
+    __ st_ptr(O2, XXX_STATE(_bcp));
+  }
+
+  __ st_ptr(G0, XXX_STATE(_mdx));
+  __ st_ptr(G5_method, XXX_STATE(_method));
+
+  __ set((int) BytecodeInterpreter::method_entry, O1);
+  __ st(O1, XXX_STATE(_msg));
+
+  __ ld_ptr(constants, O3);
+  __ ld_ptr(O3, constantPoolOopDesc::cache_offset_in_bytes(), O2);
+  __ st_ptr(O2, XXX_STATE(_constants));
+
+  __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
+
+  // Monitor base is just start of BytecodeInterpreter object;
+  __ mov(state, O2);
+  __ st_ptr(O2, XXX_STATE(_monitor_base));
+
+  // Do we need a monitor for synchonized method?
+  {
+    __ ld(access_flags, O1);
+    Label done;
+    Label got_obj;
+    __ btst(JVM_ACC_SYNCHRONIZED, O1);
+    __ br( Assembler::zero, false, Assembler::pt, done);
+
+    const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
+    __ delayed()->btst(JVM_ACC_STATIC, O1);
+    __ ld_ptr(XXX_STATE(_locals), O1);
+    __ br( Assembler::zero, true, Assembler::pt, got_obj);
+    __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
+    __ ld_ptr(constants, O1);
+    __ ld_ptr( O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
+    // lock the mirror, not the klassOop
+    __ ld_ptr( O1, mirror_offset, O1);
+
+    __ bind(got_obj);
+
+  #ifdef ASSERT
+    __ tst(O1);
+    __ breakpoint_trap(Assembler::zero);
+  #endif // ASSERT
+
+    const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
+    __ sub(SP, entry_size, SP);                         // account for initial monitor
+    __ sub(O2, entry_size, O2);                        // initial monitor
+    __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
+    __ bind(done);
+  }
+
+  // Remember initial frame bottom
+
+  __ st_ptr(SP, XXX_STATE(_frame_bottom));
+
+  __ st_ptr(O2, XXX_STATE(_stack_base));
+
+  __ sub(O2, wordSize, O2);                    // prepush
+  __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
+
+  __ lduh(max_stack, O3);                      // Full size expression stack
+  __ sll(O3, LogBytesPerWord, O3);
+  __ sub(O2, O3, O3);
+//  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
+  __ st_ptr(O3, XXX_STATE(_stack_limit));
+
+  if (!native) {
+    //
+    // Code to initialize locals
+    //
+    Register init_value = noreg;    // will be G0 if we must clear locals
+    // Now zero locals
+    if (true /* zerolocals */ || ClearInterpreterLocals) {
+      // explicitly initialize locals
+      init_value = G0;
+    } else {
+    #ifdef ASSERT
+      // initialize locals to a garbage pattern for better debugging
+      init_value = O3;
+      __ set( 0x0F0F0F0F, init_value );
+    #endif // ASSERT
+    }
+    if (init_value != noreg) {
+      Label clear_loop;
+
+      // NOTE: If you change the frame layout, this code will need to
+      // be updated!
+      __ lduh( size_of_locals, O2 );
+      __ lduh( size_of_parameters, O1 );
+      __ sll( O2, LogBytesPerWord, O2);
+      __ sll( O1, LogBytesPerWord, O1 );
+      __ ld_ptr(XXX_STATE(_locals), L2_scratch);
+      __ sub( L2_scratch, O2, O2 );
+      __ sub( L2_scratch, O1, O1 );
+
+      __ bind( clear_loop );
+      __ inc( O2, wordSize );
+
+      __ cmp( O2, O1 );
+      __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
+      __ delayed()->st_ptr( init_value, O2, 0 );
+    }
+  }
+}
+// Find preallocated  monitor and lock method (C++ interpreter)
+//
+void InterpreterGenerator::lock_method(void) {
+// Lock the current method.
+// Destroys registers L2_scratch, L3_scratch, O0
+//
+// Find everything relative to Lstate
+
+#ifdef ASSERT
+  __ ld_ptr(STATE(_method), L2_scratch);
+  __ ld(L2_scratch, in_bytes(methodOopDesc::access_flags_offset()), O0);
+
+ { Label ok;
+   __ btst(JVM_ACC_SYNCHRONIZED, O0);
+   __ br( Assembler::notZero, false, Assembler::pt, ok);
+   __ delayed()->nop();
+   __ stop("method doesn't need synchronization");
+   __ bind(ok);
+  }
+#endif // ASSERT
+
+  // monitor is already allocated at stack base
+  // and the lockee is already present
+  __ ld_ptr(STATE(_stack_base), L2_scratch);
+  __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
+  __ lock_object(L2_scratch, O0);
+
+}
+
+//  Generate code for handling resuming a deopted method
+void CppInterpreterGenerator::generate_deopt_handling() {
+
+  Label return_from_deopt_common;
+
+  // deopt needs to jump to here to enter the interpreter (return a result)
+  deopt_frame_manager_return_atos  = __ pc();
+
+  // O0/O1 live
+  __ ba(false, return_from_deopt_common);
+  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
+
+
+  // deopt needs to jump to here to enter the interpreter (return a result)
+  deopt_frame_manager_return_btos  = __ pc();
+
+  // O0/O1 live
+  __ ba(false, return_from_deopt_common);
+  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
+
+  // deopt needs to jump to here to enter the interpreter (return a result)
+  deopt_frame_manager_return_itos  = __ pc();
+
+  // O0/O1 live
+  __ ba(false, return_from_deopt_common);
+  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
+
+  // deopt needs to jump to here to enter the interpreter (return a result)
+
+  deopt_frame_manager_return_ltos  = __ pc();
+#if !defined(_LP64) && defined(COMPILER2)
+  // All return values are where we want them, except for Longs.  C2 returns
+  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
+  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
+  // build even if we are returning from interpreted we just do a little
+  // stupid shuffing.
+  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
+  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
+  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
+
+  __ srl (G1, 0,O1);
+  __ srlx(G1,32,O0);
+#endif /* !_LP64 && COMPILER2 */
+  // O0/O1 live
+  __ ba(false, return_from_deopt_common);
+  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
+
+  // deopt needs to jump to here to enter the interpreter (return a result)
+
+  deopt_frame_manager_return_ftos  = __ pc();
+  // O0/O1 live
+  __ ba(false, return_from_deopt_common);
+  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
+
+  // deopt needs to jump to here to enter the interpreter (return a result)
+  deopt_frame_manager_return_dtos  = __ pc();
+
+  // O0/O1 live
+  __ ba(false, return_from_deopt_common);
+  __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
+
+  // deopt needs to jump to here to enter the interpreter (return a result)
+  deopt_frame_manager_return_vtos  = __ pc();
+
+  // O0/O1 live
+  __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
+
+  // Deopt return common
+  // an index is present that lets us move any possible result being
+  // return to the interpreter's stack
+  //
+  __ bind(return_from_deopt_common);
+
+  // Result if any is in native abi result (O0..O1/F0..F1). The java expression
+  // stack is in the state that the  calling convention left it.
+  // Copy the result from native abi result and place it on java expression stack.
+
+  // Current interpreter state is present in Lstate
+
+  // Get current pre-pushed top of interpreter stack
+  // Any result (if any) is in native abi
+  // result type index is in L3_scratch
+
+  __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
+
+  __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
+  __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
+  __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
+  __ jmpl(Lscratch, G0, O7);                                         // and convert it
+  __ delayed()->nop();
+
+  // L1_scratch points to top of stack (prepushed)
+  __ st_ptr(L1_scratch, STATE(_stack));
+}
+
+// Generate the code to handle a more_monitors message from the c++ interpreter
+void CppInterpreterGenerator::generate_more_monitors() {
+
+  Label entry, loop;
+  const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
+  // 1. compute new pointers                                // esp: old expression stack top
+  __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
+  __ sub(L4_scratch, entry_size, L4_scratch);
+  __ st_ptr(L4_scratch, STATE(_stack_base));
+
+  __ sub(SP, entry_size, SP);                  // Grow stack
+  __ st_ptr(SP, STATE(_frame_bottom));
+
+  __ ld_ptr(STATE(_stack_limit), L2_scratch);
+  __ sub(L2_scratch, entry_size, L2_scratch);
+  __ st_ptr(L2_scratch, STATE(_stack_limit));
+
+  __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
+  __ sub(L1_scratch, entry_size, L1_scratch);
+  __ st_ptr(L1_scratch, STATE(_stack));
+  __ ba(false, entry);
+  __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
+
+  // 2. move expression stack
+
+  __ bind(loop);
+  __ st_ptr(L3_scratch, Address(L1_scratch, 0));
+  __ add(L1_scratch, wordSize, L1_scratch);
+  __ bind(entry);
+  __ cmp(L1_scratch, L4_scratch);
+  __ br(Assembler::notEqual, false, Assembler::pt, loop);
+  __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
+
+  // now zero the slot so we can find it.
+  __ st(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
+
+}
+
+// Initial entry to C++ interpreter from the call_stub.
+// This entry point is called the frame manager since it handles the generation
+// of interpreter activation frames via requests directly from the vm (via call_stub)
+// and via requests from the interpreter. The requests from the call_stub happen
+// directly thru the entry point. Requests from the interpreter happen via returning
+// from the interpreter and examining the message the interpreter has returned to
+// the frame manager. The frame manager can take the following requests:
+
+// NO_REQUEST - error, should never happen.
+// MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
+//                 allocate a new monitor.
+// CALL_METHOD - setup a new activation to call a new method. Very similar to what
+//               happens during entry during the entry via the call stub.
+// RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
+//
+// Arguments:
+//
+// ebx: methodOop
+// ecx: receiver - unused (retrieved from stack as needed)
+// esi: previous frame manager state (NULL from the call_stub/c1/c2)
+//
+//
+// Stack layout at entry
+//
+// [ return address     ] <--- esp
+// [ parameter n        ]
+//   ...
+// [ parameter 1        ]
+// [ expression stack   ]
+//
+//
+// We are free to blow any registers we like because the call_stub which brought us here
+// initially has preserved the callee save registers already.
+//
+//
+
+static address interpreter_frame_manager = NULL;
+
+#ifdef ASSERT
+  #define VALIDATE_STATE(scratch, marker)                         \
+  {                                                               \
+    Label skip;                                                   \
+    __ ld_ptr(STATE(_self_link), scratch);                        \
+    __ cmp(Lstate, scratch);                                      \
+    __ brx(Assembler::equal, false, Assembler::pt, skip);         \
+    __ delayed()->nop();                                          \
+    __ breakpoint_trap();                                         \
+    __ emit_long(marker);                                         \
+    __ bind(skip);                                                \
+  }
+#else
+  #define VALIDATE_STATE(scratch, marker)
+#endif /* ASSERT */
+
+void CppInterpreterGenerator::adjust_callers_stack(Register args) {
+//
+// Adjust caller's stack so that all the locals can be contiguous with
+// the parameters.
+// Worries about stack overflow make this a pain.
+//
+// Destroys args, G3_scratch, G3_scratch
+// In/Out O5_savedSP (sender's original SP)
+//
+//  assert_different_registers(state, prev_state);
+  const Register Gtmp = G3_scratch;
+  const Register tmp = O2;
+  const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
+  const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
+
+  __ lduh(size_of_parameters, tmp);
+  __ sll(tmp, LogBytesPerWord, Gtmp);       // parameter size in bytes
+  __ add(args, Gtmp, Gargs);                // points to first local + BytesPerWord
+  // NEW
+  __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
+  // determine extra space for non-argument locals & adjust caller's SP
+  // Gtmp1: parameter size in words
+  __ lduh(size_of_locals, Gtmp);
+  __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
+
+#if 1
+  // c2i adapters place the final interpreter argument in the register save area for O0/I0
+  // the call_stub will place the final interpreter argument at
+  // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
+  // or c++ interpreter. However with the c++ interpreter when we do a recursive call
+  // and try to make it look good in the debugger we will store the argument to
+  // RecursiveInterpreterActivation in the register argument save area. Without allocating
+  // extra space for the compiler this will overwrite locals in the local array of the
+  // interpreter.
+  // QQQ still needed with frameless adapters???
+
+  const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
+
+  __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
+#endif // 1
+
+
+  __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
+}
+
+address InterpreterGenerator::generate_normal_entry(bool synchronized) {
+
+  // G5_method: methodOop
+  // G2_thread: thread (unused)
+  // Gargs:   bottom of args (sender_sp)
+  // O5: sender's sp
+
+  // A single frame manager is plenty as we don't specialize for synchronized. We could and
+  // the code is pretty much ready. Would need to change the test below and for good measure
+  // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
+  // routines. Not clear this is worth it yet.
+
+  if (interpreter_frame_manager) {
+    return interpreter_frame_manager;
+  }
+
+  __ bind(frame_manager_entry);
+
+  // the following temporary registers are used during frame creation
+  const Register Gtmp1 = G3_scratch;
+  // const Register Lmirror = L1;     // native mirror (native calls only)
+
+  const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
+  const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
+  const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
+  const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
+  const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
+
+  address entry_point = __ pc();
+  __ mov(G0, prevState);                                                 // no current activation
+
+
+  Label re_dispatch;
+
+  __ bind(re_dispatch);
+
+  // Interpreter needs to have locals completely contiguous. In order to do that
+  // We must adjust the caller's stack pointer for any locals beyond just the
+  // parameters
+  adjust_callers_stack(Gargs);
+
+  // O5_savedSP still contains sender's sp
+
+  // NEW FRAME
+
+  generate_compute_interpreter_state(Lstate, prevState, false);
+
+  // At this point a new interpreter frame and state object are created and initialized
+  // Lstate has the pointer to the new activation
+  // Any stack banging or limit check should already be done.
+
+  Label call_interpreter;
+
+  __ bind(call_interpreter);
+
+
+#if 1
+  __ set(0xdead002, Lmirror);
+  __ set(0xdead002, L2_scratch);
+  __ set(0xdead003, L3_scratch);
+  __ set(0xdead004, L4_scratch);
+  __ set(0xdead005, Lscratch);
+  __ set(0xdead006, Lscratch2);
+  __ set(0xdead007, L7_scratch);
+
+  __ set(0xdeaf002, O2);
+  __ set(0xdeaf003, O3);
+  __ set(0xdeaf004, O4);
+  __ set(0xdeaf005, O5);
+#endif
+
+  // Call interpreter (stack bang complete) enter here if message is
+  // set and we know stack size is valid
+
+  Label call_interpreter_2;
+
+  __ bind(call_interpreter_2);
+
+#ifdef ASSERT
+  {
+    Label skip;
+    __ ld_ptr(STATE(_frame_bottom), G3_scratch);
+    __ cmp(G3_scratch, SP);
+    __ brx(Assembler::equal, false, Assembler::pt, skip);
+    __ delayed()->nop();
+    __ stop("SP not restored to frame bottom");
+    __ bind(skip);
+  }
+#endif
+
+  VALIDATE_STATE(G3_scratch, 4);
+  __ set_last_Java_frame(SP, noreg);
+  __ mov(Lstate, O0);                 // (arg) pointer to current state
+
+  __ call(CAST_FROM_FN_PTR(address,
+                           JvmtiExport::can_post_interpreter_events() ?
+                                                                  BytecodeInterpreter::runWithChecks
+                                                                : BytecodeInterpreter::run),
+         relocInfo::runtime_call_type);
+
+  __ delayed()->nop();
+
+  __ ld_ptr(STATE(_thread), G2_thread);
+  __ reset_last_Java_frame();
+
+  // examine msg from interpreter to determine next action
+  __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
+
+  __ ld(STATE(_msg), L1_scratch);                                       // Get new message
+
+  Label call_method;
+  Label return_from_interpreted_method;
+  Label throw_exception;
+  Label do_OSR;
+  Label bad_msg;
+  Label resume_interpreter;
+
+  __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
+  __ br(Assembler::equal, false, Assembler::pt, call_method);
+  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
+  __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
+  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
+  __ br(Assembler::equal, false, Assembler::pt, throw_exception);
+  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
+  __ br(Assembler::equal, false, Assembler::pt, do_OSR);
+  __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
+  __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
+
+  // Allocate more monitor space, shuffle expression stack....
+
+  generate_more_monitors();
+
+  // new monitor slot allocated, resume the interpreter.
+
+  __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
+  VALIDATE_STATE(G3_scratch, 5);
+  __ ba(false, call_interpreter);
+  __ delayed()->st(L1_scratch, STATE(_msg));
+
+  // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
+  unctrap_frame_manager_entry  = __ pc();
+
+  // QQQ what message do we send
+
+  __ ba(false, call_interpreter);
+  __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
+
+  //=============================================================================
+  // Returning from a compiled method into a deopted method. The bytecode at the
+  // bcp has completed. The result of the bytecode is in the native abi (the tosca
+  // for the template based interpreter). Any stack space that was used by the
+  // bytecode that has completed has been removed (e.g. parameters for an invoke)
+  // so all that we have to do is place any pending result on the expression stack
+  // and resume execution on the next bytecode.
+
+  generate_deopt_handling();
+
+  // ready to resume the interpreter
+
+  __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
+  __ ba(false, call_interpreter);
+  __ delayed()->st(L1_scratch, STATE(_msg));
+
+  // Current frame has caught an exception we need to dispatch to the
+  // handler. We can get here because a native interpreter frame caught
+  // an exception in which case there is no handler and we must rethrow
+  // If it is a vanilla interpreted frame the we simply drop into the
+  // interpreter and let it do the lookup.
+
+  Interpreter::_rethrow_exception_entry = __ pc();
+
+  Label return_with_exception;
+  Label unwind_and_forward;
+
+  // O0: exception
+  // O7: throwing pc
+
+  // We want exception in the thread no matter what we ultimately decide about frame type.
+
+  Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+  __ verify_thread();
+  __ st_ptr(O0, exception_addr);
+
+  // get the methodOop
+  __ ld_ptr(STATE(_method), G5_method);
+
+  // if this current frame vanilla or native?
+
+  __ ld(access_flags, Gtmp1);
+  __ btst(JVM_ACC_NATIVE, Gtmp1);
+  __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
+  __ delayed()->nop();
+
+  // We drop thru to unwind a native interpreted frame with a pending exception
+  // We jump here for the initial interpreter frame with exception pending
+  // We unwind the current acivation and forward it to our caller.
+
+  __ bind(unwind_and_forward);
+
+  // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
+  // as expected by forward_exception.
+
+  __ restore(FP, G0, SP);                  // unwind interpreter state frame
+  __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
+  __ delayed()->mov(I5_savedSP->after_restore(), SP);
+
+  // Return point from a call which returns a result in the native abi
+  // (c1/c2/jni-native). This result must be processed onto the java
+  // expression stack.
+  //
+  // A pending exception may be present in which case there is no result present
+
+  address return_from_native_method = __ pc();
+
+  VALIDATE_STATE(G3_scratch, 6);
+
+  // Result if any is in native abi result (O0..O1/F0..F1). The java expression
+  // stack is in the state that the  calling convention left it.
+  // Copy the result from native abi result and place it on java expression stack.
+
+  // Current interpreter state is present in Lstate
+
+  // Exception pending?
+
+  __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
+  __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
+  __ tst(Lscratch);                                                            // exception pending?
+  __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
+  __ delayed()->nop();
+
+  // Process the native abi result to java expression stack
+
+  __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
+  __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
+  __ lduh(L4_scratch, in_bytes(methodOopDesc::size_of_parameters_offset()), L2_scratch); // get parameter size
+  __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
+  __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
+  __ ld_ptr(L4_scratch, in_bytes(methodOopDesc::result_index_offset()), L3_scratch); // called method result type index
+
+  // tosca is really just native abi
+  __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
+  __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
+  __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
+  __ jmpl(Lscratch, G0, O7);                                                   // and convert it
+  __ delayed()->nop();
+
+  // L1_scratch points to top of stack (prepushed)
+
+  __ ba(false, resume_interpreter);
+  __ delayed()->mov(L1_scratch, O1);
+
+  // An exception is being caught on return to a vanilla interpreter frame.
+  // Empty the stack and resume interpreter
+
+  __ bind(return_with_exception);
+
+  __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
+  __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
+  __ ba(false, resume_interpreter);
+  __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
+
+  // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
+  // interpreter call, or native) and unwind this interpreter activation.
+  // All monitors should be unlocked.
+
+  __ bind(return_from_interpreted_method);
+
+  VALIDATE_STATE(G3_scratch, 7);
+
+  Label return_to_initial_caller;
+
+  // Interpreted result is on the top of the completed activation expression stack.
+  // We must return it to the top of the callers stack if caller was interpreted
+  // otherwise we convert to native abi result and return to call_stub/c1/c2
+  // The caller's expression stack was truncated by the call however the current activation
+  // has enough stuff on the stack that we have usable space there no matter what. The
+  // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
+  // for the current activation
+
+  __ ld_ptr(STATE(_prev_link), L1_scratch);
+  __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
+  __ ld_ptr(L2_scratch, in_bytes(methodOopDesc::result_index_offset()), L2_scratch);
+  __ tst(L1_scratch);
+  __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
+  __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
+
+  // Copy result to callers java stack
+
+  __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
+  __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
+  __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
+  __ ld_ptr(STATE(_locals), O1);                                      // stack destination
+
+  // O0 - will be source, O1 - will be destination (preserved)
+  __ jmpl(Lscratch, G0, O7);                                          // and convert it
+  __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
+
+  // O1 == &locals[0]
+
+  // Result is now on caller's stack. Just unwind current activation and resume
+
+  Label unwind_recursive_activation;
+
+
+  __ bind(unwind_recursive_activation);
+
+  // O1 == &locals[0] (really callers stacktop) for activation now returning
+  // returning to interpreter method from "recursive" interpreter call
+  // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
+  // to. Now all we must do is unwind the state from the completed call
+
+  // Must restore stack
+  VALIDATE_STATE(G3_scratch, 8);
+
+  // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
+  // Result if any is already on the caller's stack. All we must do now is remove the now dead
+  // frame and tell interpreter to resume.
+
+
+  __ mov(O1, I1);                                                     // pass back new stack top across activation
+  // POP FRAME HERE ==================================
+  __ restore(FP, G0, SP);                                             // unwind interpreter state frame
+  __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
+
+
+  // Resume the interpreter. The current frame contains the current interpreter
+  // state object.
+  //
+  // O1 == new java stack pointer
+
+  __ bind(resume_interpreter);
+  VALIDATE_STATE(G3_scratch, 10);
+
+  // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
+
+  __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
+  __ st(L1_scratch, STATE(_msg));
+  __ ba(false, call_interpreter_2);
+  __ delayed()->st_ptr(O1, STATE(_stack));
+
+
+  // Fast accessor methods share this entry point.
+  // This works because frame manager is in the same codelet
+  // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
+  // we need to do a little register fixup here once we distinguish the two of them
+  if (UseFastAccessorMethods && !synchronized) {
+  // Call stub_return address still in O7
+    __ bind(fast_accessor_slow_entry_path);
+    __ set((intptr_t)return_from_native_method - 8, Gtmp1);
+    __ cmp(Gtmp1, O7);                                                // returning to interpreter?
+    __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
+    __ delayed()->nop();
+    __ ba(false, re_dispatch);
+    __ delayed()->mov(G0, prevState);                                   // initial entry
+
+  }
+
+  // interpreter returning to native code (call_stub/c1/c2)
+  // convert result and unwind initial activation
+  // L2_scratch - scaled result type index
+
+  __ bind(return_to_initial_caller);
+
+  __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
+  __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
+  __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
+  __ jmpl(Lscratch, G0, O7);                                           // and convert it
+  __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
+
+  Label unwind_initial_activation;
+  __ bind(unwind_initial_activation);
+
+  // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
+  // we can return here with an exception that wasn't handled by interpreted code
+  // how does c1/c2 see it on return?
+
+  // compute resulting sp before/after args popped depending upon calling convention
+  // __ ld_ptr(STATE(_saved_sp), Gtmp1);
+  //
+  // POP FRAME HERE ==================================
+  __ restore(FP, G0, SP);
+  __ retl();
+  __ delayed()->mov(I5_savedSP->after_restore(), SP);
+
+  // OSR request, unwind the current frame and transfer to the OSR entry
+  // and enter OSR nmethod
+
+  __ bind(do_OSR);
+  Label remove_initial_frame;
+  __ ld_ptr(STATE(_prev_link), L1_scratch);
+  __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
+
+  // We are going to pop this frame. Is there another interpreter frame underneath
+  // it or is it callstub/compiled?
+
+  __ tst(L1_scratch);
+  __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
+  __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
+
+  // Frame underneath is an interpreter frame simply unwind
+  // POP FRAME HERE ==================================
+  __ restore(FP, G0, SP);                                             // unwind interpreter state frame
+  __ mov(I5_savedSP->after_restore(), SP);
+
+  // Since we are now calling native need to change our "return address" from the
+  // dummy RecursiveInterpreterActivation to a return from native
+
+  __ set((intptr_t)return_from_native_method - 8, O7);
+
+  __ jmpl(G3_scratch, G0, G0);
+  __ delayed()->mov(G1_scratch, O0);
+
+  __ bind(remove_initial_frame);
+
+  // POP FRAME HERE ==================================
+  __ restore(FP, G0, SP);
+  __ mov(I5_savedSP->after_restore(), SP);
+  __ jmpl(G3_scratch, G0, G0);
+  __ delayed()->mov(G1_scratch, O0);
+
+  // Call a new method. All we do is (temporarily) trim the expression stack
+  // push a return address to bring us back to here and leap to the new entry.
+  // At this point we have a topmost frame that was allocated by the frame manager
+  // which contains the current method interpreted state. We trim this frame
+  // of excess java expression stack entries and then recurse.
+
+  __ bind(call_method);
+
+  // stack points to next free location and not top element on expression stack
+  // method expects sp to be pointing to topmost element
+
+  __ ld_ptr(STATE(_thread), G2_thread);
+  __ ld_ptr(STATE(_result._to_call._callee), G5_method);
+
+
+  // SP already takes in to account the 2 extra words we use for slop
+  // when we call a "static long no_params()" method. So if
+  // we trim back sp by the amount of unused java expression stack
+  // there will be automagically the 2 extra words we need.
+  // We also have to worry about keeping SP aligned.
+
+  __ ld_ptr(STATE(_stack), Gargs);
+  __ ld_ptr(STATE(_stack_limit), L1_scratch);
+
+  // compute the unused java stack size
+  __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
+
+  // Round down the unused space to that stack is always aligned
+  // by making the unused space a multiple of the size of a long.
+
+  __ and3(L2_scratch, -BytesPerLong, L2_scratch);
+
+  // Now trim the stack
+  __ add(SP, L2_scratch, SP);
+
+
+  // Now point to the final argument (account for prepush)
+  __ add(Gargs, wordSize, Gargs);
+#ifdef ASSERT
+  // Make sure we have space for the window
+  __ sub(Gargs, SP, L1_scratch);
+  __ cmp(L1_scratch, 16*wordSize);
+  {
+    Label skip;
+    __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
+    __ delayed()->nop();
+    __ stop("killed stack");
+    __ bind(skip);
+  }
+#endif // ASSERT
+
+  // Create a new frame where we can store values that make it look like the interpreter
+  // really recursed.
+
+  // prepare to recurse or call specialized entry
+
+  // First link the registers we need
+
+  // make the pc look good in debugger
+  __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
+  // argument too
+  __ mov(Lstate, I0);
+
+  // Record our sending SP
+  __ mov(SP, O5_savedSP);
+
+  __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
+  __ set((intptr_t) entry_point, L1_scratch);
+  __ cmp(L1_scratch, L2_scratch);
+  __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
+  __ delayed()->mov(Lstate, prevState);                                // link activations
+
+  // method uses specialized entry, push a return so we look like call stub setup
+  // this path will handle fact that result is returned in registers and not
+  // on the java stack.
+
+  __ set((intptr_t)return_from_native_method - 8, O7);
+  __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
+  __ delayed()->nop();
+
+  //
+  // Bad Message from interpreter
+  //
+  __ bind(bad_msg);
+  __ stop("Bad message from interpreter");
+
+  // Interpreted method "returned" with an exception pass it on...
+  // Pass result, unwind activation and continue/return to interpreter/call_stub
+  // We handle result (if any) differently based on return to interpreter or call_stub
+
+  __ bind(throw_exception);
+  __ ld_ptr(STATE(_prev_link), L1_scratch);
+  __ tst(L1_scratch);
+  __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
+  __ delayed()->nop();
+
+  __ ld_ptr(STATE(_locals), O1);                                   // get result of popping callee's args
+  __ ba(false, unwind_recursive_activation);
+  __ delayed()->nop();
+
+  interpreter_frame_manager = entry_point;
+  return entry_point;
+}
+
+InterpreterGenerator::InterpreterGenerator(StubQueue* code)
+ : CppInterpreterGenerator(code) {
+   generate_all(); // down here so it can be "virtual"
+}
+
+
+static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
+
+  // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
+  // expression stack, the callee will have callee_extra_locals (so we can account for
+  // frame extension) and monitor_size for monitors. Basically we need to calculate
+  // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
+  //
+  //
+  // The big complicating thing here is that we must ensure that the stack stays properly
+  // aligned. This would be even uglier if monitor size wasn't modulo what the stack
+  // needs to be aligned for). We are given that the sp (fp) is already aligned by
+  // the caller so we must ensure that it is properly aligned for our callee.
+  //
+  // Ths c++ interpreter always makes sure that we have a enough extra space on the
+  // stack at all times to deal with the "stack long no_params()" method issue. This
+  // is "slop_factor" here.
+  const int slop_factor = 2;
+
+  const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
+                         frame::memory_parameter_word_sp_offset;   // register save area + param window
+  return (round_to(max_stack +
+                   slop_factor +
+                   fixed_size +
+                   monitor_size +
+                   (callee_extra_locals * Interpreter::stackElementWords()), WordsPerLong));
+
+}
+
+int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
+
+  // See call_stub code
+  int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
+                                 WordsPerLong);    // 7 + register save area
+
+  // Save space for one monitor to get into the interpreted method in case
+  // the method is synchronized
+  int monitor_size    = method->is_synchronized() ?
+                                1*frame::interpreter_frame_monitor_size() : 0;
+  return size_activation_helper(method->max_locals(), method->max_stack(),
+                                 monitor_size) + call_stub_size;
+}
+
+void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
+                                           frame* caller,
+                                           frame* current,
+                                           methodOop method,
+                                           intptr_t* locals,
+                                           intptr_t* stack,
+                                           intptr_t* stack_base,
+                                           intptr_t* monitor_base,
+                                           intptr_t* frame_bottom,
+                                           bool is_top_frame
+                                           )
+{
+  // What about any vtable?
+  //
+  to_fill->_thread = JavaThread::current();
+  // This gets filled in later but make it something recognizable for now
+  to_fill->_bcp = method->code_base();
+  to_fill->_locals = locals;
+  to_fill->_constants = method->constants()->cache();
+  to_fill->_method = method;
+  to_fill->_mdx = NULL;
+  to_fill->_stack = stack;
+  if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
+    to_fill->_msg = deopt_resume2;
+  } else {
+    to_fill->_msg = method_resume;
+  }
+  to_fill->_result._to_call._bcp_advance = 0;
+  to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
+  to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
+  to_fill->_prev_link = NULL;
+
+  // Fill in the registers for the frame
+
+  // Need to install _sender_sp. Actually not too hard in C++!
+  // When the skeletal frames are layed out we fill in a value
+  // for _sender_sp. That value is only correct for the oldest
+  // skeletal frame constructed (because there is only a single
+  // entry for "caller_adjustment". While the skeletal frames
+  // exist that is good enough. We correct that calculation
+  // here and get all the frames correct.
+
+  // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
+
+  *current->register_addr(Lstate) = (intptr_t) to_fill;
+  // skeletal already places a useful value here and this doesn't account
+  // for alignment so don't bother.
+  // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
+
+  if (caller->is_interpreted_frame()) {
+    interpreterState prev  = caller->get_interpreterState();
+    to_fill->_prev_link = prev;
+    // Make the prev callee look proper
+    prev->_result._to_call._callee = method;
+    if (*prev->_bcp == Bytecodes::_invokeinterface) {
+      prev->_result._to_call._bcp_advance = 5;
+    } else {
+      prev->_result._to_call._bcp_advance = 3;
+    }
+  }
+  to_fill->_oop_temp = NULL;
+  to_fill->_stack_base = stack_base;
+  // Need +1 here because stack_base points to the word just above the first expr stack entry
+  // and stack_limit is supposed to point to the word just below the last expr stack entry.
+  // See generate_compute_interpreter_state.
+  to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
+  to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
+
+  // sparc specific
+  to_fill->_frame_bottom = frame_bottom;
+  to_fill->_self_link = to_fill;
+#ifdef ASSERT
+  to_fill->_native_fresult = 123456.789;
+  to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
+#endif
+}
+
+void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
+  istate->_last_Java_pc = (intptr_t*) last_Java_pc;
+}
+
+
+int AbstractInterpreter::layout_activation(methodOop method,
+                                           int tempcount, // Number of slots on java expression stack in use
+                                           int popframe_extra_args,
+                                           int moncount,  // Number of active monitors
+                                           int callee_param_size,
+                                           int callee_locals_size,
+                                           frame* caller,
+                                           frame* interpreter_frame,
+                                           bool is_top_frame) {
+
+  assert(popframe_extra_args == 0, "NEED TO FIX");
+  // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
+  // does as far as allocating an interpreter frame.
+  // If interpreter_frame!=NULL, set up the method, locals, and monitors.
+  // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
+  // as determined by a previous call to this method.
+  // It is also guaranteed to be walkable even though it is in a skeletal state
+  // NOTE: return size is in words not bytes
+  // NOTE: tempcount is the current size of the java expression stack. For top most
+  //       frames we will allocate a full sized expression stack and not the curback
+  //       version that non-top frames have.
+
+  // Calculate the amount our frame will be adjust by the callee. For top frame
+  // this is zero.
+
+  // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
+  // calculates the extra locals based on itself. Not what the callee does
+  // to it. So it ignores last_frame_adjust value. Seems suspicious as far
+  // as getting sender_sp correct.
+
+  int extra_locals_size = callee_locals_size - callee_param_size;
+  int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
+  int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
+  int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
+  int frame_words = is_top_frame ? full_frame_words : short_frame_words;
+
+
+  /*
+    if we actually have a frame to layout we must now fill in all the pieces. This means both
+    the interpreterState and the registers.
+  */
+  if (interpreter_frame != NULL) {
+
+    // MUCHO HACK
+
+    intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
+
+    /* Now fillin the interpreterState object */
+
+    interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
+
+
+    intptr_t* locals;
+
+    // Calculate the postion of locals[0]. This is painful because of
+    // stack alignment (same as ia64). The problem is that we can
+    // not compute the location of locals from fp(). fp() will account
+    // for the extra locals but it also accounts for aligning the stack
+    // and we can't determine if the locals[0] was misaligned but max_locals
+    // was enough to have the
+    // calculate postion of locals. fp already accounts for extra locals.
+    // +2 for the static long no_params() issue.
+
+    if (caller->is_interpreted_frame()) {
+      // locals must agree with the caller because it will be used to set the
+      // caller's tos when we return.
+      interpreterState prev  = caller->get_interpreterState();
+      // stack() is prepushed.
+      locals = prev->stack() + method->size_of_parameters();
+    } else {
+      // Lay out locals block in the caller adjacent to the register window save area.
+      //
+      // Compiled frames do not allocate a varargs area which is why this if
+      // statement is needed.
+      //
+      intptr_t* fp = interpreter_frame->fp();
+      int local_words = method->max_locals() * Interpreter::stackElementWords();
+
+      if (caller->is_compiled_frame()) {
+        locals = fp + frame::register_save_words + local_words - 1;
+      } else {
+        locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
+      }
+
+    }
+    // END MUCHO HACK
+
+    intptr_t* monitor_base = (intptr_t*) cur_state;
+    intptr_t* stack_base =  monitor_base - monitor_size;
+    /* +1 because stack is always prepushed */
+    intptr_t* stack = stack_base - (tempcount + 1);
+
+
+    BytecodeInterpreter::layout_interpreterState(cur_state,
+                                          caller,
+                                          interpreter_frame,
+                                          method,
+                                          locals,
+                                          stack,
+                                          stack_base,
+                                          monitor_base,
+                                          frame_bottom,
+                                          is_top_frame);
+
+    BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
+
+  }
+  return frame_words;
+}
+
+#endif // CC_INTERP