diff src/cpu/sparc/vm/sharedRuntime_sparc.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ba764ed4b6f2
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/sparc/vm/sharedRuntime_sparc.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,3199 @@
+/*
+ * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_sharedRuntime_sparc.cpp.incl"
+
+#define __ masm->
+
+#ifdef COMPILER2
+UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
+#endif // COMPILER2
+
+DeoptimizationBlob* SharedRuntime::_deopt_blob;
+SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
+SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
+RuntimeStub*        SharedRuntime::_wrong_method_blob;
+RuntimeStub*        SharedRuntime::_ic_miss_blob;
+RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
+RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
+RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
+
+class RegisterSaver {
+
+  // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
+  // The Oregs are problematic. In the 32bit build the compiler can
+  // have O registers live with 64 bit quantities. A window save will
+  // cut the heads off of the registers. We have to do a very extensive
+  // stack dance to save and restore these properly.
+
+  // Note that the Oregs problem only exists if we block at either a polling
+  // page exception a compiled code safepoint that was not originally a call
+  // or deoptimize following one of these kinds of safepoints.
+
+  // Lots of registers to save.  For all builds, a window save will preserve
+  // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
+  // builds a window-save will preserve the %o registers.  In the LION build
+  // we need to save the 64-bit %o registers which requires we save them
+  // before the window-save (as then they become %i registers and get their
+  // heads chopped off on interrupt).  We have to save some %g registers here
+  // as well.
+  enum {
+    // This frame's save area.  Includes extra space for the native call:
+    // vararg's layout space and the like.  Briefly holds the caller's
+    // register save area.
+    call_args_area = frame::register_save_words_sp_offset +
+                     frame::memory_parameter_word_sp_offset*wordSize,
+    // Make sure save locations are always 8 byte aligned.
+    // can't use round_to because it doesn't produce compile time constant
+    start_of_extra_save_area = ((call_args_area + 7) & ~7),
+    g1_offset = start_of_extra_save_area, // g-regs needing saving
+    g3_offset = g1_offset+8,
+    g4_offset = g3_offset+8,
+    g5_offset = g4_offset+8,
+    o0_offset = g5_offset+8,
+    o1_offset = o0_offset+8,
+    o2_offset = o1_offset+8,
+    o3_offset = o2_offset+8,
+    o4_offset = o3_offset+8,
+    o5_offset = o4_offset+8,
+    start_of_flags_save_area = o5_offset+8,
+    ccr_offset = start_of_flags_save_area,
+    fsr_offset = ccr_offset + 8,
+    d00_offset = fsr_offset+8,  // Start of float save area
+    register_save_size = d00_offset+8*32
+  };
+
+
+  public:
+
+  static int Oexception_offset() { return o0_offset; };
+  static int G3_offset() { return g3_offset; };
+  static int G5_offset() { return g5_offset; };
+  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
+  static void restore_live_registers(MacroAssembler* masm);
+
+  // During deoptimization only the result register need to be restored
+  // all the other values have already been extracted.
+
+  static void restore_result_registers(MacroAssembler* masm);
+};
+
+OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
+  // Record volatile registers as callee-save values in an OopMap so their save locations will be
+  // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
+  // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
+  // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
+  // (as the stub's I's) when the runtime routine called by the stub creates its frame.
+  int i;
+  // Always make the frame size 16 bytr aligned.
+  int frame_size = round_to(additional_frame_words + register_save_size, 16);
+  // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
+  int frame_size_in_slots = frame_size / sizeof(jint);
+  // CodeBlob frame size is in words.
+  *total_frame_words = frame_size / wordSize;
+  // OopMap* map = new OopMap(*total_frame_words, 0);
+  OopMap* map = new OopMap(frame_size_in_slots, 0);
+
+#if !defined(_LP64)
+
+  // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
+  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
+  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
+  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
+  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
+  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
+  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
+#endif /* _LP64 */
+
+  __ save(SP, -frame_size, SP);
+
+#ifndef _LP64
+  // Reload the 64 bit Oregs. Although they are now Iregs we load them
+  // to Oregs here to avoid interrupts cutting off their heads
+
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
+
+  __ stx(O0, SP, o0_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
+
+  __ stx(O1, SP, o1_offset+STACK_BIAS);
+
+  map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
+
+  __ stx(O2, SP, o2_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
+
+  __ stx(O3, SP, o3_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
+
+  __ stx(O4, SP, o4_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
+
+  __ stx(O5, SP, o5_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
+#endif /* _LP64 */
+
+  // Save the G's
+  __ stx(G1, SP, g1_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + 4)>>2), G1->as_VMReg());
+
+  __ stx(G3, SP, g3_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + 4)>>2), G3->as_VMReg());
+
+  __ stx(G4, SP, g4_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + 4)>>2), G4->as_VMReg());
+
+  __ stx(G5, SP, g5_offset+STACK_BIAS);
+  map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + 4)>>2), G5->as_VMReg());
+
+  // This is really a waste but we'll keep things as they were for now
+  if (true) {
+#ifndef _LP64
+    map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
+#endif /* _LP64 */
+    map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
+    map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
+  }
+
+
+  // Save the flags
+  __ rdccr( G5 );
+  __ stx(G5, SP, ccr_offset+STACK_BIAS);
+  __ stxfsr(SP, fsr_offset+STACK_BIAS);
+
+  // Save all the FP registers
+  int offset = d00_offset;
+  for( int i=0; i<64; i+=2 ) {
+    FloatRegister f = as_FloatRegister(i);
+    __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
+    map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
+    if (true) {
+      map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
+    }
+    offset += sizeof(double);
+  }
+
+  // And we're done.
+
+  return map;
+}
+
+
+// Pop the current frame and restore all the registers that we
+// saved.
+void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
+
+  // Restore all the FP registers
+  for( int i=0; i<64; i+=2 ) {
+    __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
+  }
+
+  __ ldx(SP, ccr_offset+STACK_BIAS, G1);
+  __ wrccr (G1) ;
+
+  // Restore the G's
+  // Note that G2 (AKA GThread) must be saved and restored separately.
+  // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
+
+  __ ldx(SP, g1_offset+STACK_BIAS, G1);
+  __ ldx(SP, g3_offset+STACK_BIAS, G3);
+  __ ldx(SP, g4_offset+STACK_BIAS, G4);
+  __ ldx(SP, g5_offset+STACK_BIAS, G5);
+
+
+#if !defined(_LP64)
+  // Restore the 64-bit O's.
+  __ ldx(SP, o0_offset+STACK_BIAS, O0);
+  __ ldx(SP, o1_offset+STACK_BIAS, O1);
+  __ ldx(SP, o2_offset+STACK_BIAS, O2);
+  __ ldx(SP, o3_offset+STACK_BIAS, O3);
+  __ ldx(SP, o4_offset+STACK_BIAS, O4);
+  __ ldx(SP, o5_offset+STACK_BIAS, O5);
+
+  // And temporarily place them in TLS
+
+  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
+  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
+  __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
+  __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
+  __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
+  __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
+#endif /* _LP64 */
+
+  // Restore flags
+
+  __ ldxfsr(SP, fsr_offset+STACK_BIAS);
+
+  __ restore();
+
+#if !defined(_LP64)
+  // Now reload the 64bit Oregs after we've restore the window.
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
+#endif /* _LP64 */
+
+}
+
+// Pop the current frame and restore the registers that might be holding
+// a result.
+void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
+
+#if !defined(_LP64)
+  // 32bit build returns longs in G1
+  __ ldx(SP, g1_offset+STACK_BIAS, G1);
+
+  // Retrieve the 64-bit O's.
+  __ ldx(SP, o0_offset+STACK_BIAS, O0);
+  __ ldx(SP, o1_offset+STACK_BIAS, O1);
+  // and save to TLS
+  __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
+  __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
+#endif /* _LP64 */
+
+  __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
+
+  __ restore();
+
+#if !defined(_LP64)
+  // Now reload the 64bit Oregs after we've restore the window.
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
+  __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
+#endif /* _LP64 */
+
+}
+
+// The java_calling_convention describes stack locations as ideal slots on
+// a frame with no abi restrictions. Since we must observe abi restrictions
+// (like the placement of the register window) the slots must be biased by
+// the following value.
+static int reg2offset(VMReg r) {
+  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
+}
+
+// ---------------------------------------------------------------------------
+// Read the array of BasicTypes from a signature, and compute where the
+// arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
+// quantities.  Values less than VMRegImpl::stack0 are registers, those above
+// refer to 4-byte stack slots.  All stack slots are based off of the window
+// top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
+// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
+// values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
+// integer registers.  Values 64-95 are the (32-bit only) float registers.
+// Each 32-bit quantity is given its own number, so the integer registers
+// (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
+// an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
+
+// Register results are passed in O0-O5, for outgoing call arguments.  To
+// convert to incoming arguments, convert all O's to I's.  The regs array
+// refer to the low and hi 32-bit words of 64-bit registers or stack slots.
+// If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
+// 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
+// passed (used as a placeholder for the other half of longs and doubles in
+// the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
+// regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
+// Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
+// == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
+// same VMRegPair.
+
+// Note: the INPUTS in sig_bt are in units of Java argument words, which are
+// either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
+// units regardless of build.
+
+
+// ---------------------------------------------------------------------------
+// The compiled Java calling convention.  The Java convention always passes
+// 64-bit values in adjacent aligned locations (either registers or stack),
+// floats in float registers and doubles in aligned float pairs.  Values are
+// packed in the registers.  There is no backing varargs store for values in
+// registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
+// passed in I's, because longs in I's get their heads chopped off at
+// interrupt).
+int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
+                                           VMRegPair *regs,
+                                           int total_args_passed,
+                                           int is_outgoing) {
+  assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
+
+  // Convention is to pack the first 6 int/oop args into the first 6 registers
+  // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
+  // into F0-F7, extras spill to the stack.  Then pad all register sets to
+  // align.  Then put longs and doubles into the same registers as they fit,
+  // else spill to the stack.
+  const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
+  const int flt_reg_max = 8;
+  //
+  // Where 32-bit 1-reg longs start being passed
+  // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
+  // So make it look like we've filled all the G regs that c2 wants to use.
+  Register g_reg = TieredCompilation ? noreg : G1;
+
+  // Count int/oop and float args.  See how many stack slots we'll need and
+  // where the longs & doubles will go.
+  int int_reg_cnt   = 0;
+  int flt_reg_cnt   = 0;
+  // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
+  // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
+  int stk_reg_pairs = 0;
+  for (int i = 0; i < total_args_passed; i++) {
+    switch (sig_bt[i]) {
+    case T_LONG:                // LP64, longs compete with int args
+      assert(sig_bt[i+1] == T_VOID, "");
+#ifdef _LP64
+      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
+#endif
+      break;
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
+      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
+#ifndef _LP64
+      else                            stk_reg_pairs++;
+#endif
+      break;
+    case T_INT:
+    case T_SHORT:
+    case T_CHAR:
+    case T_BYTE:
+    case T_BOOLEAN:
+      if (int_reg_cnt < int_reg_max) int_reg_cnt++;
+      else                            stk_reg_pairs++;
+      break;
+    case T_FLOAT:
+      if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
+      else                            stk_reg_pairs++;
+      break;
+    case T_DOUBLE:
+      assert(sig_bt[i+1] == T_VOID, "");
+      break;
+    case T_VOID:
+      break;
+    default:
+      ShouldNotReachHere();
+    }
+  }
+
+  // This is where the longs/doubles start on the stack.
+  stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
+
+  int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
+  int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
+
+  // int stk_reg = frame::register_save_words*(wordSize>>2);
+  // int stk_reg = SharedRuntime::out_preserve_stack_slots();
+  int stk_reg = 0;
+  int int_reg = 0;
+  int flt_reg = 0;
+
+  // Now do the signature layout
+  for (int i = 0; i < total_args_passed; i++) {
+    switch (sig_bt[i]) {
+    case T_INT:
+    case T_SHORT:
+    case T_CHAR:
+    case T_BYTE:
+    case T_BOOLEAN:
+#ifndef _LP64
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
+#endif // _LP64
+      if (int_reg < int_reg_max) {
+        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
+        regs[i].set1(r->as_VMReg());
+      } else {
+        regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
+      }
+      break;
+
+#ifdef _LP64
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
+      if (int_reg < int_reg_max) {
+        Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
+        regs[i].set2(r->as_VMReg());
+      } else {
+        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
+        stk_reg_pairs += 2;
+      }
+      break;
+#endif // _LP64
+
+    case T_LONG:
+      assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
+#ifdef COMPILER2
+#ifdef _LP64
+        // Can't be tiered (yet)
+        if (int_reg < int_reg_max) {
+          Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
+          regs[i].set2(r->as_VMReg());
+        } else {
+          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
+          stk_reg_pairs += 2;
+        }
+#else
+        // For 32-bit build, can't pass longs in O-regs because they become
+        // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
+        // spare and available.  This convention isn't used by the Sparc ABI or
+        // anywhere else. If we're tiered then we don't use G-regs because c1
+        // can't deal with them as a "pair".
+        // G0: zero
+        // G1: 1st Long arg
+        // G2: global allocated to TLS
+        // G3: used in inline cache check
+        // G4: 2nd Long arg
+        // G5: used in inline cache check
+        // G6: used by OS
+        // G7: used by OS
+
+        if (g_reg == G1) {
+          regs[i].set2(G1->as_VMReg()); // This long arg in G1
+          g_reg = G4;                  // Where the next arg goes
+        } else if (g_reg == G4) {
+          regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
+          g_reg = noreg;               // No more longs in registers
+        } else {
+          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
+          stk_reg_pairs += 2;
+        }
+#endif // _LP64
+#else // COMPILER2
+        if (int_reg_pairs + 1 < int_reg_max) {
+          if (is_outgoing) {
+            regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
+          } else {
+            regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
+          }
+          int_reg_pairs += 2;
+        } else {
+          regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
+          stk_reg_pairs += 2;
+        }
+#endif // COMPILER2
+      break;
+
+    case T_FLOAT:
+      if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
+      else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
+      break;
+    case T_DOUBLE:
+      assert(sig_bt[i+1] == T_VOID, "expecting half");
+      if (flt_reg_pairs + 1 < flt_reg_max) {
+        regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
+        flt_reg_pairs += 2;
+      } else {
+        regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
+        stk_reg_pairs += 2;
+      }
+      break;
+    case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
+    default:
+      ShouldNotReachHere();
+    }
+  }
+
+  // retun the amount of stack space these arguments will need.
+  return stk_reg_pairs;
+
+}
+
+// Helper class mostly to avoid passing masm everywhere, and handle store
+// displacement overflow logic for LP64
+class AdapterGenerator {
+  MacroAssembler *masm;
+#ifdef _LP64
+  Register Rdisp;
+  void set_Rdisp(Register r)  { Rdisp = r; }
+#endif // _LP64
+
+  void patch_callers_callsite();
+  void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch);
+
+  // base+st_off points to top of argument
+  int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); }
+  int next_arg_offset(const int st_off) {
+    return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
+  }
+
+#ifdef _LP64
+  // On _LP64 argument slot values are loaded first into a register
+  // because they might not fit into displacement.
+  Register arg_slot(const int st_off);
+  Register next_arg_slot(const int st_off);
+#else
+  int arg_slot(const int st_off)      { return arg_offset(st_off); }
+  int next_arg_slot(const int st_off) { return next_arg_offset(st_off); }
+#endif // _LP64
+
+  // Stores long into offset pointed to by base
+  void store_c2i_long(Register r, Register base,
+                      const int st_off, bool is_stack);
+  void store_c2i_object(Register r, Register base,
+                        const int st_off);
+  void store_c2i_int(Register r, Register base,
+                     const int st_off);
+  void store_c2i_double(VMReg r_2,
+                        VMReg r_1, Register base, const int st_off);
+  void store_c2i_float(FloatRegister f, Register base,
+                       const int st_off);
+
+ public:
+  void gen_c2i_adapter(int total_args_passed,
+                              // VMReg max_arg,
+                              int comp_args_on_stack, // VMRegStackSlots
+                              const BasicType *sig_bt,
+                              const VMRegPair *regs,
+                              Label& skip_fixup);
+  void gen_i2c_adapter(int total_args_passed,
+                              // VMReg max_arg,
+                              int comp_args_on_stack, // VMRegStackSlots
+                              const BasicType *sig_bt,
+                              const VMRegPair *regs);
+
+  AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
+};
+
+
+// Patch the callers callsite with entry to compiled code if it exists.
+void AdapterGenerator::patch_callers_callsite() {
+  Label L;
+  __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
+  __ br_null(G3_scratch, false, __ pt, L);
+  // Schedule the branch target address early.
+  __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
+  // Call into the VM to patch the caller, then jump to compiled callee
+  __ save_frame(4);     // Args in compiled layout; do not blow them
+
+  // Must save all the live Gregs the list is:
+  // G1: 1st Long arg (32bit build)
+  // G2: global allocated to TLS
+  // G3: used in inline cache check (scratch)
+  // G4: 2nd Long arg (32bit build);
+  // G5: used in inline cache check (methodOop)
+
+  // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
+
+#ifdef _LP64
+  // mov(s,d)
+  __ mov(G1, L1);
+  __ mov(G4, L4);
+  __ mov(G5_method, L5);
+  __ mov(G5_method, O0);         // VM needs target method
+  __ mov(I7, O1);                // VM needs caller's callsite
+  // Must be a leaf call...
+  // can be very far once the blob has been relocated
+  Address dest(O7, CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
+  __ relocate(relocInfo::runtime_call_type);
+  __ jumpl_to(dest, O7);
+  __ delayed()->mov(G2_thread, L7_thread_cache);
+  __ mov(L7_thread_cache, G2_thread);
+  __ mov(L1, G1);
+  __ mov(L4, G4);
+  __ mov(L5, G5_method);
+#else
+  __ stx(G1, FP, -8 + STACK_BIAS);
+  __ stx(G4, FP, -16 + STACK_BIAS);
+  __ mov(G5_method, L5);
+  __ mov(G5_method, O0);         // VM needs target method
+  __ mov(I7, O1);                // VM needs caller's callsite
+  // Must be a leaf call...
+  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
+  __ delayed()->mov(G2_thread, L7_thread_cache);
+  __ mov(L7_thread_cache, G2_thread);
+  __ ldx(FP, -8 + STACK_BIAS, G1);
+  __ ldx(FP, -16 + STACK_BIAS, G4);
+  __ mov(L5, G5_method);
+  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
+#endif /* _LP64 */
+
+  __ restore();      // Restore args
+  __ bind(L);
+}
+
+void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off,
+                 Register scratch) {
+  if (TaggedStackInterpreter) {
+    int tag_off = st_off + Interpreter::tag_offset_in_bytes();
+#ifdef _LP64
+    Register tag_slot = Rdisp;
+    __ set(tag_off, tag_slot);
+#else
+    int tag_slot = tag_off;
+#endif // _LP64
+    // have to store zero because local slots can be reused (rats!)
+    if (t == frame::TagValue) {
+      __ st_ptr(G0, base, tag_slot);
+    } else if (t == frame::TagCategory2) {
+      __ st_ptr(G0, base, tag_slot);
+      int next_tag_off  = st_off - Interpreter::stackElementSize() +
+                                   Interpreter::tag_offset_in_bytes();
+#ifdef _LP64
+      __ set(next_tag_off, tag_slot);
+#else
+      tag_slot = next_tag_off;
+#endif // _LP64
+      __ st_ptr(G0, base, tag_slot);
+    } else {
+      __ mov(t, scratch);
+      __ st_ptr(scratch, base, tag_slot);
+    }
+  }
+}
+
+#ifdef _LP64
+Register AdapterGenerator::arg_slot(const int st_off) {
+  __ set( arg_offset(st_off), Rdisp);
+  return Rdisp;
+}
+
+Register AdapterGenerator::next_arg_slot(const int st_off){
+  __ set( next_arg_offset(st_off), Rdisp);
+  return Rdisp;
+}
+#endif // _LP64
+
+// Stores long into offset pointed to by base
+void AdapterGenerator::store_c2i_long(Register r, Register base,
+                                      const int st_off, bool is_stack) {
+#ifdef COMPILER2
+#ifdef _LP64
+  // In V9, longs are given 2 64-bit slots in the interpreter, but the
+  // data is passed in only 1 slot.
+  __ stx(r, base, next_arg_slot(st_off));
+#else
+  // Misaligned store of 64-bit data
+  __ stw(r, base, arg_slot(st_off));    // lo bits
+  __ srlx(r, 32, r);
+  __ stw(r, base, next_arg_slot(st_off));  // hi bits
+#endif // _LP64
+#else
+  if (is_stack) {
+    // Misaligned store of 64-bit data
+    __ stw(r, base, arg_slot(st_off));    // lo bits
+    __ srlx(r, 32, r);
+    __ stw(r, base, next_arg_slot(st_off));  // hi bits
+  } else {
+    __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
+    __ stw(r             , base, next_arg_slot(st_off)); // hi bits
+  }
+#endif // COMPILER2
+  tag_c2i_arg(frame::TagCategory2, base, st_off, r);
+}
+
+void AdapterGenerator::store_c2i_object(Register r, Register base,
+                      const int st_off) {
+  __ st_ptr (r, base, arg_slot(st_off));
+  tag_c2i_arg(frame::TagReference, base, st_off, r);
+}
+
+void AdapterGenerator::store_c2i_int(Register r, Register base,
+                   const int st_off) {
+  __ st (r, base, arg_slot(st_off));
+  tag_c2i_arg(frame::TagValue, base, st_off, r);
+}
+
+// Stores into offset pointed to by base
+void AdapterGenerator::store_c2i_double(VMReg r_2,
+                      VMReg r_1, Register base, const int st_off) {
+#ifdef _LP64
+  // In V9, doubles are given 2 64-bit slots in the interpreter, but the
+  // data is passed in only 1 slot.
+  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
+#else
+  // Need to marshal 64-bit value from misaligned Lesp loads
+  __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
+  __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
+#endif
+  tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch);
+}
+
+void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
+                                       const int st_off) {
+  __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
+  tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch);
+}
+
+void AdapterGenerator::gen_c2i_adapter(
+                            int total_args_passed,
+                            // VMReg max_arg,
+                            int comp_args_on_stack, // VMRegStackSlots
+                            const BasicType *sig_bt,
+                            const VMRegPair *regs,
+                            Label& skip_fixup) {
+
+  // Before we get into the guts of the C2I adapter, see if we should be here
+  // at all.  We've come from compiled code and are attempting to jump to the
+  // interpreter, which means the caller made a static call to get here
+  // (vcalls always get a compiled target if there is one).  Check for a
+  // compiled target.  If there is one, we need to patch the caller's call.
+  // However we will run interpreted if we come thru here. The next pass
+  // thru the call site will run compiled. If we ran compiled here then
+  // we can (theorectically) do endless i2c->c2i->i2c transitions during
+  // deopt/uncommon trap cycles. If we always go interpreted here then
+  // we can have at most one and don't need to play any tricks to keep
+  // from endlessly growing the stack.
+  //
+  // Actually if we detected that we had an i2c->c2i transition here we
+  // ought to be able to reset the world back to the state of the interpreted
+  // call and not bother building another interpreter arg area. We don't
+  // do that at this point.
+
+  patch_callers_callsite();
+
+  __ bind(skip_fixup);
+
+  // Since all args are passed on the stack, total_args_passed*wordSize is the
+  // space we need.  Add in varargs area needed by the interpreter. Round up
+  // to stack alignment.
+  const int arg_size = total_args_passed * Interpreter::stackElementSize();
+  const int varargs_area =
+                 (frame::varargs_offset - frame::register_save_words)*wordSize;
+  const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
+
+  int bias = STACK_BIAS;
+  const int interp_arg_offset = frame::varargs_offset*wordSize +
+                        (total_args_passed-1)*Interpreter::stackElementSize();
+
+  Register base = SP;
+
+#ifdef _LP64
+  // In the 64bit build because of wider slots and STACKBIAS we can run
+  // out of bits in the displacement to do loads and stores.  Use g3 as
+  // temporary displacement.
+  if (! __ is_simm13(extraspace)) {
+    __ set(extraspace, G3_scratch);
+    __ sub(SP, G3_scratch, SP);
+  } else {
+    __ sub(SP, extraspace, SP);
+  }
+  set_Rdisp(G3_scratch);
+#else
+  __ sub(SP, extraspace, SP);
+#endif // _LP64
+
+  // First write G1 (if used) to where ever it must go
+  for (int i=0; i<total_args_passed; i++) {
+    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (r_1 == G1_scratch->as_VMReg()) {
+      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
+        store_c2i_object(G1_scratch, base, st_off);
+      } else if (sig_bt[i] == T_LONG) {
+        assert(!TieredCompilation, "should not use register args for longs");
+        store_c2i_long(G1_scratch, base, st_off, false);
+      } else {
+        store_c2i_int(G1_scratch, base, st_off);
+      }
+    }
+  }
+
+  // Now write the args into the outgoing interpreter space
+  for (int i=0; i<total_args_passed; i++) {
+    const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+    // Skip G1 if found as we did it first in order to free it up
+    if (r_1 == G1_scratch->as_VMReg()) {
+      continue;
+    }
+#ifdef ASSERT
+    bool G1_forced = false;
+#endif // ASSERT
+    if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
+#ifdef _LP64
+      Register ld_off = Rdisp;
+      __ set(reg2offset(r_1) + extraspace + bias, ld_off);
+#else
+      int ld_off = reg2offset(r_1) + extraspace + bias;
+#ifdef ASSERT
+      G1_forced = true;
+#endif // ASSERT
+#endif // _LP64
+      r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
+      if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
+      else                  __ ldx(base, ld_off, G1_scratch);
+    }
+
+    if (r_1->is_Register()) {
+      Register r = r_1->as_Register()->after_restore();
+      if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
+        store_c2i_object(r, base, st_off);
+      } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
+        if (TieredCompilation) {
+          assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
+        }
+        store_c2i_long(r, base, st_off, r_2->is_stack());
+      } else {
+        store_c2i_int(r, base, st_off);
+      }
+    } else {
+      assert(r_1->is_FloatRegister(), "");
+      if (sig_bt[i] == T_FLOAT) {
+        store_c2i_float(r_1->as_FloatRegister(), base, st_off);
+      } else {
+        assert(sig_bt[i] == T_DOUBLE, "wrong type");
+        store_c2i_double(r_2, r_1, base, st_off);
+      }
+    }
+  }
+
+#ifdef _LP64
+  // Need to reload G3_scratch, used for temporary displacements.
+  __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
+
+  // Pass O5_savedSP as an argument to the interpreter.
+  // The interpreter will restore SP to this value before returning.
+  __ set(extraspace, G1);
+  __ add(SP, G1, O5_savedSP);
+#else
+  // Pass O5_savedSP as an argument to the interpreter.
+  // The interpreter will restore SP to this value before returning.
+  __ add(SP, extraspace, O5_savedSP);
+#endif // _LP64
+
+  __ mov((frame::varargs_offset)*wordSize -
+         1*Interpreter::stackElementSize()+bias+BytesPerWord, G1);
+  // Jump to the interpreter just as if interpreter was doing it.
+  __ jmpl(G3_scratch, 0, G0);
+  // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
+  // (really L0) is in use by the compiled frame as a generic temp.  However,
+  // the interpreter does not know where its args are without some kind of
+  // arg pointer being passed in.  Pass it in Gargs.
+  __ delayed()->add(SP, G1, Gargs);
+}
+
+void AdapterGenerator::gen_i2c_adapter(
+                            int total_args_passed,
+                            // VMReg max_arg,
+                            int comp_args_on_stack, // VMRegStackSlots
+                            const BasicType *sig_bt,
+                            const VMRegPair *regs) {
+
+  // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
+  // layout.  Lesp was saved by the calling I-frame and will be restored on
+  // return.  Meanwhile, outgoing arg space is all owned by the callee
+  // C-frame, so we can mangle it at will.  After adjusting the frame size,
+  // hoist register arguments and repack other args according to the compiled
+  // code convention.  Finally, end in a jump to the compiled code.  The entry
+  // point address is the start of the buffer.
+
+  // We will only enter here from an interpreted frame and never from after
+  // passing thru a c2i. Azul allowed this but we do not. If we lose the
+  // race and use a c2i we will remain interpreted for the race loser(s).
+  // This removes all sorts of headaches on the x86 side and also eliminates
+  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
+
+  // As you can see from the list of inputs & outputs there are not a lot
+  // of temp registers to work with: mostly G1, G3 & G4.
+
+  // Inputs:
+  // G2_thread      - TLS
+  // G5_method      - Method oop
+  // O0             - Flag telling us to restore SP from O5
+  // O4_args        - Pointer to interpreter's args
+  // O5             - Caller's saved SP, to be restored if needed
+  // O6             - Current SP!
+  // O7             - Valid return address
+  // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
+
+  // Outputs:
+  // G2_thread      - TLS
+  // G1, G4         - Outgoing long args in 32-bit build
+  // O0-O5          - Outgoing args in compiled layout
+  // O6             - Adjusted or restored SP
+  // O7             - Valid return address
+  // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
+  // F0-F7          - more outgoing args
+
+
+  // O4 is about to get loaded up with compiled callee's args
+  __ sub(Gargs, BytesPerWord, Gargs);
+
+#ifdef ASSERT
+  {
+    // on entry OsavedSP and SP should be equal
+    Label ok;
+    __ cmp(O5_savedSP, SP);
+    __ br(Assembler::equal, false, Assembler::pt, ok);
+    __ delayed()->nop();
+    __ stop("I5_savedSP not set");
+    __ should_not_reach_here();
+    __ bind(ok);
+  }
+#endif
+
+  // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
+  // WITH O7 HOLDING A VALID RETURN PC
+  //
+  // |              |
+  // :  java stack  :
+  // |              |
+  // +--------------+ <--- start of outgoing args
+  // |   receiver   |   |
+  // : rest of args :   |---size is java-arg-words
+  // |              |   |
+  // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
+  // |              |   |
+  // :    unused    :   |---Space for max Java stack, plus stack alignment
+  // |              |   |
+  // +--------------+ <--- SP + 16*wordsize
+  // |              |
+  // :    window    :
+  // |              |
+  // +--------------+ <--- SP
+
+  // WE REPACK THE STACK.  We use the common calling convention layout as
+  // discovered by calling SharedRuntime::calling_convention.  We assume it
+  // causes an arbitrary shuffle of memory, which may require some register
+  // temps to do the shuffle.  We hope for (and optimize for) the case where
+  // temps are not needed.  We may have to resize the stack slightly, in case
+  // we need alignment padding (32-bit interpreter can pass longs & doubles
+  // misaligned, but the compilers expect them aligned).
+  //
+  // |              |
+  // :  java stack  :
+  // |              |
+  // +--------------+ <--- start of outgoing args
+  // |  pad, align  |   |
+  // +--------------+   |
+  // | ints, floats |   |---Outgoing stack args, packed low.
+  // +--------------+   |   First few args in registers.
+  // :   doubles    :   |
+  // |   longs      |   |
+  // +--------------+ <--- SP' + 16*wordsize
+  // |              |
+  // :    window    :
+  // |              |
+  // +--------------+ <--- SP'
+
+  // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
+  // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
+  // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
+
+  // Cut-out for having no stack args.  Since up to 6 args are passed
+  // in registers, we will commonly have no stack args.
+  if (comp_args_on_stack > 0) {
+
+    // Convert VMReg stack slots to words.
+    int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
+    // Round up to miminum stack alignment, in wordSize
+    comp_words_on_stack = round_to(comp_words_on_stack, 2);
+    // Now compute the distance from Lesp to SP.  This calculation does not
+    // include the space for total_args_passed because Lesp has not yet popped
+    // the arguments.
+    __ sub(SP, (comp_words_on_stack)*wordSize, SP);
+  }
+
+  // Will jump to the compiled code just as if compiled code was doing it.
+  // Pre-load the register-jump target early, to schedule it better.
+  __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
+
+  // Now generate the shuffle code.  Pick up all register args and move the
+  // rest through G1_scratch.
+  for (int i=0; i<total_args_passed; i++) {
+    if (sig_bt[i] == T_VOID) {
+      // Longs and doubles are passed in native word order, but misaligned
+      // in the 32-bit build.
+      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
+      continue;
+    }
+
+    // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
+    // 32-bit build and aligned in the 64-bit build.  Look for the obvious
+    // ldx/lddf optimizations.
+
+    // Load in argument order going down.
+    const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
+#ifdef _LP64
+    set_Rdisp(G1_scratch);
+#endif // _LP64
+
+    VMReg r_1 = regs[i].first();
+    VMReg r_2 = regs[i].second();
+    if (!r_1->is_valid()) {
+      assert(!r_2->is_valid(), "");
+      continue;
+    }
+    if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
+      r_1 = F8->as_VMReg();        // as part of the load/store shuffle
+      if (r_2->is_valid()) r_2 = r_1->next();
+    }
+    if (r_1->is_Register()) {  // Register argument
+      Register r = r_1->as_Register()->after_restore();
+      if (!r_2->is_valid()) {
+        __ ld(Gargs, arg_slot(ld_off), r);
+      } else {
+#ifdef _LP64
+        // In V9, longs are given 2 64-bit slots in the interpreter, but the
+        // data is passed in only 1 slot.
+        Register slot = (sig_bt[i]==T_LONG) ?
+              next_arg_slot(ld_off) : arg_slot(ld_off);
+        __ ldx(Gargs, slot, r);
+#else
+        // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
+        // stack shuffle.  Load the first 2 longs into G1/G4 later.
+#endif
+      }
+    } else {
+      assert(r_1->is_FloatRegister(), "");
+      if (!r_2->is_valid()) {
+        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
+      } else {
+#ifdef _LP64
+        // In V9, doubles are given 2 64-bit slots in the interpreter, but the
+        // data is passed in only 1 slot.  This code also handles longs that
+        // are passed on the stack, but need a stack-to-stack move through a
+        // spare float register.
+        Register slot = (sig_bt[i]==T_LONG || sig_bt[i] == T_DOUBLE) ?
+              next_arg_slot(ld_off) : arg_slot(ld_off);
+        __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
+#else
+        // Need to marshal 64-bit value from misaligned Lesp loads
+        __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
+        __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
+#endif
+      }
+    }
+    // Was the argument really intended to be on the stack, but was loaded
+    // into F8/F9?
+    if (regs[i].first()->is_stack()) {
+      assert(r_1->as_FloatRegister() == F8, "fix this code");
+      // Convert stack slot to an SP offset
+      int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
+      // Store down the shuffled stack word.  Target address _is_ aligned.
+      if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, st_off);
+      else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, st_off);
+    }
+  }
+  bool made_space = false;
+#ifndef _LP64
+  // May need to pick up a few long args in G1/G4
+  bool g4_crushed = false;
+  bool g3_crushed = false;
+  for (int i=0; i<total_args_passed; i++) {
+    if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
+      // Load in argument order going down
+      int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
+      // Need to marshal 64-bit value from misaligned Lesp loads
+      Register r = regs[i].first()->as_Register()->after_restore();
+      if (r == G1 || r == G4) {
+        assert(!g4_crushed, "ordering problem");
+        if (r == G4){
+          g4_crushed = true;
+          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
+          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
+        } else {
+          // better schedule this way
+          __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
+          __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
+        }
+        g3_crushed = true;
+        __ sllx(r, 32, r);
+        __ or3(G3_scratch, r, r);
+      } else {
+        assert(r->is_out(), "longs passed in two O registers");
+        __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
+        __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
+      }
+    }
+  }
+#endif
+
+  // Jump to the compiled code just as if compiled code was doing it.
+  //
+#ifndef _LP64
+    if (g3_crushed) {
+      // Rats load was wasted, at least it is in cache...
+      __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
+    }
+#endif /* _LP64 */
+
+    // 6243940 We might end up in handle_wrong_method if
+    // the callee is deoptimized as we race thru here. If that
+    // happens we don't want to take a safepoint because the
+    // caller frame will look interpreted and arguments are now
+    // "compiled" so it is much better to make this transition
+    // invisible to the stack walking code. Unfortunately if
+    // we try and find the callee by normal means a safepoint
+    // is possible. So we stash the desired callee in the thread
+    // and the vm will find there should this case occur.
+    Address callee_target_addr(G2_thread, 0, in_bytes(JavaThread::callee_target_offset()));
+    __ st_ptr(G5_method, callee_target_addr);
+
+    if (StressNonEntrant) {
+      // Open a big window for deopt failure
+      __ save_frame(0);
+      __ mov(G0, L0);
+      Label loop;
+      __ bind(loop);
+      __ sub(L0, 1, L0);
+      __ br_null(L0, false, Assembler::pt, loop);
+      __ delayed()->nop();
+
+      __ restore();
+    }
+
+
+    __ jmpl(G3, 0, G0);
+    __ delayed()->nop();
+}
+
+// ---------------------------------------------------------------
+AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
+                                                            int total_args_passed,
+                                                            // VMReg max_arg,
+                                                            int comp_args_on_stack, // VMRegStackSlots
+                                                            const BasicType *sig_bt,
+                                                            const VMRegPair *regs) {
+  address i2c_entry = __ pc();
+
+  AdapterGenerator agen(masm);
+
+  agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
+
+
+  // -------------------------------------------------------------------------
+  // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
+  // args start out packed in the compiled layout.  They need to be unpacked
+  // into the interpreter layout.  This will almost always require some stack
+  // space.  We grow the current (compiled) stack, then repack the args.  We
+  // finally end in a jump to the generic interpreter entry point.  On exit
+  // from the interpreter, the interpreter will restore our SP (lest the
+  // compiled code, which relys solely on SP and not FP, get sick).
+
+  address c2i_unverified_entry = __ pc();
+  Label skip_fixup;
+  {
+#if !defined(_LP64) && defined(COMPILER2)
+    Register R_temp   = L0;   // another scratch register
+#else
+    Register R_temp   = G1;   // another scratch register
+#endif
+
+    Address ic_miss(G3_scratch, SharedRuntime::get_ic_miss_stub());
+
+    __ verify_oop(O0);
+    __ verify_oop(G5_method);
+    __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
+    __ verify_oop(G3_scratch);
+
+#if !defined(_LP64) && defined(COMPILER2)
+    __ save(SP, -frame::register_save_words*wordSize, SP);
+    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
+    __ verify_oop(R_temp);
+    __ cmp(G3_scratch, R_temp);
+    __ restore();
+#else
+    __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
+    __ verify_oop(R_temp);
+    __ cmp(G3_scratch, R_temp);
+#endif
+
+    Label ok, ok2;
+    __ brx(Assembler::equal, false, Assembler::pt, ok);
+    __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
+    __ jump_to(ic_miss);
+    __ delayed()->nop();
+
+    __ bind(ok);
+    // Method might have been compiled since the call site was patched to
+    // interpreted if that is the case treat it as a miss so we can get
+    // the call site corrected.
+    __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
+    __ bind(ok2);
+    __ br_null(G3_scratch, false, __ pt, skip_fixup);
+    __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
+    __ jump_to(ic_miss);
+    __ delayed()->nop();
+
+  }
+
+  address c2i_entry = __ pc();
+
+  agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
+
+  __ flush();
+  return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
+
+}
+
+// Helper function for native calling conventions
+static VMReg int_stk_helper( int i ) {
+  // Bias any stack based VMReg we get by ignoring the window area
+  // but not the register parameter save area.
+  //
+  // This is strange for the following reasons. We'd normally expect
+  // the calling convention to return an VMReg for a stack slot
+  // completely ignoring any abi reserved area. C2 thinks of that
+  // abi area as only out_preserve_stack_slots. This does not include
+  // the area allocated by the C abi to store down integer arguments
+  // because the java calling convention does not use it. So
+  // since c2 assumes that there are only out_preserve_stack_slots
+  // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
+  // location the c calling convention must add in this bias amount
+  // to make up for the fact that the out_preserve_stack_slots is
+  // insufficient for C calls. What a mess. I sure hope those 6
+  // stack words were worth it on every java call!
+
+  // Another way of cleaning this up would be for out_preserve_stack_slots
+  // to take a parameter to say whether it was C or java calling conventions.
+  // Then things might look a little better (but not much).
+
+  int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
+  if( mem_parm_offset < 0 ) {
+    return as_oRegister(i)->as_VMReg();
+  } else {
+    int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
+    // Now return a biased offset that will be correct when out_preserve_slots is added back in
+    return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
+  }
+}
+
+
+int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
+                                         VMRegPair *regs,
+                                         int total_args_passed) {
+
+    // Return the number of VMReg stack_slots needed for the args.
+    // This value does not include an abi space (like register window
+    // save area).
+
+    // The native convention is V8 if !LP64
+    // The LP64 convention is the V9 convention which is slightly more sane.
+
+    // We return the amount of VMReg stack slots we need to reserve for all
+    // the arguments NOT counting out_preserve_stack_slots. Since we always
+    // have space for storing at least 6 registers to memory we start with that.
+    // See int_stk_helper for a further discussion.
+    int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
+
+#ifdef _LP64
+    // V9 convention: All things "as-if" on double-wide stack slots.
+    // Hoist any int/ptr/long's in the first 6 to int regs.
+    // Hoist any flt/dbl's in the first 16 dbl regs.
+    int j = 0;                  // Count of actual args, not HALVES
+    for( int i=0; i<total_args_passed; i++, j++ ) {
+      switch( sig_bt[i] ) {
+      case T_BOOLEAN:
+      case T_BYTE:
+      case T_CHAR:
+      case T_INT:
+      case T_SHORT:
+        regs[i].set1( int_stk_helper( j ) ); break;
+      case T_LONG:
+        assert( sig_bt[i+1] == T_VOID, "expecting half" );
+      case T_ADDRESS: // raw pointers, like current thread, for VM calls
+      case T_ARRAY:
+      case T_OBJECT:
+        regs[i].set2( int_stk_helper( j ) );
+        break;
+      case T_FLOAT:
+        if ( j < 16 ) {
+          // V9ism: floats go in ODD registers
+          regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
+        } else {
+          // V9ism: floats go in ODD stack slot
+          regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
+        }
+        break;
+      case T_DOUBLE:
+        assert( sig_bt[i+1] == T_VOID, "expecting half" );
+        if ( j < 16 ) {
+          // V9ism: doubles go in EVEN/ODD regs
+          regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
+        } else {
+          // V9ism: doubles go in EVEN/ODD stack slots
+          regs[i].set2(VMRegImpl::stack2reg(j<<1));
+        }
+        break;
+      case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
+      default:
+        ShouldNotReachHere();
+      }
+      if (regs[i].first()->is_stack()) {
+        int off =  regs[i].first()->reg2stack();
+        if (off > max_stack_slots) max_stack_slots = off;
+      }
+      if (regs[i].second()->is_stack()) {
+        int off =  regs[i].second()->reg2stack();
+        if (off > max_stack_slots) max_stack_slots = off;
+      }
+    }
+
+#else // _LP64
+    // V8 convention: first 6 things in O-regs, rest on stack.
+    // Alignment is willy-nilly.
+    for( int i=0; i<total_args_passed; i++ ) {
+      switch( sig_bt[i] ) {
+      case T_ADDRESS: // raw pointers, like current thread, for VM calls
+      case T_ARRAY:
+      case T_BOOLEAN:
+      case T_BYTE:
+      case T_CHAR:
+      case T_FLOAT:
+      case T_INT:
+      case T_OBJECT:
+      case T_SHORT:
+        regs[i].set1( int_stk_helper( i ) );
+        break;
+      case T_DOUBLE:
+      case T_LONG:
+        assert( sig_bt[i+1] == T_VOID, "expecting half" );
+        regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
+        break;
+      case T_VOID: regs[i].set_bad(); break;
+      default:
+        ShouldNotReachHere();
+      }
+      if (regs[i].first()->is_stack()) {
+        int off =  regs[i].first()->reg2stack();
+        if (off > max_stack_slots) max_stack_slots = off;
+      }
+      if (regs[i].second()->is_stack()) {
+        int off =  regs[i].second()->reg2stack();
+        if (off > max_stack_slots) max_stack_slots = off;
+      }
+    }
+#endif // _LP64
+
+  return round_to(max_stack_slots + 1, 2);
+
+}
+
+
+// ---------------------------------------------------------------------------
+void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  switch (ret_type) {
+  case T_FLOAT:
+    __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
+    break;
+  case T_DOUBLE:
+    __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
+    break;
+  }
+}
+
+void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
+  switch (ret_type) {
+  case T_FLOAT:
+    __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
+    break;
+  case T_DOUBLE:
+    __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
+    break;
+  }
+}
+
+// Check and forward and pending exception.  Thread is stored in
+// L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
+// is no exception handler.  We merely pop this frame off and throw the
+// exception in the caller's frame.
+static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
+  Label L;
+  __ br_null(Rex_oop, false, Assembler::pt, L);
+  __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
+  // Since this is a native call, we *know* the proper exception handler
+  // without calling into the VM: it's the empty function.  Just pop this
+  // frame and then jump to forward_exception_entry; O7 will contain the
+  // native caller's return PC.
+  Address exception_entry(G3_scratch, StubRoutines::forward_exception_entry());
+  __ jump_to(exception_entry);
+  __ delayed()->restore();      // Pop this frame off.
+  __ bind(L);
+}
+
+// A simple move of integer like type
+static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack
+      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
+      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
+    } else {
+      // stack to reg
+      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
+  } else {
+    __ mov(src.first()->as_Register(), dst.first()->as_Register());
+  }
+}
+
+// On 64 bit we will store integer like items to the stack as
+// 64 bits items (sparc abi) even though java would only store
+// 32bits for a parameter. On 32bit it will simply be 32 bits
+// So this routine will do 32->32 on 32bit and 32->64 on 64bit
+static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack
+      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
+      __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
+    } else {
+      // stack to reg
+      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
+  } else {
+    __ mov(src.first()->as_Register(), dst.first()->as_Register());
+  }
+}
+
+
+// An oop arg. Must pass a handle not the oop itself
+static void object_move(MacroAssembler* masm,
+                        OopMap* map,
+                        int oop_handle_offset,
+                        int framesize_in_slots,
+                        VMRegPair src,
+                        VMRegPair dst,
+                        bool is_receiver,
+                        int* receiver_offset) {
+
+  // must pass a handle. First figure out the location we use as a handle
+
+  if (src.first()->is_stack()) {
+    // Oop is already on the stack
+    Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
+    __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
+    __ ld_ptr(rHandle, 0, L4);
+#ifdef _LP64
+    __ movr( Assembler::rc_z, L4, G0, rHandle );
+#else
+    __ tst( L4 );
+    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
+#endif
+    if (dst.first()->is_stack()) {
+      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
+    }
+    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
+    if (is_receiver) {
+      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
+    }
+    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
+  } else {
+    // Oop is in an input register pass we must flush it to the stack
+    const Register rOop = src.first()->as_Register();
+    const Register rHandle = L5;
+    int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
+    int offset = oop_slot*VMRegImpl::stack_slot_size;
+    Label skip;
+    __ st_ptr(rOop, SP, offset + STACK_BIAS);
+    if (is_receiver) {
+      *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
+    }
+    map->set_oop(VMRegImpl::stack2reg(oop_slot));
+    __ add(SP, offset + STACK_BIAS, rHandle);
+#ifdef _LP64
+    __ movr( Assembler::rc_z, rOop, G0, rHandle );
+#else
+    __ tst( rOop );
+    __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
+#endif
+
+    if (dst.first()->is_stack()) {
+      __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
+    } else {
+      __ mov(rHandle, dst.first()->as_Register());
+    }
+  }
+}
+
+// A float arg may have to do float reg int reg conversion
+static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
+
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack the easiest of the bunch
+      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
+      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
+    } else {
+      // stack to reg
+      if (dst.first()->is_Register()) {
+        __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
+      } else {
+        __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
+      }
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    if (src.first()->is_Register()) {
+      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
+    } else {
+      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
+    }
+  } else {
+    // reg to reg
+    if (src.first()->is_Register()) {
+      if (dst.first()->is_Register()) {
+        // gpr -> gpr
+        __ mov(src.first()->as_Register(), dst.first()->as_Register());
+      } else {
+        // gpr -> fpr
+        __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
+        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
+      }
+    } else if (dst.first()->is_Register()) {
+      // fpr -> gpr
+      __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
+      __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
+    } else {
+      // fpr -> fpr
+      // In theory these overlap but the ordering is such that this is likely a nop
+      if ( src.first() != dst.first()) {
+        __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
+      }
+    }
+  }
+}
+
+static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+  VMRegPair src_lo(src.first());
+  VMRegPair src_hi(src.second());
+  VMRegPair dst_lo(dst.first());
+  VMRegPair dst_hi(dst.second());
+  simple_move32(masm, src_lo, dst_lo);
+  simple_move32(masm, src_hi, dst_hi);
+}
+
+// A long move
+static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+
+  // Do the simple ones here else do two int moves
+  if (src.is_single_phys_reg() ) {
+    if (dst.is_single_phys_reg()) {
+      __ mov(src.first()->as_Register(), dst.first()->as_Register());
+    } else {
+      // split src into two separate registers
+      // Remember hi means hi address or lsw on sparc
+      // Move msw to lsw
+      if (dst.second()->is_reg()) {
+        // MSW -> MSW
+        __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
+        // Now LSW -> LSW
+        // this will only move lo -> lo and ignore hi
+        VMRegPair split(dst.second());
+        simple_move32(masm, src, split);
+      } else {
+        VMRegPair split(src.first(), L4->as_VMReg());
+        // MSW -> MSW (lo ie. first word)
+        __ srax(src.first()->as_Register(), 32, L4);
+        split_long_move(masm, split, dst);
+      }
+    }
+  } else if (dst.is_single_phys_reg()) {
+    if (src.is_adjacent_aligned_on_stack(2)) {
+      __ ldd(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
+    } else {
+      // dst is a single reg.
+      // Remember lo is low address not msb for stack slots
+      // and lo is the "real" register for registers
+      // src is
+
+      VMRegPair split;
+
+      if (src.first()->is_reg()) {
+        // src.lo (msw) is a reg, src.hi is stk/reg
+        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
+        split.set_pair(dst.first(), src.first());
+      } else {
+        // msw is stack move to L5
+        // lsw is stack move to dst.lo (real reg)
+        // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
+        split.set_pair(dst.first(), L5->as_VMReg());
+      }
+
+      // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
+      // msw   -> src.lo/L5,  lsw -> dst.lo
+      split_long_move(masm, src, split);
+
+      // So dst now has the low order correct position the
+      // msw half
+      __ sllx(split.first()->as_Register(), 32, L5);
+
+      const Register d = dst.first()->as_Register();
+      __ or3(L5, d, d);
+    }
+  } else {
+    // For LP64 we can probably do better.
+    split_long_move(masm, src, dst);
+  }
+}
+
+// A double move
+static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
+
+  // The painful thing here is that like long_move a VMRegPair might be
+  // 1: a single physical register
+  // 2: two physical registers (v8)
+  // 3: a physical reg [lo] and a stack slot [hi] (v8)
+  // 4: two stack slots
+
+  // Since src is always a java calling convention we know that the src pair
+  // is always either all registers or all stack (and aligned?)
+
+  // in a register [lo] and a stack slot [hi]
+  if (src.first()->is_stack()) {
+    if (dst.first()->is_stack()) {
+      // stack to stack the easiest of the bunch
+      // ought to be a way to do this where if alignment is ok we use ldd/std when possible
+      __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
+      __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
+      __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
+      __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
+    } else {
+      // stack to reg
+      if (dst.second()->is_stack()) {
+        // stack -> reg, stack -> stack
+        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
+        if (dst.first()->is_Register()) {
+          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
+        } else {
+          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
+        }
+        // This was missing. (very rare case)
+        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
+      } else {
+        // stack -> reg
+        // Eventually optimize for alignment QQQ
+        if (dst.first()->is_Register()) {
+          __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
+          __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
+        } else {
+          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
+          __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
+        }
+      }
+    }
+  } else if (dst.first()->is_stack()) {
+    // reg to stack
+    if (src.first()->is_Register()) {
+      // Eventually optimize for alignment QQQ
+      __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
+      if (src.second()->is_stack()) {
+        __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
+        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
+      } else {
+        __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
+      }
+    } else {
+      // fpr to stack
+      if (src.second()->is_stack()) {
+        ShouldNotReachHere();
+      } else {
+        // Is the stack aligned?
+        if (reg2offset(dst.first()) & 0x7) {
+          // No do as pairs
+          __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
+          __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
+        } else {
+          __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
+        }
+      }
+    }
+  } else {
+    // reg to reg
+    if (src.first()->is_Register()) {
+      if (dst.first()->is_Register()) {
+        // gpr -> gpr
+        __ mov(src.first()->as_Register(), dst.first()->as_Register());
+        __ mov(src.second()->as_Register(), dst.second()->as_Register());
+      } else {
+        // gpr -> fpr
+        // ought to be able to do a single store
+        __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
+        __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
+        // ought to be able to do a single load
+        __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
+        __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
+      }
+    } else if (dst.first()->is_Register()) {
+      // fpr -> gpr
+      // ought to be able to do a single store
+      __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
+      // ought to be able to do a single load
+      // REMEMBER first() is low address not LSB
+      __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
+      if (dst.second()->is_Register()) {
+        __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
+      } else {
+        __ ld(FP, -4 + STACK_BIAS, L4);
+        __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
+      }
+    } else {
+      // fpr -> fpr
+      // In theory these overlap but the ordering is such that this is likely a nop
+      if ( src.first() != dst.first()) {
+        __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
+      }
+    }
+  }
+}
+
+// Creates an inner frame if one hasn't already been created, and
+// saves a copy of the thread in L7_thread_cache
+static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
+  if (!*already_created) {
+    __ save_frame(0);
+    // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
+    // Don't use save_thread because it smashes G2 and we merely want to save a
+    // copy
+    __ mov(G2_thread, L7_thread_cache);
+    *already_created = true;
+  }
+}
+
+// ---------------------------------------------------------------------------
+// Generate a native wrapper for a given method.  The method takes arguments
+// in the Java compiled code convention, marshals them to the native
+// convention (handlizes oops, etc), transitions to native, makes the call,
+// returns to java state (possibly blocking), unhandlizes any result and
+// returns.
+nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
+                                                methodHandle method,
+                                                int total_in_args,
+                                                int comp_args_on_stack, // in VMRegStackSlots
+                                                BasicType *in_sig_bt,
+                                                VMRegPair *in_regs,
+                                                BasicType ret_type) {
+
+
+  // Native nmethod wrappers never take possesion of the oop arguments.
+  // So the caller will gc the arguments. The only thing we need an
+  // oopMap for is if the call is static
+  //
+  // An OopMap for lock (and class if static), and one for the VM call itself
+  OopMapSet *oop_maps = new OopMapSet();
+  intptr_t start = (intptr_t)__ pc();
+
+  // First thing make an ic check to see if we should even be here
+  {
+    Label L;
+    const Register temp_reg = G3_scratch;
+    Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
+    __ verify_oop(O0);
+    __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
+    __ cmp(temp_reg, G5_inline_cache_reg);
+    __ brx(Assembler::equal, true, Assembler::pt, L);
+    __ delayed()->nop();
+
+    __ jump_to(ic_miss, 0);
+    __ delayed()->nop();
+    __ align(CodeEntryAlignment);
+    __ bind(L);
+  }
+
+  int vep_offset = ((intptr_t)__ pc()) - start;
+
+#ifdef COMPILER1
+  if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
+    // Object.hashCode can pull the hashCode from the header word
+    // instead of doing a full VM transition once it's been computed.
+    // Since hashCode is usually polymorphic at call sites we can't do
+    // this optimization at the call site without a lot of work.
+    Label slowCase;
+    Register receiver             = O0;
+    Register result               = O0;
+    Register header               = G3_scratch;
+    Register hash                 = G3_scratch; // overwrite header value with hash value
+    Register mask                 = G1;         // to get hash field from header
+
+    // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
+    // We depend on hash_mask being at most 32 bits and avoid the use of
+    // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
+    // vm: see markOop.hpp.
+    __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
+    __ sethi(markOopDesc::hash_mask, mask);
+    __ btst(markOopDesc::unlocked_value, header);
+    __ br(Assembler::zero, false, Assembler::pn, slowCase);
+    if (UseBiasedLocking) {
+      // Check if biased and fall through to runtime if so
+      __ delayed()->nop();
+      __ btst(markOopDesc::biased_lock_bit_in_place, header);
+      __ br(Assembler::notZero, false, Assembler::pn, slowCase);
+    }
+    __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
+
+    // Check for a valid (non-zero) hash code and get its value.
+#ifdef _LP64
+    __ srlx(header, markOopDesc::hash_shift, hash);
+#else
+    __ srl(header, markOopDesc::hash_shift, hash);
+#endif
+    __ andcc(hash, mask, hash);
+    __ br(Assembler::equal, false, Assembler::pn, slowCase);
+    __ delayed()->nop();
+
+    // leaf return.
+    __ retl();
+    __ delayed()->mov(hash, result);
+    __ bind(slowCase);
+  }
+#endif // COMPILER1
+
+
+  // We have received a description of where all the java arg are located
+  // on entry to the wrapper. We need to convert these args to where
+  // the jni function will expect them. To figure out where they go
+  // we convert the java signature to a C signature by inserting
+  // the hidden arguments as arg[0] and possibly arg[1] (static method)
+
+  int total_c_args = total_in_args + 1;
+  if (method->is_static()) {
+    total_c_args++;
+  }
+
+  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
+  VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
+
+  int argc = 0;
+  out_sig_bt[argc++] = T_ADDRESS;
+  if (method->is_static()) {
+    out_sig_bt[argc++] = T_OBJECT;
+  }
+
+  for (int i = 0; i < total_in_args ; i++ ) {
+    out_sig_bt[argc++] = in_sig_bt[i];
+  }
+
+  // Now figure out where the args must be stored and how much stack space
+  // they require (neglecting out_preserve_stack_slots but space for storing
+  // the 1st six register arguments). It's weird see int_stk_helper.
+  //
+  int out_arg_slots;
+  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
+
+  // Compute framesize for the wrapper.  We need to handlize all oops in
+  // registers. We must create space for them here that is disjoint from
+  // the windowed save area because we have no control over when we might
+  // flush the window again and overwrite values that gc has since modified.
+  // (The live window race)
+  //
+  // We always just allocate 6 word for storing down these object. This allow
+  // us to simply record the base and use the Ireg number to decide which
+  // slot to use. (Note that the reg number is the inbound number not the
+  // outbound number).
+  // We must shuffle args to match the native convention, and include var-args space.
+
+  // Calculate the total number of stack slots we will need.
+
+  // First count the abi requirement plus all of the outgoing args
+  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
+
+  // Now the space for the inbound oop handle area
+
+  int oop_handle_offset = stack_slots;
+  stack_slots += 6*VMRegImpl::slots_per_word;
+
+  // Now any space we need for handlizing a klass if static method
+
+  int oop_temp_slot_offset = 0;
+  int klass_slot_offset = 0;
+  int klass_offset = -1;
+  int lock_slot_offset = 0;
+  bool is_static = false;
+
+  if (method->is_static()) {
+    klass_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
+    is_static = true;
+  }
+
+  // Plus a lock if needed
+
+  if (method->is_synchronized()) {
+    lock_slot_offset = stack_slots;
+    stack_slots += VMRegImpl::slots_per_word;
+  }
+
+  // Now a place to save return value or as a temporary for any gpr -> fpr moves
+  stack_slots += 2;
+
+  // Ok The space we have allocated will look like:
+  //
+  //
+  // FP-> |                     |
+  //      |---------------------|
+  //      | 2 slots for moves   |
+  //      |---------------------|
+  //      | lock box (if sync)  |
+  //      |---------------------| <- lock_slot_offset
+  //      | klass (if static)   |
+  //      |---------------------| <- klass_slot_offset
+  //      | oopHandle area      |
+  //      |---------------------| <- oop_handle_offset
+  //      | outbound memory     |
+  //      | based arguments     |
+  //      |                     |
+  //      |---------------------|
+  //      | vararg area         |
+  //      |---------------------|
+  //      |                     |
+  // SP-> | out_preserved_slots |
+  //
+  //
+
+
+  // Now compute actual number of stack words we need rounding to make
+  // stack properly aligned.
+  stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
+
+  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
+
+  // Generate stack overflow check before creating frame
+  __ generate_stack_overflow_check(stack_size);
+
+  // Generate a new frame for the wrapper.
+  __ save(SP, -stack_size, SP);
+
+  int frame_complete = ((intptr_t)__ pc()) - start;
+
+  __ verify_thread();
+
+
+  //
+  // We immediately shuffle the arguments so that any vm call we have to
+  // make from here on out (sync slow path, jvmti, etc.) we will have
+  // captured the oops from our caller and have a valid oopMap for
+  // them.
+
+  // -----------------
+  // The Grand Shuffle
+  //
+  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
+  // (derived from JavaThread* which is in L7_thread_cache) and, if static,
+  // the class mirror instead of a receiver.  This pretty much guarantees that
+  // register layout will not match.  We ignore these extra arguments during
+  // the shuffle. The shuffle is described by the two calling convention
+  // vectors we have in our possession. We simply walk the java vector to
+  // get the source locations and the c vector to get the destinations.
+  // Because we have a new window and the argument registers are completely
+  // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
+  // here.
+
+  // This is a trick. We double the stack slots so we can claim
+  // the oops in the caller's frame. Since we are sure to have
+  // more args than the caller doubling is enough to make
+  // sure we can capture all the incoming oop args from the
+  // caller.
+  //
+  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
+  int c_arg = total_c_args - 1;
+  // Record sp-based slot for receiver on stack for non-static methods
+  int receiver_offset = -1;
+
+  // We move the arguments backward because the floating point registers
+  // destination will always be to a register with a greater or equal register
+  // number or the stack.
+
+#ifdef ASSERT
+  bool reg_destroyed[RegisterImpl::number_of_registers];
+  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
+  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
+    reg_destroyed[r] = false;
+  }
+  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
+    freg_destroyed[f] = false;
+  }
+
+#endif /* ASSERT */
+
+  for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
+
+#ifdef ASSERT
+    if (in_regs[i].first()->is_Register()) {
+      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
+    } else if (in_regs[i].first()->is_FloatRegister()) {
+      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
+    }
+    if (out_regs[c_arg].first()->is_Register()) {
+      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
+    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
+      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
+    }
+#endif /* ASSERT */
+
+    switch (in_sig_bt[i]) {
+      case T_ARRAY:
+      case T_OBJECT:
+        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
+                    ((i == 0) && (!is_static)),
+                    &receiver_offset);
+        break;
+      case T_VOID:
+        break;
+
+      case T_FLOAT:
+        float_move(masm, in_regs[i], out_regs[c_arg]);
+          break;
+
+      case T_DOUBLE:
+        assert( i + 1 < total_in_args &&
+                in_sig_bt[i + 1] == T_VOID &&
+                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
+        double_move(masm, in_regs[i], out_regs[c_arg]);
+        break;
+
+      case T_LONG :
+        long_move(masm, in_regs[i], out_regs[c_arg]);
+        break;
+
+      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
+
+      default:
+        move32_64(masm, in_regs[i], out_regs[c_arg]);
+    }
+  }
+
+  // Pre-load a static method's oop into O1.  Used both by locking code and
+  // the normal JNI call code.
+  if (method->is_static()) {
+    __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
+
+    // Now handlize the static class mirror in O1.  It's known not-null.
+    __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
+    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
+    __ add(SP, klass_offset + STACK_BIAS, O1);
+  }
+
+
+  const Register L6_handle = L6;
+
+  if (method->is_synchronized()) {
+    __ mov(O1, L6_handle);
+  }
+
+  // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
+  // except O6/O7. So if we must call out we must push a new frame. We immediately
+  // push a new frame and flush the windows.
+
+#ifdef _LP64
+  intptr_t thepc = (intptr_t) __ pc();
+  {
+    address here = __ pc();
+    // Call the next instruction
+    __ call(here + 8, relocInfo::none);
+    __ delayed()->nop();
+  }
+#else
+  intptr_t thepc = __ load_pc_address(O7, 0);
+#endif /* _LP64 */
+
+  // We use the same pc/oopMap repeatedly when we call out
+  oop_maps->add_gc_map(thepc - start, map);
+
+  // O7 now has the pc loaded that we will use when we finally call to native.
+
+  // Save thread in L7; it crosses a bunch of VM calls below
+  // Don't use save_thread because it smashes G2 and we merely
+  // want to save a copy
+  __ mov(G2_thread, L7_thread_cache);
+
+
+  // If we create an inner frame once is plenty
+  // when we create it we must also save G2_thread
+  bool inner_frame_created = false;
+
+  // dtrace method entry support
+  {
+    SkipIfEqual skip_if(
+      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
+    // create inner frame
+    __ save_frame(0);
+    __ mov(G2_thread, L7_thread_cache);
+    __ set_oop_constant(JNIHandles::make_local(method()), O1);
+    __ call_VM_leaf(L7_thread_cache,
+         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
+         G2_thread, O1);
+    __ restore();
+  }
+
+  // We are in the jni frame unless saved_frame is true in which case
+  // we are in one frame deeper (the "inner" frame). If we are in the
+  // "inner" frames the args are in the Iregs and if the jni frame then
+  // they are in the Oregs.
+  // If we ever need to go to the VM (for locking, jvmti) then
+  // we will always be in the "inner" frame.
+
+  // Lock a synchronized method
+  int lock_offset = -1;         // Set if locked
+  if (method->is_synchronized()) {
+    Register Roop = O1;
+    const Register L3_box = L3;
+
+    create_inner_frame(masm, &inner_frame_created);
+
+    __ ld_ptr(I1, 0, O1);
+    Label done;
+
+    lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
+    __ add(FP, lock_offset+STACK_BIAS, L3_box);
+#ifdef ASSERT
+    if (UseBiasedLocking) {
+      // making the box point to itself will make it clear it went unused
+      // but also be obviously invalid
+      __ st_ptr(L3_box, L3_box, 0);
+    }
+#endif // ASSERT
+    //
+    // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
+    //
+    __ compiler_lock_object(Roop, L1,    L3_box, L2);
+    __ br(Assembler::equal, false, Assembler::pt, done);
+    __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
+
+
+    // None of the above fast optimizations worked so we have to get into the
+    // slow case of monitor enter.  Inline a special case of call_VM that
+    // disallows any pending_exception.
+    __ mov(Roop, O0);            // Need oop in O0
+    __ mov(L3_box, O1);
+
+    // Record last_Java_sp, in case the VM code releases the JVM lock.
+
+    __ set_last_Java_frame(FP, I7);
+
+    // do the call
+    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
+    __ delayed()->mov(L7_thread_cache, O2);
+
+    __ restore_thread(L7_thread_cache); // restore G2_thread
+    __ reset_last_Java_frame();
+
+#ifdef ASSERT
+    { Label L;
+    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
+    __ br_null(O0, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("no pending exception allowed on exit from IR::monitorenter");
+    __ bind(L);
+    }
+#endif
+    __ bind(done);
+  }
+
+
+  // Finally just about ready to make the JNI call
+
+  __ flush_windows();
+  if (inner_frame_created) {
+    __ restore();
+  } else {
+    // Store only what we need from this frame
+    // QQQ I think that non-v9 (like we care) we don't need these saves
+    // either as the flush traps and the current window goes too.
+    __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
+    __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
+  }
+
+  // get JNIEnv* which is first argument to native
+
+  __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
+
+  // Use that pc we placed in O7 a while back as the current frame anchor
+
+  __ set_last_Java_frame(SP, O7);
+
+  // Transition from _thread_in_Java to _thread_in_native.
+  __ set(_thread_in_native, G3_scratch);
+  __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
+
+  // We flushed the windows ages ago now mark them as flushed
+
+  // mark windows as flushed
+  __ set(JavaFrameAnchor::flushed, G3_scratch);
+
+  Address flags(G2_thread,
+                0,
+                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
+
+#ifdef _LP64
+  Address dest(O7, method->native_function());
+  __ relocate(relocInfo::runtime_call_type);
+  __ jumpl_to(dest, O7);
+#else
+  __ call(method->native_function(), relocInfo::runtime_call_type);
+#endif
+  __ delayed()->st(G3_scratch, flags);
+
+  __ restore_thread(L7_thread_cache); // restore G2_thread
+
+  // Unpack native results.  For int-types, we do any needed sign-extension
+  // and move things into I0.  The return value there will survive any VM
+  // calls for blocking or unlocking.  An FP or OOP result (handle) is done
+  // specially in the slow-path code.
+  switch (ret_type) {
+  case T_VOID:    break;        // Nothing to do!
+  case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
+  case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
+  // In 64 bits build result is in O0, in O0, O1 in 32bit build
+  case T_LONG:
+#ifndef _LP64
+                  __ mov(O1, I1);
+#endif
+                  // Fall thru
+  case T_OBJECT:                // Really a handle
+  case T_ARRAY:
+  case T_INT:
+                  __ mov(O0, I0);
+                  break;
+  case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
+  case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
+  case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
+  case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
+    break;                      // Cannot de-handlize until after reclaiming jvm_lock
+  default:
+    ShouldNotReachHere();
+  }
+
+  // must we block?
+
+  // Block, if necessary, before resuming in _thread_in_Java state.
+  // In order for GC to work, don't clear the last_Java_sp until after blocking.
+  { Label no_block;
+    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
+
+    // Switch thread to "native transition" state before reading the synchronization state.
+    // This additional state is necessary because reading and testing the synchronization
+    // state is not atomic w.r.t. GC, as this scenario demonstrates:
+    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
+    //     VM thread changes sync state to synchronizing and suspends threads for GC.
+    //     Thread A is resumed to finish this native method, but doesn't block here since it
+    //     didn't see any synchronization is progress, and escapes.
+    __ set(_thread_in_native_trans, G3_scratch);
+    __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
+    if(os::is_MP()) {
+      if (UseMembar) {
+        // Force this write out before the read below
+        __ membar(Assembler::StoreLoad);
+      } else {
+        // Write serialization page so VM thread can do a pseudo remote membar.
+        // We use the current thread pointer to calculate a thread specific
+        // offset to write to within the page. This minimizes bus traffic
+        // due to cache line collision.
+        __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
+      }
+    }
+    __ load_contents(sync_state, G3_scratch);
+    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
+
+    Label L;
+    Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
+    __ br(Assembler::notEqual, false, Assembler::pn, L);
+    __ delayed()->
+      ld(suspend_state, G3_scratch);
+    __ cmp(G3_scratch, 0);
+    __ br(Assembler::equal, false, Assembler::pt, no_block);
+    __ delayed()->nop();
+    __ bind(L);
+
+    // Block.  Save any potential method result value before the operation and
+    // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
+    // lets us share the oopMap we used when we went native rather the create
+    // a distinct one for this pc
+    //
+    save_native_result(masm, ret_type, stack_slots);
+    __ call_VM_leaf(L7_thread_cache,
+                    CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
+                    G2_thread);
+
+    // Restore any method result value
+    restore_native_result(masm, ret_type, stack_slots);
+    __ bind(no_block);
+  }
+
+  // thread state is thread_in_native_trans. Any safepoint blocking has already
+  // happened so we can now change state to _thread_in_Java.
+
+
+  __ set(_thread_in_Java, G3_scratch);
+  __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
+
+
+  Label no_reguard;
+  __ ld(G2_thread, in_bytes(JavaThread::stack_guard_state_offset()), G3_scratch);
+  __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
+  __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
+  __ delayed()->nop();
+
+    save_native_result(masm, ret_type, stack_slots);
+  __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
+  __ delayed()->nop();
+
+  __ restore_thread(L7_thread_cache); // restore G2_thread
+    restore_native_result(masm, ret_type, stack_slots);
+
+  __ bind(no_reguard);
+
+  // Handle possible exception (will unlock if necessary)
+
+  // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
+
+  // Unlock
+  if (method->is_synchronized()) {
+    Label done;
+    Register I2_ex_oop = I2;
+    const Register L3_box = L3;
+    // Get locked oop from the handle we passed to jni
+    __ ld_ptr(L6_handle, 0, L4);
+    __ add(SP, lock_offset+STACK_BIAS, L3_box);
+    // Must save pending exception around the slow-path VM call.  Since it's a
+    // leaf call, the pending exception (if any) can be kept in a register.
+    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
+    // Now unlock
+    //                       (Roop, Rmark, Rbox,   Rscratch)
+    __ compiler_unlock_object(L4,   L1,    L3_box, L2);
+    __ br(Assembler::equal, false, Assembler::pt, done);
+    __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
+
+    // save and restore any potential method result value around the unlocking
+    // operation.  Will save in I0 (or stack for FP returns).
+    save_native_result(masm, ret_type, stack_slots);
+
+    // Must clear pending-exception before re-entering the VM.  Since this is
+    // a leaf call, pending-exception-oop can be safely kept in a register.
+    __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
+
+    // slow case of monitor enter.  Inline a special case of call_VM that
+    // disallows any pending_exception.
+    __ mov(L3_box, O1);
+
+    __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
+    __ delayed()->mov(L4, O0);              // Need oop in O0
+
+    __ restore_thread(L7_thread_cache); // restore G2_thread
+
+#ifdef ASSERT
+    { Label L;
+    __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
+    __ br_null(O0, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("no pending exception allowed on exit from IR::monitorexit");
+    __ bind(L);
+    }
+#endif
+    restore_native_result(masm, ret_type, stack_slots);
+    // check_forward_pending_exception jump to forward_exception if any pending
+    // exception is set.  The forward_exception routine expects to see the
+    // exception in pending_exception and not in a register.  Kind of clumsy,
+    // since all folks who branch to forward_exception must have tested
+    // pending_exception first and hence have it in a register already.
+    __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
+    __ bind(done);
+  }
+
+  // Tell dtrace about this method exit
+  {
+    SkipIfEqual skip_if(
+      masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
+    save_native_result(masm, ret_type, stack_slots);
+    __ set_oop_constant(JNIHandles::make_local(method()), O1);
+    __ call_VM_leaf(L7_thread_cache,
+       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+       G2_thread, O1);
+    restore_native_result(masm, ret_type, stack_slots);
+  }
+
+  // Clear "last Java frame" SP and PC.
+  __ verify_thread(); // G2_thread must be correct
+  __ reset_last_Java_frame();
+
+  // Unpack oop result
+  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
+      Label L;
+      __ addcc(G0, I0, G0);
+      __ brx(Assembler::notZero, true, Assembler::pt, L);
+      __ delayed()->ld_ptr(I0, 0, I0);
+      __ mov(G0, I0);
+      __ bind(L);
+      __ verify_oop(I0);
+  }
+
+  // reset handle block
+  __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
+  __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
+
+  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
+  check_forward_pending_exception(masm, G3_scratch);
+
+
+  // Return
+
+#ifndef _LP64
+  if (ret_type == T_LONG) {
+
+    // Must leave proper result in O0,O1 and G1 (c2/tiered only)
+    __ sllx(I0, 32, G1);          // Shift bits into high G1
+    __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
+    __ or3 (I1, G1, G1);          // OR 64 bits into G1
+  }
+#endif
+
+  __ ret();
+  __ delayed()->restore();
+
+  __ flush();
+
+  nmethod *nm = nmethod::new_native_nmethod(method,
+                                            masm->code(),
+                                            vep_offset,
+                                            frame_complete,
+                                            stack_slots / VMRegImpl::slots_per_word,
+                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
+                                            in_ByteSize(lock_offset),
+                                            oop_maps);
+  return nm;
+
+}
+
+// this function returns the adjust size (in number of words) to a c2i adapter
+// activation for use during deoptimization
+int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
+  assert(callee_locals >= callee_parameters,
+          "test and remove; got more parms than locals");
+  if (callee_locals < callee_parameters)
+    return 0;                   // No adjustment for negative locals
+  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords();
+  return round_to(diff, WordsPerLong);
+}
+
+// "Top of Stack" slots that may be unused by the calling convention but must
+// otherwise be preserved.
+// On Intel these are not necessary and the value can be zero.
+// On Sparc this describes the words reserved for storing a register window
+// when an interrupt occurs.
+uint SharedRuntime::out_preserve_stack_slots() {
+  return frame::register_save_words * VMRegImpl::slots_per_word;
+}
+
+static void gen_new_frame(MacroAssembler* masm, bool deopt) {
+//
+// Common out the new frame generation for deopt and uncommon trap
+//
+  Register        G3pcs              = G3_scratch; // Array of new pcs (input)
+  Register        Oreturn0           = O0;
+  Register        Oreturn1           = O1;
+  Register        O2UnrollBlock      = O2;
+  Register        O3array            = O3;         // Array of frame sizes (input)
+  Register        O4array_size       = O4;         // number of frames (input)
+  Register        O7frame_size       = O7;         // number of frames (input)
+
+  __ ld_ptr(O3array, 0, O7frame_size);
+  __ sub(G0, O7frame_size, O7frame_size);
+  __ save(SP, O7frame_size, SP);
+  __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
+
+  #ifdef ASSERT
+  // make sure that the frames are aligned properly
+#ifndef _LP64
+  __ btst(wordSize*2-1, SP);
+  __ breakpoint_trap(Assembler::notZero);
+#endif
+  #endif
+
+  // Deopt needs to pass some extra live values from frame to frame
+
+  if (deopt) {
+    __ mov(Oreturn0->after_save(), Oreturn0);
+    __ mov(Oreturn1->after_save(), Oreturn1);
+  }
+
+  __ mov(O4array_size->after_save(), O4array_size);
+  __ sub(O4array_size, 1, O4array_size);
+  __ mov(O3array->after_save(), O3array);
+  __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
+  __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
+
+  #ifdef ASSERT
+  // trash registers to show a clear pattern in backtraces
+  __ set(0xDEAD0000, I0);
+  __ add(I0,  2, I1);
+  __ add(I0,  4, I2);
+  __ add(I0,  6, I3);
+  __ add(I0,  8, I4);
+  // Don't touch I5 could have valuable savedSP
+  __ set(0xDEADBEEF, L0);
+  __ mov(L0, L1);
+  __ mov(L0, L2);
+  __ mov(L0, L3);
+  __ mov(L0, L4);
+  __ mov(L0, L5);
+
+  // trash the return value as there is nothing to return yet
+  __ set(0xDEAD0001, O7);
+  #endif
+
+  __ mov(SP, O5_savedSP);
+}
+
+
+static void make_new_frames(MacroAssembler* masm, bool deopt) {
+  //
+  // loop through the UnrollBlock info and create new frames
+  //
+  Register        G3pcs              = G3_scratch;
+  Register        Oreturn0           = O0;
+  Register        Oreturn1           = O1;
+  Register        O2UnrollBlock      = O2;
+  Register        O3array            = O3;
+  Register        O4array_size       = O4;
+  Label           loop;
+
+  // Before we make new frames, check to see if stack is available.
+  // Do this after the caller's return address is on top of stack
+  if (UseStackBanging) {
+    // Get total frame size for interpreted frames
+    __ ld(Address(O2UnrollBlock, 0,
+         Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()), O4);
+    __ bang_stack_size(O4, O3, G3_scratch);
+  }
+
+  __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()), O4array_size);
+  __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()), G3pcs);
+
+  __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()), O3array);
+
+  // Adjust old interpreter frame to make space for new frame's extra java locals
+  //
+  // We capture the original sp for the transition frame only because it is needed in
+  // order to properly calculate interpreter_sp_adjustment. Even though in real life
+  // every interpreter frame captures a savedSP it is only needed at the transition
+  // (fortunately). If we had to have it correct everywhere then we would need to
+  // be told the sp_adjustment for each frame we create. If the frame size array
+  // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
+  // for each frame we create and keep up the illusion every where.
+  //
+
+  __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()), O7);
+  __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
+  __ sub(SP, O7, SP);
+
+#ifdef ASSERT
+  // make sure that there is at least one entry in the array
+  __ tst(O4array_size);
+  __ breakpoint_trap(Assembler::zero);
+#endif
+
+  // Now push the new interpreter frames
+  __ bind(loop);
+
+  // allocate a new frame, filling the registers
+
+  gen_new_frame(masm, deopt);        // allocate an interpreter frame
+
+  __ tst(O4array_size);
+  __ br(Assembler::notZero, false, Assembler::pn, loop);
+  __ delayed()->add(O3array, wordSize, O3array);
+  __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
+
+}
+
+//------------------------------generate_deopt_blob----------------------------
+// Ought to generate an ideal graph & compile, but here's some SPARC ASM
+// instead.
+void SharedRuntime::generate_deopt_blob() {
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
+#ifdef _LP64
+  CodeBuffer buffer("deopt_blob", 2100+pad, 512);
+#else
+  // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
+  // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
+  CodeBuffer buffer("deopt_blob", 1600+pad, 512);
+#endif /* _LP64 */
+  MacroAssembler* masm               = new MacroAssembler(&buffer);
+  FloatRegister   Freturn0           = F0;
+  Register        Greturn1           = G1;
+  Register        Oreturn0           = O0;
+  Register        Oreturn1           = O1;
+  Register        O2UnrollBlock      = O2;
+  Register        O3tmp              = O3;
+  Register        I5exception_tmp    = I5;
+  Register        G4exception_tmp    = G4_scratch;
+  int             frame_size_words;
+  Address         saved_Freturn0_addr(FP, 0, -sizeof(double) + STACK_BIAS);
+#if !defined(_LP64) && defined(COMPILER2)
+  Address         saved_Greturn1_addr(FP, 0, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
+#endif
+  Label           cont;
+
+  OopMapSet *oop_maps = new OopMapSet();
+
+  //
+  // This is the entry point for code which is returning to a de-optimized
+  // frame.
+  // The steps taken by this frame are as follows:
+  //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
+  //     and all potentially live registers (at a pollpoint many registers can be live).
+  //
+  //   - call the C routine: Deoptimization::fetch_unroll_info (this function
+  //     returns information about the number and size of interpreter frames
+  //     which are equivalent to the frame which is being deoptimized)
+  //   - deallocate the unpack frame, restoring only results values. Other
+  //     volatile registers will now be captured in the vframeArray as needed.
+  //   - deallocate the deoptimization frame
+  //   - in a loop using the information returned in the previous step
+  //     push new interpreter frames (take care to propagate the return
+  //     values through each new frame pushed)
+  //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
+  //   - call the C routine: Deoptimization::unpack_frames (this function
+  //     lays out values on the interpreter frame which was just created)
+  //   - deallocate the dummy unpack_frame
+  //   - ensure that all the return values are correctly set and then do
+  //     a return to the interpreter entry point
+  //
+  // Refer to the following methods for more information:
+  //   - Deoptimization::fetch_unroll_info
+  //   - Deoptimization::unpack_frames
+
+  OopMap* map = NULL;
+
+  int start = __ offset();
+
+  // restore G2, the trampoline destroyed it
+  __ get_thread();
+
+  // On entry we have been called by the deoptimized nmethod with a call that
+  // replaced the original call (or safepoint polling location) so the deoptimizing
+  // pc is now in O7. Return values are still in the expected places
+
+  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
+  __ ba(false, cont);
+  __ delayed()->mov(Deoptimization::Unpack_deopt, I5exception_tmp);
+
+  int exception_offset = __ offset() - start;
+
+  // restore G2, the trampoline destroyed it
+  __ get_thread();
+
+  // On entry we have been jumped to by the exception handler (or exception_blob
+  // for server).  O0 contains the exception oop and O7 contains the original
+  // exception pc.  So if we push a frame here it will look to the
+  // stack walking code (fetch_unroll_info) just like a normal call so
+  // state will be extracted normally.
+
+  // save exception oop in JavaThread and fall through into the
+  // exception_in_tls case since they are handled in same way except
+  // for where the pending exception is kept.
+  __ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
+
+  //
+  // Vanilla deoptimization with an exception pending in exception_oop
+  //
+  int exception_in_tls_offset = __ offset() - start;
+
+  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
+  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
+
+  // Restore G2_thread
+  __ get_thread();
+
+#ifdef ASSERT
+  {
+    // verify that there is really an exception oop in exception_oop
+    Label has_exception;
+    __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
+    __ br_notnull(Oexception, false, Assembler::pt, has_exception);
+    __ delayed()-> nop();
+    __ stop("no exception in thread");
+    __ bind(has_exception);
+
+    // verify that there is no pending exception
+    Label no_pending_exception;
+    Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+    __ ld_ptr(exception_addr, Oexception);
+    __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
+    __ delayed()->nop();
+    __ stop("must not have pending exception here");
+    __ bind(no_pending_exception);
+  }
+#endif
+
+  __ ba(false, cont);
+  __ delayed()->mov(Deoptimization::Unpack_exception, I5exception_tmp);;
+
+  //
+  // Reexecute entry, similar to c2 uncommon trap
+  //
+  int reexecute_offset = __ offset() - start;
+
+  // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
+  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
+
+  __ mov(Deoptimization::Unpack_reexecute, I5exception_tmp);
+
+  __ bind(cont);
+
+  __ set_last_Java_frame(SP, noreg);
+
+  // do the call by hand so we can get the oopmap
+
+  __ mov(G2_thread, L7_thread_cache);
+  __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
+  __ delayed()->mov(G2_thread, O0);
+
+  // Set an oopmap for the call site this describes all our saved volatile registers
+
+  oop_maps->add_gc_map( __ offset()-start, map);
+
+  __ mov(L7_thread_cache, G2_thread);
+
+  __ reset_last_Java_frame();
+
+  // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
+  // so this move will survive
+
+  __ mov(I5exception_tmp, G4exception_tmp);
+
+  __ mov(O0, O2UnrollBlock->after_save());
+
+  RegisterSaver::restore_result_registers(masm);
+
+  Label noException;
+  __ cmp(G4exception_tmp, Deoptimization::Unpack_exception);   // Was exception pending?
+  __ br(Assembler::notEqual, false, Assembler::pt, noException);
+  __ delayed()->nop();
+
+  // Move the pending exception from exception_oop to Oexception so
+  // the pending exception will be picked up the interpreter.
+  __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
+  __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
+  __ bind(noException);
+
+  // deallocate the deoptimization frame taking care to preserve the return values
+  __ mov(Oreturn0,     Oreturn0->after_save());
+  __ mov(Oreturn1,     Oreturn1->after_save());
+  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
+  __ restore();
+
+  // Allocate new interpreter frame(s) and possible c2i adapter frame
+
+  make_new_frames(masm, true);
+
+  // push a dummy "unpack_frame" taking care of float return values and
+  // call Deoptimization::unpack_frames to have the unpacker layout
+  // information in the interpreter frames just created and then return
+  // to the interpreter entry point
+  __ save(SP, -frame_size_words*wordSize, SP);
+  __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
+#if !defined(_LP64)
+#if defined(COMPILER2)
+  if (!TieredCompilation) {
+    // 32-bit 1-register longs return longs in G1
+    __ stx(Greturn1, saved_Greturn1_addr);
+  }
+#endif
+  __ set_last_Java_frame(SP, noreg);
+  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4exception_tmp);
+#else
+  // LP64 uses g4 in set_last_Java_frame
+  __ mov(G4exception_tmp, O1);
+  __ set_last_Java_frame(SP, G0);
+  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
+#endif
+  __ reset_last_Java_frame();
+  __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
+
+  // In tiered we never use C2 to compile methods returning longs so
+  // the result is where we expect it already.
+
+#if !defined(_LP64) && defined(COMPILER2)
+  // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
+  // I0/I1 if the return value is long.  In the tiered world there is
+  // a mismatch between how C1 and C2 return longs compiles and so
+  // currently compilation of methods which return longs is disabled
+  // for C2 and so is this code.  Eventually C1 and C2 will do the
+  // same thing for longs in the tiered world.
+  if (!TieredCompilation) {
+    Label not_long;
+    __ cmp(O0,T_LONG);
+    __ br(Assembler::notEqual, false, Assembler::pt, not_long);
+    __ delayed()->nop();
+    __ ldd(saved_Greturn1_addr,I0);
+    __ bind(not_long);
+  }
+#endif
+  __ ret();
+  __ delayed()->restore();
+
+  masm->flush();
+  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
+  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
+}
+
+#ifdef COMPILER2
+
+//------------------------------generate_uncommon_trap_blob--------------------
+// Ought to generate an ideal graph & compile, but here's some SPARC ASM
+// instead.
+void SharedRuntime::generate_uncommon_trap_blob() {
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  int pad = VerifyThread ? 512 : 0;
+#ifdef _LP64
+  CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
+#else
+  // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
+  // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
+  CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
+#endif
+  MacroAssembler* masm               = new MacroAssembler(&buffer);
+  Register        O2UnrollBlock      = O2;
+  Register        O3tmp              = O3;
+  Register        O2klass_index      = O2;
+
+  //
+  // This is the entry point for all traps the compiler takes when it thinks
+  // it cannot handle further execution of compilation code. The frame is
+  // deoptimized in these cases and converted into interpreter frames for
+  // execution
+  // The steps taken by this frame are as follows:
+  //   - push a fake "unpack_frame"
+  //   - call the C routine Deoptimization::uncommon_trap (this function
+  //     packs the current compiled frame into vframe arrays and returns
+  //     information about the number and size of interpreter frames which
+  //     are equivalent to the frame which is being deoptimized)
+  //   - deallocate the "unpack_frame"
+  //   - deallocate the deoptimization frame
+  //   - in a loop using the information returned in the previous step
+  //     push interpreter frames;
+  //   - create a dummy "unpack_frame"
+  //   - call the C routine: Deoptimization::unpack_frames (this function
+  //     lays out values on the interpreter frame which was just created)
+  //   - deallocate the dummy unpack_frame
+  //   - return to the interpreter entry point
+  //
+  //  Refer to the following methods for more information:
+  //   - Deoptimization::uncommon_trap
+  //   - Deoptimization::unpack_frame
+
+  // the unloaded class index is in O0 (first parameter to this blob)
+
+  // push a dummy "unpack_frame"
+  // and call Deoptimization::uncommon_trap to pack the compiled frame into
+  // vframe array and return the UnrollBlock information
+  __ save_frame(0);
+  __ set_last_Java_frame(SP, noreg);
+  __ mov(I0, O2klass_index);
+  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
+  __ reset_last_Java_frame();
+  __ mov(O0, O2UnrollBlock->after_save());
+  __ restore();
+
+  // deallocate the deoptimized frame taking care to preserve the return values
+  __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
+  __ restore();
+
+  // Allocate new interpreter frame(s) and possible c2i adapter frame
+
+  make_new_frames(masm, false);
+
+  // push a dummy "unpack_frame" taking care of float return values and
+  // call Deoptimization::unpack_frames to have the unpacker layout
+  // information in the interpreter frames just created and then return
+  // to the interpreter entry point
+  __ save_frame(0);
+  __ set_last_Java_frame(SP, noreg);
+  __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
+  __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
+  __ reset_last_Java_frame();
+  __ ret();
+  __ delayed()->restore();
+
+  masm->flush();
+  _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
+}
+
+#endif // COMPILER2
+
+//------------------------------generate_handler_blob-------------------
+//
+// Generate a special Compile2Runtime blob that saves all registers, and sets
+// up an OopMap.
+//
+// This blob is jumped to (via a breakpoint and the signal handler) from a
+// safepoint in compiled code.  On entry to this blob, O7 contains the
+// address in the original nmethod at which we should resume normal execution.
+// Thus, this blob looks like a subroutine which must preserve lots of
+// registers and return normally.  Note that O7 is never register-allocated,
+// so it is guaranteed to be free here.
+//
+
+// The hardest part of what this blob must do is to save the 64-bit %o
+// registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
+// an interrupt will chop off their heads.  Making space in the caller's frame
+// first will let us save the 64-bit %o's before save'ing, but we cannot hand
+// the adjusted FP off to the GC stack-crawler: this will modify the caller's
+// SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
+// the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
+// Tricky, tricky, tricky...
+
+static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
+  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
+
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
+  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
+  // even larger with TraceJumps
+  int pad = TraceJumps ? 512 : 0;
+  CodeBuffer buffer("handler_blob", 1600 + pad, 512);
+  MacroAssembler* masm                = new MacroAssembler(&buffer);
+  int             frame_size_words;
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map = NULL;
+
+  int start = __ offset();
+
+  // If this causes a return before the processing, then do a "restore"
+  if (cause_return) {
+    __ restore();
+  } else {
+    // Make it look like we were called via the poll
+    // so that frame constructor always sees a valid return address
+    __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
+    __ sub(O7, frame::pc_return_offset, O7);
+  }
+
+  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
+
+  // setup last_Java_sp (blows G4)
+  __ set_last_Java_frame(SP, noreg);
+
+  // call into the runtime to handle illegal instructions exception
+  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
+  __ mov(G2_thread, O0);
+  __ save_thread(L7_thread_cache);
+  __ call(call_ptr);
+  __ delayed()->nop();
+
+  // Set an oopmap for the call site.
+  // We need this not only for callee-saved registers, but also for volatile
+  // registers that the compiler might be keeping live across a safepoint.
+
+  oop_maps->add_gc_map( __ offset() - start, map);
+
+  __ restore_thread(L7_thread_cache);
+  // clear last_Java_sp
+  __ reset_last_Java_frame();
+
+  // Check for exceptions
+  Label pending;
+
+  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
+  __ tst(O1);
+  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
+  __ delayed()->nop();
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // We are back the the original state on entry and ready to go.
+
+  __ retl();
+  __ delayed()->nop();
+
+  // Pending exception after the safepoint
+
+  __ bind(pending);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // We are back the the original state on entry.
+
+  // Tail-call forward_exception_entry, with the issuing PC in O7,
+  // so it looks like the original nmethod called forward_exception_entry.
+  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
+  __ JMP(O0, 0);
+  __ delayed()->nop();
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+  // return exception blob
+  return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
+}
+
+//
+// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
+//
+// Generate a stub that calls into vm to find out the proper destination
+// of a java call. All the argument registers are live at this point
+// but since this is generic code we don't know what they are and the caller
+// must do any gc of the args.
+//
+static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
+  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
+
+  // allocate space for the code
+  ResourceMark rm;
+  // setup code generation tools
+  // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
+  // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
+  // even larger with TraceJumps
+  int pad = TraceJumps ? 512 : 0;
+  CodeBuffer buffer(name, 1600 + pad, 512);
+  MacroAssembler* masm                = new MacroAssembler(&buffer);
+  int             frame_size_words;
+  OopMapSet *oop_maps = new OopMapSet();
+  OopMap* map = NULL;
+
+  int start = __ offset();
+
+  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
+
+  int frame_complete = __ offset();
+
+  // setup last_Java_sp (blows G4)
+  __ set_last_Java_frame(SP, noreg);
+
+  // call into the runtime to handle illegal instructions exception
+  // Do not use call_VM_leaf, because we need to make a GC map at this call site.
+  __ mov(G2_thread, O0);
+  __ save_thread(L7_thread_cache);
+  __ call(destination, relocInfo::runtime_call_type);
+  __ delayed()->nop();
+
+  // O0 contains the address we are going to jump to assuming no exception got installed
+
+  // Set an oopmap for the call site.
+  // We need this not only for callee-saved registers, but also for volatile
+  // registers that the compiler might be keeping live across a safepoint.
+
+  oop_maps->add_gc_map( __ offset() - start, map);
+
+  __ restore_thread(L7_thread_cache);
+  // clear last_Java_sp
+  __ reset_last_Java_frame();
+
+  // Check for exceptions
+  Label pending;
+
+  __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
+  __ tst(O1);
+  __ brx(Assembler::notEqual, true, Assembler::pn, pending);
+  __ delayed()->nop();
+
+  // get the returned methodOop
+
+  __ get_vm_result(G5_method);
+  __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
+
+  // O0 is where we want to jump, overwrite G3 which is saved and scratch
+
+  __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // We are back the the original state on entry and ready to go.
+
+  __ JMP(G3, 0);
+  __ delayed()->nop();
+
+  // Pending exception after the safepoint
+
+  __ bind(pending);
+
+  RegisterSaver::restore_live_registers(masm);
+
+  // We are back the the original state on entry.
+
+  // Tail-call forward_exception_entry, with the issuing PC in O7,
+  // so it looks like the original nmethod called forward_exception_entry.
+  __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
+  __ JMP(O0, 0);
+  __ delayed()->nop();
+
+  // -------------
+  // make sure all code is generated
+  masm->flush();
+
+  // return the  blob
+  // frame_size_words or bytes??
+  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
+}
+
+void SharedRuntime::generate_stubs() {
+
+  _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
+                                             "wrong_method_stub");
+
+  _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
+                                        "ic_miss_stub");
+
+  _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
+                                        "resolve_opt_virtual_call");
+
+  _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
+                                        "resolve_virtual_call");
+
+  _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
+                                        "resolve_static_call");
+
+  _polling_page_safepoint_handler_blob =
+    generate_handler_blob(CAST_FROM_FN_PTR(address,
+                   SafepointSynchronize::handle_polling_page_exception), false);
+
+  _polling_page_return_handler_blob =
+    generate_handler_blob(CAST_FROM_FN_PTR(address,
+                   SafepointSynchronize::handle_polling_page_exception), true);
+
+  generate_deopt_blob();
+
+#ifdef COMPILER2
+  generate_uncommon_trap_blob();
+#endif // COMPILER2
+}