diff src/cpu/x86/vm/assembler_x86_64.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 485d403e94e1 3d62cb85208d
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/x86/vm/assembler_x86_64.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,5160 @@
+/*
+ * Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_assembler_x86_64.cpp.incl"
+
+// Implementation of AddressLiteral
+
+AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
+  _is_lval = false;
+  _target = target;
+  switch (rtype) {
+  case relocInfo::oop_type:
+    // Oops are a special case. Normally they would be their own section
+    // but in cases like icBuffer they are literals in the code stream that
+    // we don't have a section for. We use none so that we get a literal address
+    // which is always patchable.
+    break;
+  case relocInfo::external_word_type:
+    _rspec = external_word_Relocation::spec(target);
+    break;
+  case relocInfo::internal_word_type:
+    _rspec = internal_word_Relocation::spec(target);
+    break;
+  case relocInfo::opt_virtual_call_type:
+    _rspec = opt_virtual_call_Relocation::spec();
+    break;
+  case relocInfo::static_call_type:
+    _rspec = static_call_Relocation::spec();
+    break;
+  case relocInfo::runtime_call_type:
+    _rspec = runtime_call_Relocation::spec();
+    break;
+  case relocInfo::none:
+    break;
+  default:
+    ShouldNotReachHere();
+    break;
+  }
+}
+
+// Implementation of Address
+
+Address Address::make_array(ArrayAddress adr) {
+#ifdef _LP64
+  // Not implementable on 64bit machines
+  // Should have been handled higher up the call chain.
+  ShouldNotReachHere();
+  return Address();
+#else
+  AddressLiteral base = adr.base();
+  Address index = adr.index();
+  assert(index._disp == 0, "must not have disp"); // maybe it can?
+  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
+  array._rspec = base._rspec;
+  return array;
+#endif // _LP64
+}
+
+// exceedingly dangerous constructor
+Address::Address(int disp, address loc, relocInfo::relocType rtype) {
+  _base  = noreg;
+  _index = noreg;
+  _scale = no_scale;
+  _disp  = disp;
+  switch (rtype) {
+    case relocInfo::external_word_type:
+      _rspec = external_word_Relocation::spec(loc);
+      break;
+    case relocInfo::internal_word_type:
+      _rspec = internal_word_Relocation::spec(loc);
+      break;
+    case relocInfo::runtime_call_type:
+      // HMM
+      _rspec = runtime_call_Relocation::spec();
+      break;
+    case relocInfo::none:
+      break;
+    default:
+      ShouldNotReachHere();
+  }
+}
+
+// Convert the raw encoding form into the form expected by the constructor for
+// Address.  An index of 4 (rsp) corresponds to having no index, so convert
+// that to noreg for the Address constructor.
+Address Address::make_raw(int base, int index, int scale, int disp) {
+  bool valid_index = index != rsp->encoding();
+  if (valid_index) {
+    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
+    return madr;
+  } else {
+    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
+    return madr;
+  }
+}
+
+
+// Implementation of Assembler
+int AbstractAssembler::code_fill_byte() {
+  return (u_char)'\xF4'; // hlt
+}
+
+// This should only be used by 64bit instructions that can use rip-relative
+// it cannot be used by instructions that want an immediate value.
+
+bool Assembler::reachable(AddressLiteral adr) {
+  int64_t disp;
+  // None will force a 64bit literal to the code stream. Likely a placeholder
+  // for something that will be patched later and we need to certain it will
+  // always be reachable.
+  if (adr.reloc() == relocInfo::none) {
+    return false;
+  }
+  if (adr.reloc() == relocInfo::internal_word_type) {
+    // This should be rip relative and easily reachable.
+    return true;
+  }
+  if (adr.reloc() != relocInfo::external_word_type &&
+      adr.reloc() != relocInfo::runtime_call_type ) {
+    return false;
+  }
+
+  // Stress the correction code
+  if (ForceUnreachable) {
+    // Must be runtimecall reloc, see if it is in the codecache
+    // Flipping stuff in the codecache to be unreachable causes issues
+    // with things like inline caches where the additional instructions
+    // are not handled.
+    if (CodeCache::find_blob(adr._target) == NULL) {
+      return false;
+    }
+  }
+  // For external_word_type/runtime_call_type if it is reachable from where we
+  // are now (possibly a temp buffer) and where we might end up
+  // anywhere in the codeCache then we are always reachable.
+  // This would have to change if we ever save/restore shared code
+  // to be more pessimistic.
+
+  disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
+  if (!is_simm32(disp)) return false;
+  disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
+  if (!is_simm32(disp)) return false;
+
+  disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
+
+  // Because rip relative is a disp + address_of_next_instruction and we
+  // don't know the value of address_of_next_instruction we apply a fudge factor
+  // to make sure we will be ok no matter the size of the instruction we get placed into.
+  // We don't have to fudge the checks above here because they are already worst case.
+
+  // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
+  // + 4 because better safe than sorry.
+  const int fudge = 12 + 4;
+  if (disp < 0) {
+    disp -= fudge;
+  } else {
+    disp += fudge;
+  }
+  return is_simm32(disp);
+}
+
+
+// make this go away eventually
+void Assembler::emit_data(jint data,
+                          relocInfo::relocType rtype,
+                          int format) {
+  if (rtype == relocInfo::none) {
+    emit_long(data);
+  } else {
+    emit_data(data, Relocation::spec_simple(rtype), format);
+  }
+}
+
+void Assembler::emit_data(jint data,
+                          RelocationHolder const& rspec,
+                          int format) {
+  assert(imm64_operand == 0, "default format must be imm64 in this file");
+  assert(imm64_operand != format, "must not be imm64");
+  assert(inst_mark() != NULL, "must be inside InstructionMark");
+  if (rspec.type() !=  relocInfo::none) {
+    #ifdef ASSERT
+      check_relocation(rspec, format);
+    #endif
+    // Do not use AbstractAssembler::relocate, which is not intended for
+    // embedded words.  Instead, relocate to the enclosing instruction.
+
+    // hack. call32 is too wide for mask so use disp32
+    if (format == call32_operand)
+      code_section()->relocate(inst_mark(), rspec, disp32_operand);
+    else
+      code_section()->relocate(inst_mark(), rspec, format);
+  }
+  emit_long(data);
+}
+
+void Assembler::emit_data64(jlong data,
+                            relocInfo::relocType rtype,
+                            int format) {
+  if (rtype == relocInfo::none) {
+    emit_long64(data);
+  } else {
+    emit_data64(data, Relocation::spec_simple(rtype), format);
+  }
+}
+
+void Assembler::emit_data64(jlong data,
+                            RelocationHolder const& rspec,
+                            int format) {
+  assert(imm64_operand == 0, "default format must be imm64 in this file");
+  assert(imm64_operand == format, "must be imm64");
+  assert(inst_mark() != NULL, "must be inside InstructionMark");
+  // Do not use AbstractAssembler::relocate, which is not intended for
+  // embedded words.  Instead, relocate to the enclosing instruction.
+  code_section()->relocate(inst_mark(), rspec, format);
+#ifdef ASSERT
+  check_relocation(rspec, format);
+#endif
+  emit_long64(data);
+}
+
+void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert(isByte(imm8), "not a byte");
+  assert((op1 & 0x01) == 0, "should be 8bit operation");
+  int dstenc = dst->encoding();
+  if (dstenc >= 8) {
+    dstenc -= 8;
+  }
+  emit_byte(op1);
+  emit_byte(op2 | dstenc);
+  emit_byte(imm8);
+}
+
+void Assembler::emit_arith(int op1, int op2, Register dst, int imm32) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  int dstenc = dst->encoding();
+  if (dstenc >= 8) {
+    dstenc -= 8;
+  }
+  if (is8bit(imm32)) {
+    emit_byte(op1 | 0x02); // set sign bit
+    emit_byte(op2 | dstenc);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(op1);
+    emit_byte(op2 | dstenc);
+    emit_long(imm32);
+  }
+}
+
+// immediate-to-memory forms
+void Assembler::emit_arith_operand(int op1,
+                                   Register rm, Address adr,
+                                   int imm32) {
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  if (is8bit(imm32)) {
+    emit_byte(op1 | 0x02); // set sign bit
+    emit_operand(rm, adr, 1);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(op1);
+    emit_operand(rm, adr, 4);
+    emit_long(imm32);
+  }
+}
+
+
+void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  int dstenc = dst->encoding();
+  int srcenc = src->encoding();
+  if (dstenc >= 8) {
+    dstenc -= 8;
+  }
+  if (srcenc >= 8) {
+    srcenc -= 8;
+  }
+  emit_byte(op1);
+  emit_byte(op2 | dstenc << 3 | srcenc);
+}
+
+void Assembler::emit_operand(Register reg, Register base, Register index,
+                             Address::ScaleFactor scale, int disp,
+                             RelocationHolder const& rspec,
+                             int rip_relative_correction) {
+  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
+  int regenc = reg->encoding();
+  if (regenc >= 8) {
+    regenc -= 8;
+  }
+  if (base->is_valid()) {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      int indexenc = index->encoding();
+      if (indexenc >= 8) {
+        indexenc -= 8;
+      }
+      int baseenc = base->encoding();
+      if (baseenc >= 8) {
+        baseenc -= 8;
+      }
+      // [base + index*scale + disp]
+      if (disp == 0 && rtype == relocInfo::none  &&
+          base != rbp && base != r13) {
+        // [base + index*scale]
+        // [00 reg 100][ss index base]
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x04 | regenc << 3);
+        emit_byte(scale << 6 | indexenc << 3 | baseenc);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + index*scale + imm8]
+        // [01 reg 100][ss index base] imm8
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x44 | regenc << 3);
+        emit_byte(scale << 6 | indexenc << 3 | baseenc);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + index*scale + disp32]
+        // [10 reg 100][ss index base] disp32
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x84 | regenc << 3);
+        emit_byte(scale << 6 | indexenc << 3 | baseenc);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else if (base == rsp || base == r12) {
+      // [rsp + disp]
+      if (disp == 0 && rtype == relocInfo::none) {
+        // [rsp]
+        // [00 reg 100][00 100 100]
+        emit_byte(0x04 | regenc << 3);
+        emit_byte(0x24);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [rsp + imm8]
+        // [01 reg 100][00 100 100] disp8
+        emit_byte(0x44 | regenc << 3);
+        emit_byte(0x24);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [rsp + imm32]
+        // [10 reg 100][00 100 100] disp32
+        emit_byte(0x84 | regenc << 3);
+        emit_byte(0x24);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else {
+      // [base + disp]
+      assert(base != rsp && base != r12, "illegal addressing mode");
+      int baseenc = base->encoding();
+      if (baseenc >= 8) {
+        baseenc -= 8;
+      }
+      if (disp == 0 && rtype == relocInfo::none &&
+          base != rbp && base != r13) {
+        // [base]
+        // [00 reg base]
+        emit_byte(0x00 | regenc << 3 | baseenc);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + disp8]
+        // [01 reg base] disp8
+        emit_byte(0x40 | regenc << 3 | baseenc);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + disp32]
+        // [10 reg base] disp32
+        emit_byte(0x80 | regenc << 3 | baseenc);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    }
+  } else {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      int indexenc = index->encoding();
+      if (indexenc >= 8) {
+        indexenc -= 8;
+      }
+      // [index*scale + disp]
+      // [00 reg 100][ss index 101] disp32
+      assert(index != rsp, "illegal addressing mode");
+      emit_byte(0x04 | regenc << 3);
+      emit_byte(scale << 6 | indexenc << 3 | 0x05);
+      emit_data(disp, rspec, disp32_operand);
+#ifdef _LP64
+    } else if (rtype != relocInfo::none ) {
+      // [disp] RIP-RELATIVE
+      // [00 000 101] disp32
+
+      emit_byte(0x05 | regenc << 3);
+      // Note that the RIP-rel. correction applies to the generated
+      // disp field, but _not_ to the target address in the rspec.
+
+      // disp was created by converting the target address minus the pc
+      // at the start of the instruction. That needs more correction here.
+      // intptr_t disp = target - next_ip;
+      assert(inst_mark() != NULL, "must be inside InstructionMark");
+      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
+      int64_t adjusted = (int64_t) disp -  (next_ip - inst_mark());
+      assert(is_simm32(adjusted),
+             "must be 32bit offset (RIP relative address)");
+      emit_data((int) adjusted, rspec, disp32_operand);
+
+#endif // _LP64
+    } else {
+      // [disp] ABSOLUTE
+      // [00 reg 100][00 100 101] disp32
+      emit_byte(0x04 | regenc << 3);
+      emit_byte(0x25);
+      emit_data(disp, rspec, disp32_operand);
+    }
+  }
+}
+
+void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
+                             Address::ScaleFactor scale, int disp,
+                             RelocationHolder const& rspec,
+                             int rip_relative_correction) {
+  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
+  int regenc = reg->encoding();
+  if (regenc >= 8) {
+    regenc -= 8;
+  }
+  if (base->is_valid()) {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      int indexenc = index->encoding();
+      if (indexenc >= 8) {
+        indexenc -= 8;
+      }
+      int baseenc = base->encoding();
+      if (baseenc >= 8) {
+        baseenc -= 8;
+      }
+      // [base + index*scale + disp]
+      if (disp == 0 && rtype == relocInfo::none  &&
+          base != rbp && base != r13) {
+        // [base + index*scale]
+        // [00 reg 100][ss index base]
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x04 | regenc << 3);
+        emit_byte(scale << 6 | indexenc << 3 | baseenc);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + index*scale + disp8]
+        // [01 reg 100][ss index base] disp8
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x44 | regenc << 3);
+        emit_byte(scale << 6 | indexenc << 3 | baseenc);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + index*scale + disp32]
+        // [10 reg 100][ss index base] disp32
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x84 | regenc << 3);
+        emit_byte(scale << 6 | indexenc << 3 | baseenc);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else if (base == rsp || base == r12) {
+      // [rsp + disp]
+      if (disp == 0 && rtype == relocInfo::none) {
+        // [rsp]
+        // [00 reg 100][00 100 100]
+        emit_byte(0x04 | regenc << 3);
+        emit_byte(0x24);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [rsp + imm8]
+        // [01 reg 100][00 100 100] disp8
+        emit_byte(0x44 | regenc << 3);
+        emit_byte(0x24);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [rsp + imm32]
+        // [10 reg 100][00 100 100] disp32
+        emit_byte(0x84 | regenc << 3);
+        emit_byte(0x24);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else {
+      // [base + disp]
+      assert(base != rsp && base != r12, "illegal addressing mode");
+      int baseenc = base->encoding();
+      if (baseenc >= 8) {
+        baseenc -= 8;
+      }
+      if (disp == 0 && rtype == relocInfo::none &&
+          base != rbp && base != r13) {
+        // [base]
+        // [00 reg base]
+        emit_byte(0x00 | regenc << 3 | baseenc);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + imm8]
+        // [01 reg base] disp8
+        emit_byte(0x40 | regenc << 3 | baseenc);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + imm32]
+        // [10 reg base] disp32
+        emit_byte(0x80 | regenc << 3 | baseenc);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    }
+  } else {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      int indexenc = index->encoding();
+      if (indexenc >= 8) {
+        indexenc -= 8;
+      }
+      // [index*scale + disp]
+      // [00 reg 100][ss index 101] disp32
+      assert(index != rsp, "illegal addressing mode");
+      emit_byte(0x04 | regenc << 3);
+      emit_byte(scale << 6 | indexenc << 3 | 0x05);
+      emit_data(disp, rspec, disp32_operand);
+#ifdef _LP64
+    } else if ( rtype != relocInfo::none ) {
+      // [disp] RIP-RELATIVE
+      // [00 reg 101] disp32
+      emit_byte(0x05 | regenc << 3);
+      // Note that the RIP-rel. correction applies to the generated
+      // disp field, but _not_ to the target address in the rspec.
+
+      // disp was created by converting the target address minus the pc
+      // at the start of the instruction. That needs more correction here.
+      // intptr_t disp = target - next_ip;
+
+      assert(inst_mark() != NULL, "must be inside InstructionMark");
+      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
+
+      int64_t adjusted = (int64_t) disp -  (next_ip - inst_mark());
+      assert(is_simm32(adjusted),
+             "must be 32bit offset (RIP relative address)");
+      emit_data((int) adjusted, rspec, disp32_operand);
+#endif // _LP64
+    } else {
+      // [disp] ABSOLUTE
+      // [00 reg 100][00 100 101] disp32
+      emit_byte(0x04 | regenc << 3);
+      emit_byte(0x25);
+      emit_data(disp, rspec, disp32_operand);
+    }
+  }
+}
+
+// Secret local extension to Assembler::WhichOperand:
+#define end_pc_operand (_WhichOperand_limit)
+
+address Assembler::locate_operand(address inst, WhichOperand which) {
+  // Decode the given instruction, and return the address of
+  // an embedded 32-bit operand word.
+
+  // If "which" is disp32_operand, selects the displacement portion
+  // of an effective address specifier.
+  // If "which" is imm64_operand, selects the trailing immediate constant.
+  // If "which" is call32_operand, selects the displacement of a call or jump.
+  // Caller is responsible for ensuring that there is such an operand,
+  // and that it is 32/64 bits wide.
+
+  // If "which" is end_pc_operand, find the end of the instruction.
+
+  address ip = inst;
+  bool is_64bit = false;
+
+  debug_only(bool has_disp32 = false);
+  int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
+
+  again_after_prefix:
+  switch (0xFF & *ip++) {
+
+  // These convenience macros generate groups of "case" labels for the switch.
+#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
+#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
+             case (x)+4: case (x)+5: case (x)+6: case (x)+7
+#define REP16(x) REP8((x)+0): \
+              case REP8((x)+8)
+
+  case CS_segment:
+  case SS_segment:
+  case DS_segment:
+  case ES_segment:
+  case FS_segment:
+  case GS_segment:
+    assert(0, "shouldn't have that prefix");
+    assert(ip == inst + 1 || ip == inst + 2, "only two prefixes allowed");
+    goto again_after_prefix;
+
+  case 0x67:
+  case REX:
+  case REX_B:
+  case REX_X:
+  case REX_XB:
+  case REX_R:
+  case REX_RB:
+  case REX_RX:
+  case REX_RXB:
+//     assert(ip == inst + 1, "only one prefix allowed");
+    goto again_after_prefix;
+
+  case REX_W:
+  case REX_WB:
+  case REX_WX:
+  case REX_WXB:
+  case REX_WR:
+  case REX_WRB:
+  case REX_WRX:
+  case REX_WRXB:
+    is_64bit = true;
+//     assert(ip == inst + 1, "only one prefix allowed");
+    goto again_after_prefix;
+
+  case 0xFF: // pushq a; decl a; incl a; call a; jmp a
+  case 0x88: // movb a, r
+  case 0x89: // movl a, r
+  case 0x8A: // movb r, a
+  case 0x8B: // movl r, a
+  case 0x8F: // popl a
+    debug_only(has_disp32 = true);
+    break;
+
+  case 0x68: // pushq #32
+    if (which == end_pc_operand) {
+      return ip + 4;
+    }
+    assert(0, "pushq has no disp32 or imm64");
+    ShouldNotReachHere();
+
+  case 0x66: // movw ... (size prefix)
+    again_after_size_prefix2:
+    switch (0xFF & *ip++) {
+    case REX:
+    case REX_B:
+    case REX_X:
+    case REX_XB:
+    case REX_R:
+    case REX_RB:
+    case REX_RX:
+    case REX_RXB:
+    case REX_W:
+    case REX_WB:
+    case REX_WX:
+    case REX_WXB:
+    case REX_WR:
+    case REX_WRB:
+    case REX_WRX:
+    case REX_WRXB:
+      goto again_after_size_prefix2;
+    case 0x8B: // movw r, a
+    case 0x89: // movw a, r
+      break;
+    case 0xC7: // movw a, #16
+      tail_size = 2;  // the imm16
+      break;
+    case 0x0F: // several SSE/SSE2 variants
+      ip--;    // reparse the 0x0F
+      goto again_after_prefix;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case REP8(0xB8): // movl/q r, #32/#64(oop?)
+    if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
+    assert((which == call32_operand || which == imm64_operand) && is_64bit, "");
+    return ip;
+
+  case 0x69: // imul r, a, #32
+  case 0xC7: // movl a, #32(oop?)
+    tail_size = 4;
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  case 0x0F: // movx..., etc.
+    switch (0xFF & *ip++) {
+    case 0x12: // movlps
+    case 0x28: // movaps
+    case 0x2E: // ucomiss
+    case 0x2F: // comiss
+    case 0x54: // andps
+    case 0x57: // xorps
+    case 0x6E: // movd
+    case 0x7E: // movd
+    case 0xAE: // ldmxcsr   a
+      debug_only(has_disp32 = true); // has both kinds of operands!
+      break;
+    case 0xAD: // shrd r, a, %cl
+    case 0xAF: // imul r, a
+    case 0xBE: // movsbl r, a
+    case 0xBF: // movswl r, a
+    case 0xB6: // movzbl r, a
+    case 0xB7: // movzwl r, a
+    case REP16(0x40): // cmovl cc, r, a
+    case 0xB0: // cmpxchgb
+    case 0xB1: // cmpxchg
+    case 0xC1: // xaddl
+    case 0xC7: // cmpxchg8
+    case REP16(0x90): // setcc a
+      debug_only(has_disp32 = true);
+      // fall out of the switch to decode the address
+      break;
+    case 0xAC: // shrd r, a, #8
+      debug_only(has_disp32 = true);
+      tail_size = 1;  // the imm8
+      break;
+    case REP16(0x80): // jcc rdisp32
+      if (which == end_pc_operand)  return ip + 4;
+      assert(which == call32_operand, "jcc has no disp32 or imm64");
+      return ip;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case 0x81: // addl a, #32; addl r, #32
+    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
+    tail_size = 4;
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  case 0x83: // addl a, #8; addl r, #8
+    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    tail_size = 1;
+    break;
+
+  case 0x9B:
+    switch (0xFF & *ip++) {
+    case 0xD9: // fnstcw a
+      debug_only(has_disp32 = true);
+      break;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
+  case REP4(0x10): // adc...
+  case REP4(0x20): // and...
+  case REP4(0x30): // xor...
+  case REP4(0x08): // or...
+  case REP4(0x18): // sbb...
+  case REP4(0x28): // sub...
+  case 0xF7: // mull a
+  case 0x87: // xchg r, a
+    debug_only(has_disp32 = true);
+    break;
+  case REP4(0x38): // cmp...
+  case 0x8D: // lea r, a
+  case 0x85: // test r, a
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
+  case 0xC6: // movb a, #8
+  case 0x80: // cmpb a, #8
+  case 0x6B: // imul r, a, #8
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    tail_size = 1; // the imm8
+    break;
+
+  case 0xE8: // call rdisp32
+  case 0xE9: // jmp  rdisp32
+    if (which == end_pc_operand)  return ip + 4;
+    assert(which == call32_operand, "call has no disp32 or imm32");
+    return ip;
+
+  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
+  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
+  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
+  case 0xDD: // fld_d a; fst_d a; fstp_d a
+  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
+  case 0xDF: // fild_d a; fistp_d a
+  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
+  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
+  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
+    debug_only(has_disp32 = true);
+    break;
+
+  case 0xF3:                    // For SSE
+  case 0xF2:                    // For SSE2
+    switch (0xFF & *ip++) {
+    case REX:
+    case REX_B:
+    case REX_X:
+    case REX_XB:
+    case REX_R:
+    case REX_RB:
+    case REX_RX:
+    case REX_RXB:
+    case REX_W:
+    case REX_WB:
+    case REX_WX:
+    case REX_WXB:
+    case REX_WR:
+    case REX_WRB:
+    case REX_WRX:
+    case REX_WRXB:
+      ip++;
+    default:
+      ip++;
+    }
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  default:
+    ShouldNotReachHere();
+
+#undef REP8
+#undef REP16
+  }
+
+  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
+  assert(which != imm64_operand, "instruction is not a movq reg, imm64");
+  assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
+
+  // parse the output of emit_operand
+  int op2 = 0xFF & *ip++;
+  int base = op2 & 0x07;
+  int op3 = -1;
+  const int b100 = 4;
+  const int b101 = 5;
+  if (base == b100 && (op2 >> 6) != 3) {
+    op3 = 0xFF & *ip++;
+    base = op3 & 0x07;   // refetch the base
+  }
+  // now ip points at the disp (if any)
+
+  switch (op2 >> 6) {
+  case 0:
+    // [00 reg  100][ss index base]
+    // [00 reg  100][00   100  esp]
+    // [00 reg base]
+    // [00 reg  100][ss index  101][disp32]
+    // [00 reg  101]               [disp32]
+
+    if (base == b101) {
+      if (which == disp32_operand)
+        return ip;              // caller wants the disp32
+      ip += 4;                  // skip the disp32
+    }
+    break;
+
+  case 1:
+    // [01 reg  100][ss index base][disp8]
+    // [01 reg  100][00   100  esp][disp8]
+    // [01 reg base]               [disp8]
+    ip += 1;                    // skip the disp8
+    break;
+
+  case 2:
+    // [10 reg  100][ss index base][disp32]
+    // [10 reg  100][00   100  esp][disp32]
+    // [10 reg base]               [disp32]
+    if (which == disp32_operand)
+      return ip;                // caller wants the disp32
+    ip += 4;                    // skip the disp32
+    break;
+
+  case 3:
+    // [11 reg base]  (not a memory addressing mode)
+    break;
+  }
+
+  if (which == end_pc_operand) {
+    return ip + tail_size;
+  }
+
+  assert(0, "fix locate_operand");
+  return ip;
+}
+
+address Assembler::locate_next_instruction(address inst) {
+  // Secretly share code with locate_operand:
+  return locate_operand(inst, end_pc_operand);
+}
+
+#ifdef ASSERT
+void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
+  address inst = inst_mark();
+  assert(inst != NULL && inst < pc(),
+         "must point to beginning of instruction");
+  address opnd;
+
+  Relocation* r = rspec.reloc();
+  if (r->type() == relocInfo::none) {
+    return;
+  } else if (r->is_call() || format == call32_operand) {
+    opnd = locate_operand(inst, call32_operand);
+  } else if (r->is_data()) {
+    assert(format == imm64_operand || format == disp32_operand, "format ok");
+    opnd = locate_operand(inst, (WhichOperand) format);
+  } else {
+    assert(format == 0, "cannot specify a format");
+    return;
+  }
+  assert(opnd == pc(), "must put operand where relocs can find it");
+}
+#endif
+
+int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
+  if (reg_enc >= 8) {
+    prefix(REX_B);
+    reg_enc -= 8;
+  } else if (byteinst && reg_enc >= 4) {
+    prefix(REX);
+  }
+  return reg_enc;
+}
+
+int Assembler::prefixq_and_encode(int reg_enc) {
+  if (reg_enc < 8) {
+    prefix(REX_W);
+  } else {
+    prefix(REX_WB);
+    reg_enc -= 8;
+  }
+  return reg_enc;
+}
+
+int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
+  if (dst_enc < 8) {
+    if (src_enc >= 8) {
+      prefix(REX_B);
+      src_enc -= 8;
+    } else if (byteinst && src_enc >= 4) {
+      prefix(REX);
+    }
+  } else {
+    if (src_enc < 8) {
+      prefix(REX_R);
+    } else {
+      prefix(REX_RB);
+      src_enc -= 8;
+    }
+    dst_enc -= 8;
+  }
+  return dst_enc << 3 | src_enc;
+}
+
+int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
+  if (dst_enc < 8) {
+    if (src_enc < 8) {
+      prefix(REX_W);
+    } else {
+      prefix(REX_WB);
+      src_enc -= 8;
+    }
+  } else {
+    if (src_enc < 8) {
+      prefix(REX_WR);
+    } else {
+      prefix(REX_WRB);
+      src_enc -= 8;
+    }
+    dst_enc -= 8;
+  }
+  return dst_enc << 3 | src_enc;
+}
+
+void Assembler::prefix(Register reg) {
+  if (reg->encoding() >= 8) {
+    prefix(REX_B);
+  }
+}
+
+void Assembler::prefix(Address adr) {
+  if (adr.base_needs_rex()) {
+    if (adr.index_needs_rex()) {
+      prefix(REX_XB);
+    } else {
+      prefix(REX_B);
+    }
+  } else {
+    if (adr.index_needs_rex()) {
+      prefix(REX_X);
+    }
+  }
+}
+
+void Assembler::prefixq(Address adr) {
+  if (adr.base_needs_rex()) {
+    if (adr.index_needs_rex()) {
+      prefix(REX_WXB);
+    } else {
+      prefix(REX_WB);
+    }
+  } else {
+    if (adr.index_needs_rex()) {
+      prefix(REX_WX);
+    } else {
+      prefix(REX_W);
+    }
+  }
+}
+
+
+void Assembler::prefix(Address adr, Register reg, bool byteinst) {
+  if (reg->encoding() < 8) {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_XB);
+      } else {
+        prefix(REX_B);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_X);
+      } else if (reg->encoding() >= 4 ) {
+        prefix(REX);
+      }
+    }
+  } else {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RXB);
+      } else {
+        prefix(REX_RB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RX);
+      } else {
+        prefix(REX_R);
+      }
+    }
+  }
+}
+
+void Assembler::prefixq(Address adr, Register src) {
+  if (src->encoding() < 8) {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WXB);
+      } else {
+        prefix(REX_WB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WX);
+      } else {
+        prefix(REX_W);
+      }
+    }
+  } else {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WRXB);
+      } else {
+        prefix(REX_WRB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WRX);
+      } else {
+        prefix(REX_WR);
+      }
+    }
+  }
+}
+
+void Assembler::prefix(Address adr, XMMRegister reg) {
+  if (reg->encoding() < 8) {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_XB);
+      } else {
+        prefix(REX_B);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_X);
+      }
+    }
+  } else {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RXB);
+      } else {
+        prefix(REX_RB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RX);
+      } else {
+        prefix(REX_R);
+      }
+    }
+  }
+}
+
+void Assembler::emit_operand(Register reg, Address adr,
+                             int rip_relative_correction) {
+  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
+               adr._rspec,
+               rip_relative_correction);
+}
+
+void Assembler::emit_operand(XMMRegister reg, Address adr,
+                             int rip_relative_correction) {
+  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
+               adr._rspec,
+               rip_relative_correction);
+}
+
+void Assembler::emit_farith(int b1, int b2, int i) {
+  assert(isByte(b1) && isByte(b2), "wrong opcode");
+  assert(0 <= i &&  i < 8, "illegal stack offset");
+  emit_byte(b1);
+  emit_byte(b2 + i);
+}
+
+// pushad is invalid, use this instead.
+// NOTE: Kills flags!!
+void Assembler::pushaq() {
+  // we have to store original rsp.  ABI says that 128 bytes
+  // below rsp are local scratch.
+  movq(Address(rsp, -5 * wordSize), rsp);
+
+  subq(rsp, 16 * wordSize);
+
+  movq(Address(rsp, 15 * wordSize), rax);
+  movq(Address(rsp, 14 * wordSize), rcx);
+  movq(Address(rsp, 13 * wordSize), rdx);
+  movq(Address(rsp, 12 * wordSize), rbx);
+  // skip rsp
+  movq(Address(rsp, 10 * wordSize), rbp);
+  movq(Address(rsp, 9 * wordSize), rsi);
+  movq(Address(rsp, 8 * wordSize), rdi);
+  movq(Address(rsp, 7 * wordSize), r8);
+  movq(Address(rsp, 6 * wordSize), r9);
+  movq(Address(rsp, 5 * wordSize), r10);
+  movq(Address(rsp, 4 * wordSize), r11);
+  movq(Address(rsp, 3 * wordSize), r12);
+  movq(Address(rsp, 2 * wordSize), r13);
+  movq(Address(rsp, wordSize), r14);
+  movq(Address(rsp, 0), r15);
+}
+
+// popad is invalid, use this instead
+// NOTE: Kills flags!!
+void Assembler::popaq() {
+  movq(r15, Address(rsp, 0));
+  movq(r14, Address(rsp, wordSize));
+  movq(r13, Address(rsp, 2 * wordSize));
+  movq(r12, Address(rsp, 3 * wordSize));
+  movq(r11, Address(rsp, 4 * wordSize));
+  movq(r10, Address(rsp, 5 * wordSize));
+  movq(r9,  Address(rsp, 6 * wordSize));
+  movq(r8,  Address(rsp, 7 * wordSize));
+  movq(rdi, Address(rsp, 8 * wordSize));
+  movq(rsi, Address(rsp, 9 * wordSize));
+  movq(rbp, Address(rsp, 10 * wordSize));
+  // skip rsp
+  movq(rbx, Address(rsp, 12 * wordSize));
+  movq(rdx, Address(rsp, 13 * wordSize));
+  movq(rcx, Address(rsp, 14 * wordSize));
+  movq(rax, Address(rsp, 15 * wordSize));
+
+  addq(rsp, 16 * wordSize);
+}
+
+void Assembler::pushfq() {
+  emit_byte(0x9C);
+}
+
+void Assembler::popfq() {
+  emit_byte(0x9D);
+}
+
+void Assembler::pushq(int imm32) {
+  emit_byte(0x68);
+  emit_long(imm32);
+}
+
+void Assembler::pushq(Register src) {
+  int encode = prefix_and_encode(src->encoding());
+
+  emit_byte(0x50 | encode);
+}
+
+void Assembler::pushq(Address src) {
+  InstructionMark im(this);
+  prefix(src);
+  emit_byte(0xFF);
+  emit_operand(rsi, src);
+}
+
+void Assembler::popq(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0x58 | encode);
+}
+
+void Assembler::popq(Address dst) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x8F);
+  emit_operand(rax, dst);
+}
+
+void Assembler::prefix(Prefix p) {
+  a_byte(p);
+}
+
+void Assembler::movb(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst, true);
+  emit_byte(0x8A);
+  emit_operand(dst, src);
+}
+
+void Assembler::movb(Address dst, int imm8) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0xC6);
+  emit_operand(rax, dst, 1);
+  emit_byte(imm8);
+}
+
+void Assembler::movb(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src, true);
+  emit_byte(0x88);
+  emit_operand(src, dst);
+}
+
+void Assembler::movw(Address dst, int imm16) {
+  InstructionMark im(this);
+  emit_byte(0x66); // switch to 16-bit mode
+  prefix(dst);
+  emit_byte(0xC7);
+  emit_operand(rax, dst, 2);
+  emit_word(imm16);
+}
+
+void Assembler::movw(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+void Assembler::movw(Address dst, Register src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(dst, src);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+// Uses zero extension.
+void Assembler::movl(Register dst, int imm32) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xB8 | encode);
+  emit_long(imm32);
+}
+
+void Assembler::movl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x8B);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+void Assembler::movl(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0xC7);
+  emit_operand(rax, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::movl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+void Assembler::mov64(Register dst, int64_t imm64) {
+  InstructionMark im(this);
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xB8 | encode);
+  emit_long64(imm64);
+}
+
+void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xB8 | encode);
+  emit_data64(imm64, rspec);
+}
+
+void Assembler::movq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x8B);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+void Assembler::mov64(Address dst, int64_t imm32) {
+  assert(is_simm32(imm32), "lost bits");
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0xC7);
+  emit_operand(rax, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::movq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+void Assembler::movsbl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xBE);
+  emit_operand(dst, src);
+}
+
+void Assembler::movsbl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
+  emit_byte(0x0F);
+  emit_byte(0xBE);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movswl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xBF);
+  emit_operand(dst, src);
+}
+
+void Assembler::movswl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xBF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movslq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x63);
+  emit_operand(dst, src);
+}
+
+void Assembler::movslq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x63);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movzbl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xB6);
+  emit_operand(dst, src);
+}
+
+void Assembler::movzbl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
+  emit_byte(0x0F);
+  emit_byte(0xB6);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movzwl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xB7);
+  emit_operand(dst, src);
+}
+
+void Assembler::movzwl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xB7);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movss(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movss(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_operand(dst, src);
+}
+
+void Assembler::movss(Address dst, XMMRegister src) {
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0x11);
+  emit_operand(src, dst);
+}
+
+void Assembler::movsd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movsd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_operand(dst, src);
+}
+
+void Assembler::movsd(Address dst, XMMRegister src) {
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0x11);
+  emit_operand(src, dst);
+}
+
+// New cpus require to use movsd and movss to avoid partial register stall
+// when loading from memory. But for old Opteron use movlpd instead of movsd.
+// The selection is done in MacroAssembler::movdbl() and movflt().
+void Assembler::movlpd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x12);
+  emit_operand(dst, src);
+}
+
+void Assembler::movapd(XMMRegister dst, XMMRegister src) {
+  int dstenc = dst->encoding();
+  int srcenc = src->encoding();
+  emit_byte(0x66);
+  if (dstenc < 8) {
+    if (srcenc >= 8) {
+      prefix(REX_B);
+      srcenc -= 8;
+    }
+  } else {
+    if (srcenc < 8) {
+      prefix(REX_R);
+    } else {
+      prefix(REX_RB);
+      srcenc -= 8;
+    }
+    dstenc -= 8;
+  }
+  emit_byte(0x0F);
+  emit_byte(0x28);
+  emit_byte(0xC0 | dstenc << 3 | srcenc);
+}
+
+void Assembler::movaps(XMMRegister dst, XMMRegister src) {
+  int dstenc = dst->encoding();
+  int srcenc = src->encoding();
+  if (dstenc < 8) {
+    if (srcenc >= 8) {
+      prefix(REX_B);
+      srcenc -= 8;
+    }
+  } else {
+    if (srcenc < 8) {
+      prefix(REX_R);
+    } else {
+      prefix(REX_RB);
+      srcenc -= 8;
+    }
+    dstenc -= 8;
+  }
+  emit_byte(0x0F);
+  emit_byte(0x28);
+  emit_byte(0xC0 | dstenc << 3 | srcenc);
+}
+
+void Assembler::movdl(XMMRegister dst, Register src) {
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x6E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdl(Register dst, XMMRegister src) {
+  emit_byte(0x66);
+  // swap src/dst to get correct prefix
+  int encode = prefix_and_encode(src->encoding(), dst->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdq(XMMRegister dst, Register src) {
+  emit_byte(0x66);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x6E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdq(Register dst, XMMRegister src) {
+  emit_byte(0x66);
+  // swap src/dst to get correct prefix
+  int encode = prefixq_and_encode(src->encoding(), dst->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::pxor(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xEF);
+  emit_operand(dst, src);
+}
+
+void Assembler::pxor(XMMRegister dst, XMMRegister src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xEF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdqa(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x6F);
+  emit_operand(dst, src);
+}
+
+void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
+  emit_byte(0x66);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x6F);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdqa(Address dst, XMMRegister src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0x7F);
+  emit_operand(src, dst);
+}
+
+void Assembler::movq(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_operand(dst, src);
+}
+
+void Assembler::movq(Address dst, XMMRegister src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0xD6);
+  emit_operand(src, dst);
+}
+
+void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
+  assert(isByte(mode), "invalid value");
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_byte(0xC0 | encode);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
+  assert(isByte(mode), "invalid value");
+  InstructionMark im(this);
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
+  assert(isByte(mode), "invalid value");
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_byte(0xC0 | encode);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
+  assert(isByte(mode), "invalid value");
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::cmovl(Condition cc, Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cmovl(Condition cc, Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_operand(dst, src);
+}
+
+void Assembler::cmovq(Condition cc, Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cmovq(Condition cc, Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_operand(dst, src);
+}
+
+void Assembler::prefetch_prefix(Address src) {
+  prefix(src);
+  emit_byte(0x0F);
+}
+
+void Assembler::prefetcht0(Address src) {
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rcx, src); // 1, src
+}
+
+void Assembler::prefetcht1(Address src) {
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rdx, src); // 2, src
+}
+
+void Assembler::prefetcht2(Address src) {
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rbx, src); // 3, src
+}
+
+void Assembler::prefetchnta(Address src) {
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rax, src); // 0, src
+}
+
+void Assembler::prefetchw(Address src) {
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x0D);
+  emit_operand(rcx, src); // 1, src
+}
+
+void Assembler::adcl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xD0, dst, imm32);
+}
+
+void Assembler::adcl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x13);
+  emit_operand(dst, src);
+}
+
+void Assembler::adcl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x13, 0xC0, dst, src);
+}
+
+void Assembler::adcq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xD0, dst, imm32);
+}
+
+void Assembler::adcq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x13);
+  emit_operand(dst, src);
+}
+
+void Assembler::adcq(Register dst, Register src) {
+  (int) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x13, 0xC0, dst, src);
+}
+
+void Assembler::addl(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_arith_operand(0x81, rax, dst,imm32);
+}
+
+void Assembler::addl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x01);
+  emit_operand(src, dst);
+}
+
+void Assembler::addl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xC0, dst, imm32);
+}
+
+void Assembler::addl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x03);
+  emit_operand(dst, src);
+}
+
+void Assembler::addl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x03, 0xC0, dst, src);
+}
+
+void Assembler::addq(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_arith_operand(0x81, rax, dst,imm32);
+}
+
+void Assembler::addq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x01);
+  emit_operand(src, dst);
+}
+
+void Assembler::addq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xC0, dst, imm32);
+}
+
+void Assembler::addq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x03);
+  emit_operand(dst, src);
+}
+
+void Assembler::addq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x03, 0xC0, dst, src);
+}
+
+void Assembler::andl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xE0, dst, imm32);
+}
+
+void Assembler::andl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x23);
+  emit_operand(dst, src);
+}
+
+void Assembler::andl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x23, 0xC0, dst, src);
+}
+
+void Assembler::andq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xE0, dst, imm32);
+}
+
+void Assembler::andq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x23);
+  emit_operand(dst, src);
+}
+
+void Assembler::andq(Register dst, Register src) {
+  (int) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x23, 0xC0, dst, src);
+}
+
+void Assembler::cmpb(Address dst, int imm8) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x80);
+  emit_operand(rdi, dst, 1);
+  emit_byte(imm8);
+}
+
+void Assembler::cmpl(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x81);
+  emit_operand(rdi, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::cmpl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xF8, dst, imm32);
+}
+
+void Assembler::cmpl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x3B, 0xC0, dst, src);
+}
+
+void Assembler::cmpl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x3B);
+  emit_operand(dst, src);
+}
+
+void Assembler::cmpq(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0x81);
+  emit_operand(rdi, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::cmpq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xF8, dst, imm32);
+}
+
+void Assembler::cmpq(Address dst, Register src) {
+  prefixq(dst, src);
+  emit_byte(0x3B);
+  emit_operand(src, dst);
+}
+
+void Assembler::cmpq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x3B, 0xC0, dst, src);
+}
+
+void Assembler::cmpq(Register dst, Address  src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x3B);
+  emit_operand(dst, src);
+}
+
+void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0x66);
+  ucomiss(dst, src);
+}
+
+void Assembler::decl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::decrementl() instead.
+  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::decl(Address dst) {
+  // Don't use it directly. Use MacroAssembler::decrementl() instead.
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0xFF);
+  emit_operand(rcx, dst);
+}
+
+void Assembler::decq(Register dst) {
+  // Don't use it directly. Use MacroAssembler::decrementq() instead.
+  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::decq(Address dst) {
+  // Don't use it directly. Use MacroAssembler::decrementq() instead.
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0xFF);
+  emit_operand(rcx, dst);
+}
+
+void Assembler::idivl(Register src) {
+  int encode = prefix_and_encode(src->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xF8 | encode);
+}
+
+void Assembler::idivq(Register src) {
+  int encode = prefixq_and_encode(src->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xF8 | encode);
+}
+
+void Assembler::cdql() {
+  emit_byte(0x99);
+}
+
+void Assembler::cdqq() {
+  prefix(REX_W);
+  emit_byte(0x99);
+}
+
+void Assembler::imull(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xAF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::imull(Register dst, Register src, int value) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  if (is8bit(value)) {
+    emit_byte(0x6B);
+    emit_byte(0xC0 | encode);
+    emit_byte(value);
+  } else {
+    emit_byte(0x69);
+    emit_byte(0xC0 | encode);
+    emit_long(value);
+  }
+}
+
+void Assembler::imulq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xAF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::imulq(Register dst, Register src, int value) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  if (is8bit(value)) {
+    emit_byte(0x6B);
+    emit_byte(0xC0 | encode);
+    emit_byte(value);
+  } else {
+    emit_byte(0x69);
+    emit_byte(0xC0 | encode);
+    emit_long(value);
+  }
+}
+
+void Assembler::incl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::incrementl() instead.
+  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::incl(Address dst) {
+  // Don't use it directly. Use MacroAssembler::incrementl() instead.
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0xFF);
+  emit_operand(rax, dst);
+}
+
+void Assembler::incq(Register dst) {
+  // Don't use it directly. Use MacroAssembler::incrementq() instead.
+  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::incq(Address dst) {
+  // Don't use it directly. Use MacroAssembler::incrementq() instead.
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0xFF);
+  emit_operand(rax, dst);
+}
+
+void Assembler::leal(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x67); // addr32
+  prefix(src, dst);
+  emit_byte(0x8D);
+  emit_operand(dst, src);
+}
+
+void Assembler::leaq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x8D);
+  emit_operand(dst, src);
+}
+
+void Assembler::mull(Address src) {
+  InstructionMark im(this);
+  // was missing
+  prefix(src);
+  emit_byte(0xF7);
+  emit_operand(rsp, src);
+}
+
+void Assembler::mull(Register src) {
+  // was missing
+  int encode = prefix_and_encode(src->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::negl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD8 | encode);
+}
+
+void Assembler::negq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD8 | encode);
+}
+
+void Assembler::notl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD0 | encode);
+}
+
+void Assembler::notq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD0 | encode);
+}
+
+void Assembler::orl(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x81);
+  emit_operand(rcx, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::orl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xC8, dst, imm32);
+}
+
+void Assembler::orl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0B);
+  emit_operand(dst, src);
+}
+
+void Assembler::orl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x0B, 0xC0, dst, src);
+}
+
+void Assembler::orq(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0x81);
+  emit_operand(rcx, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::orq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xC8, dst, imm32);
+}
+
+void Assembler::orq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x0B);
+  emit_operand(dst, src);
+}
+
+void Assembler::orq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x0B, 0xC0, dst, src);
+}
+
+void Assembler::rcll(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  int encode = prefix_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xD0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xD0 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::rclq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xD0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xD0 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::sarl(Register dst, int imm8) {
+  int encode = prefix_and_encode(dst->encoding());
+  assert(isShiftCount(imm8), "illegal shift count");
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xF8 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xF8 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::sarl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xF8 | encode);
+}
+
+void Assembler::sarq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xF8 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xF8 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::sarq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xF8 | encode);
+}
+
+void Assembler::sbbl(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_arith_operand(0x81, rbx, dst, imm32);
+}
+
+void Assembler::sbbl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xD8, dst, imm32);
+}
+
+void Assembler::sbbl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x1B);
+  emit_operand(dst, src);
+}
+
+void Assembler::sbbl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x1B, 0xC0, dst, src);
+}
+
+void Assembler::sbbq(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_arith_operand(0x81, rbx, dst, imm32);
+}
+
+void Assembler::sbbq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xD8, dst, imm32);
+}
+
+void Assembler::sbbq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x1B);
+  emit_operand(dst, src);
+}
+
+void Assembler::sbbq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x1B, 0xC0, dst, src);
+}
+
+void Assembler::shll(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  int encode = prefix_and_encode(dst->encoding());
+  if (imm8 == 1 ) {
+    emit_byte(0xD1);
+    emit_byte(0xE0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xE0 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::shll(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::shlq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xE0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xE0 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::shlq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::shrl(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xC1);
+  emit_byte(0xE8 | encode);
+  emit_byte(imm8);
+}
+
+void Assembler::shrl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE8 | encode);
+}
+
+void Assembler::shrq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xC1);
+  emit_byte(0xE8 | encode);
+  emit_byte(imm8);
+}
+
+void Assembler::shrq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE8 | encode);
+}
+
+void Assembler::subl(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  if (is8bit(imm32)) {
+    emit_byte(0x83);
+    emit_operand(rbp, dst, 1);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(0x81);
+    emit_operand(rbp, dst, 4);
+    emit_long(imm32);
+  }
+}
+
+void Assembler::subl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xE8, dst, imm32);
+}
+
+void Assembler::subl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x29);
+  emit_operand(src, dst);
+}
+
+void Assembler::subl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x2B);
+  emit_operand(dst, src);
+}
+
+void Assembler::subl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x2B, 0xC0, dst, src);
+}
+
+void Assembler::subq(Address dst, int imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  if (is8bit(imm32)) {
+    emit_byte(0x83);
+    emit_operand(rbp, dst, 1);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(0x81);
+    emit_operand(rbp, dst, 4);
+    emit_long(imm32);
+  }
+}
+
+void Assembler::subq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xE8, dst, imm32);
+}
+
+void Assembler::subq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x29);
+  emit_operand(src, dst);
+}
+
+void Assembler::subq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x2B);
+  emit_operand(dst, src);
+}
+
+void Assembler::subq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x2B, 0xC0, dst, src);
+}
+
+void Assembler::testb(Register dst, int imm8) {
+  (void) prefix_and_encode(dst->encoding(), true);
+  emit_arith_b(0xF6, 0xC0, dst, imm8);
+}
+
+void Assembler::testl(Register dst, int imm32) {
+  // not using emit_arith because test
+  // doesn't support sign-extension of
+  // 8bit operands
+  int encode = dst->encoding();
+  if (encode == 0) {
+    emit_byte(0xA9);
+  } else {
+    encode = prefix_and_encode(encode);
+    emit_byte(0xF7);
+    emit_byte(0xC0 | encode);
+  }
+  emit_long(imm32);
+}
+
+void Assembler::testl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x85, 0xC0, dst, src);
+}
+
+void Assembler::testq(Register dst, int imm32) {
+  // not using emit_arith because test
+  // doesn't support sign-extension of
+  // 8bit operands
+  int encode = dst->encoding();
+  if (encode == 0) {
+    prefix(REX_W);
+    emit_byte(0xA9);
+  } else {
+    encode = prefixq_and_encode(encode);
+    emit_byte(0xF7);
+    emit_byte(0xC0 | encode);
+  }
+  emit_long(imm32);
+}
+
+void Assembler::testq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x85, 0xC0, dst, src);
+}
+
+void Assembler::xaddl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0xC1);
+  emit_operand(src, dst);
+}
+
+void Assembler::xaddq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0xC1);
+  emit_operand(src, dst);
+}
+
+void Assembler::xorl(Register dst, int imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xF0, dst, imm32);
+}
+
+void Assembler::xorl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x33, 0xC0, dst, src);
+}
+
+void Assembler::xorl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x33);
+  emit_operand(dst, src);
+}
+
+void Assembler::xorq(Register dst, int imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xF0, dst, imm32);
+}
+
+void Assembler::xorq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x33, 0xC0, dst, src);
+}
+
+void Assembler::xorq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x33);
+  emit_operand(dst, src);
+}
+
+void Assembler::bswapl(Register reg) {
+  int encode = prefix_and_encode(reg->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::bswapq(Register reg) {
+  int encode = prefixq_and_encode(reg->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::lock() {
+  emit_byte(0xF0);
+}
+
+void Assembler::xchgl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x87);
+  emit_operand(dst, src);
+}
+
+void Assembler::xchgl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x87);
+  emit_byte(0xc0 | encode);
+}
+
+void Assembler::xchgq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x87);
+  emit_operand(dst, src);
+}
+
+void Assembler::xchgq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x87);
+  emit_byte(0xc0 | encode);
+}
+
+void Assembler::cmpxchgl(Register reg, Address adr) {
+  InstructionMark im(this);
+  prefix(adr, reg);
+  emit_byte(0x0F);
+  emit_byte(0xB1);
+  emit_operand(reg, adr);
+}
+
+void Assembler::cmpxchgq(Register reg, Address adr) {
+  InstructionMark im(this);
+  prefixq(adr, reg);
+  emit_byte(0x0F);
+  emit_byte(0xB1);
+  emit_operand(reg, adr);
+}
+
+void Assembler::hlt() {
+  emit_byte(0xF4);
+}
+
+
+void Assembler::addr_nop_4() {
+  // 4 bytes: NOP DWORD PTR [EAX+0]
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
+  emit_byte(0);    // 8-bits offset (1 byte)
+}
+
+void Assembler::addr_nop_5() {
+  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
+  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
+  emit_byte(0);    // 8-bits offset (1 byte)
+}
+
+void Assembler::addr_nop_7() {
+  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
+  emit_long(0);    // 32-bits offset (4 bytes)
+}
+
+void Assembler::addr_nop_8() {
+  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
+  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
+  emit_long(0);    // 32-bits offset (4 bytes)
+}
+
+void Assembler::nop(int i) {
+  assert(i > 0, " ");
+  if (UseAddressNop && VM_Version::is_intel()) {
+    //
+    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
+    //  1: 0x90
+    //  2: 0x66 0x90
+    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
+    //  4: 0x0F 0x1F 0x40 0x00
+    //  5: 0x0F 0x1F 0x44 0x00 0x00
+    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
+    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+
+    // The rest coding is Intel specific - don't use consecutive address nops
+
+    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+
+    while(i >= 15) {
+      // For Intel don't generate consecutive addess nops (mix with regular nops)
+      i -= 15;
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      addr_nop_8();
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x90);   // nop
+    }
+    switch (i) {
+      case 14:
+        emit_byte(0x66); // size prefix
+      case 13:
+        emit_byte(0x66); // size prefix
+      case 12:
+        addr_nop_8();
+        emit_byte(0x66); // size prefix
+        emit_byte(0x66); // size prefix
+        emit_byte(0x66); // size prefix
+        emit_byte(0x90); // nop
+        break;
+      case 11:
+        emit_byte(0x66); // size prefix
+      case 10:
+        emit_byte(0x66); // size prefix
+      case 9:
+        emit_byte(0x66); // size prefix
+      case 8:
+        addr_nop_8();
+        break;
+      case 7:
+        addr_nop_7();
+        break;
+      case 6:
+        emit_byte(0x66); // size prefix
+      case 5:
+        addr_nop_5();
+        break;
+      case 4:
+        addr_nop_4();
+        break;
+      case 3:
+        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
+        emit_byte(0x66); // size prefix
+      case 2:
+        emit_byte(0x66); // size prefix
+      case 1:
+        emit_byte(0x90); // nop
+        break;
+      default:
+        assert(i == 0, " ");
+    }
+    return;
+  }
+  if (UseAddressNop && VM_Version::is_amd()) {
+    //
+    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
+    //  1: 0x90
+    //  2: 0x66 0x90
+    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
+    //  4: 0x0F 0x1F 0x40 0x00
+    //  5: 0x0F 0x1F 0x44 0x00 0x00
+    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
+    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+
+    // The rest coding is AMD specific - use consecutive address nops
+
+    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
+    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
+    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //     Size prefixes (0x66) are added for larger sizes
+
+    while(i >= 22) {
+      i -= 11;
+      emit_byte(0x66); // size prefix
+      emit_byte(0x66); // size prefix
+      emit_byte(0x66); // size prefix
+      addr_nop_8();
+    }
+    // Generate first nop for size between 21-12
+    switch (i) {
+      case 21:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 20:
+      case 19:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 18:
+      case 17:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 16:
+      case 15:
+        i -= 8;
+        addr_nop_8();
+        break;
+      case 14:
+      case 13:
+        i -= 7;
+        addr_nop_7();
+        break;
+      case 12:
+        i -= 6;
+        emit_byte(0x66); // size prefix
+        addr_nop_5();
+        break;
+      default:
+        assert(i < 12, " ");
+    }
+
+    // Generate second nop for size between 11-1
+    switch (i) {
+      case 11:
+        emit_byte(0x66); // size prefix
+      case 10:
+        emit_byte(0x66); // size prefix
+      case 9:
+        emit_byte(0x66); // size prefix
+      case 8:
+        addr_nop_8();
+        break;
+      case 7:
+        addr_nop_7();
+        break;
+      case 6:
+        emit_byte(0x66); // size prefix
+      case 5:
+        addr_nop_5();
+        break;
+      case 4:
+        addr_nop_4();
+        break;
+      case 3:
+        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
+        emit_byte(0x66); // size prefix
+      case 2:
+        emit_byte(0x66); // size prefix
+      case 1:
+        emit_byte(0x90); // nop
+        break;
+      default:
+        assert(i == 0, " ");
+    }
+    return;
+  }
+
+  // Using nops with size prefixes "0x66 0x90".
+  // From AMD Optimization Guide:
+  //  1: 0x90
+  //  2: 0x66 0x90
+  //  3: 0x66 0x66 0x90
+  //  4: 0x66 0x66 0x66 0x90
+  //  5: 0x66 0x66 0x90 0x66 0x90
+  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
+  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
+  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
+  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
+  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
+  //
+  while(i > 12) {
+    i -= 4;
+    emit_byte(0x66); // size prefix
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90); // nop
+  }
+  // 1 - 12 nops
+  if(i > 8) {
+    if(i > 9) {
+      i -= 1;
+      emit_byte(0x66);
+    }
+    i -= 3;
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90);
+  }
+  // 1 - 8 nops
+  if(i > 4) {
+    if(i > 6) {
+      i -= 1;
+      emit_byte(0x66);
+    }
+    i -= 3;
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90);
+  }
+  switch (i) {
+    case 4:
+      emit_byte(0x66);
+    case 3:
+      emit_byte(0x66);
+    case 2:
+      emit_byte(0x66);
+    case 1:
+      emit_byte(0x90);
+      break;
+    default:
+      assert(i == 0, " ");
+  }
+}
+
+void Assembler::ret(int imm16) {
+  if (imm16 == 0) {
+    emit_byte(0xC3);
+  } else {
+    emit_byte(0xC2);
+    emit_word(imm16);
+  }
+}
+
+// copies a single word from [esi] to [edi]
+void Assembler::smovl() {
+  emit_byte(0xA5);
+}
+
+// copies data from [rsi] to [rdi] using rcx words (m32)
+void Assembler::rep_movl() {
+  // REP
+  emit_byte(0xF3);
+  // MOVSL
+  emit_byte(0xA5);
+}
+
+// copies data from [rsi] to [rdi] using rcx double words (m64)
+void Assembler::rep_movq() {
+  // REP
+  emit_byte(0xF3);
+  // MOVSQ
+  prefix(REX_W);
+  emit_byte(0xA5);
+}
+
+// sets rcx double words (m64) with rax value at [rdi]
+void Assembler::rep_set() {
+  // REP
+  emit_byte(0xF3);
+  // STOSQ
+  prefix(REX_W);
+  emit_byte(0xAB);
+}
+
+// scans rcx double words (m64) at [rdi] for occurance of rax
+void Assembler::repne_scan() {
+  // REPNE/REPNZ
+  emit_byte(0xF2);
+  // SCASQ
+  prefix(REX_W);
+  emit_byte(0xAF);
+}
+
+void Assembler::setb(Condition cc, Register dst) {
+  assert(0 <= cc && cc < 16, "illegal cc");
+  int encode = prefix_and_encode(dst->encoding(), true);
+  emit_byte(0x0F);
+  emit_byte(0x90 | cc);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::clflush(Address adr) {
+  prefix(adr);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(rdi, adr);
+}
+
+void Assembler::call(Label& L, relocInfo::relocType rtype) {
+  if (L.is_bound()) {
+    const int long_size = 5;
+    int offs = (int)( target(L) - pc() );
+    assert(offs <= 0, "assembler error");
+    InstructionMark im(this);
+    // 1110 1000 #32-bit disp
+    emit_byte(0xE8);
+    emit_data(offs - long_size, rtype, disp32_operand);
+  } else {
+    InstructionMark im(this);
+    // 1110 1000 #32-bit disp
+    L.add_patch_at(code(), locator());
+
+    emit_byte(0xE8);
+    emit_data(int(0), rtype, disp32_operand);
+  }
+}
+
+void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
+  assert(entry != NULL, "call most probably wrong");
+  InstructionMark im(this);
+  emit_byte(0xE8);
+  intptr_t disp = entry - (_code_pos + sizeof(int32_t));
+  assert(is_simm32(disp), "must be 32bit offset (call2)");
+  // Technically, should use call32_operand, but this format is
+  // implied by the fact that we're emitting a call instruction.
+  emit_data((int) disp, rspec, disp32_operand);
+}
+
+
+void Assembler::call(Register dst) {
+  // This was originally using a 32bit register encoding
+  // and surely we want 64bit!
+  // this is a 32bit encoding but in 64bit mode the default
+  // operand size is 64bit so there is no need for the
+  // wide prefix. So prefix only happens if we use the
+  // new registers. Much like push/pop.
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xD0 | encode);
+}
+
+void Assembler::call(Address adr) {
+  InstructionMark im(this);
+  prefix(adr);
+  emit_byte(0xFF);
+  emit_operand(rdx, adr);
+}
+
+void Assembler::jmp(Register reg) {
+  int encode = prefix_and_encode(reg->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::jmp(Address adr) {
+  InstructionMark im(this);
+  prefix(adr);
+  emit_byte(0xFF);
+  emit_operand(rsp, adr);
+}
+
+void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0xE9);
+  assert(dest != NULL, "must have a target");
+  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
+  assert(is_simm32(disp), "must be 32bit offset (jmp)");
+  emit_data(disp, rspec.reloc(), call32_operand);
+}
+
+void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
+  if (L.is_bound()) {
+    address entry = target(L);
+    assert(entry != NULL, "jmp most probably wrong");
+    InstructionMark im(this);
+    const int short_size = 2;
+    const int long_size = 5;
+    intptr_t offs = entry - _code_pos;
+    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
+      emit_byte(0xEB);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      emit_byte(0xE9);
+      emit_long(offs - long_size);
+    }
+  } else {
+    // By default, forward jumps are always 32-bit displacements, since
+    // we can't yet know where the label will be bound.  If you're sure that
+    // the forward jump will not run beyond 256 bytes, use jmpb to
+    // force an 8-bit displacement.
+    InstructionMark im(this);
+    relocate(rtype);
+    L.add_patch_at(code(), locator());
+    emit_byte(0xE9);
+    emit_long(0);
+  }
+}
+
+void Assembler::jmpb(Label& L) {
+  if (L.is_bound()) {
+    const int short_size = 2;
+    address entry = target(L);
+    assert(is8bit((entry - _code_pos) + short_size),
+           "Dispacement too large for a short jmp");
+    assert(entry != NULL, "jmp most probably wrong");
+    intptr_t offs = entry - _code_pos;
+    emit_byte(0xEB);
+    emit_byte((offs - short_size) & 0xFF);
+  } else {
+    InstructionMark im(this);
+    L.add_patch_at(code(), locator());
+    emit_byte(0xEB);
+    emit_byte(0);
+  }
+}
+
+void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
+  InstructionMark im(this);
+  relocate(rtype);
+  assert((0 <= cc) && (cc < 16), "illegal cc");
+  if (L.is_bound()) {
+    address dst = target(L);
+    assert(dst != NULL, "jcc most probably wrong");
+
+    const int short_size = 2;
+    const int long_size = 6;
+    intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
+    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
+      // 0111 tttn #8-bit disp
+      emit_byte(0x70 | cc);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      // 0000 1111 1000 tttn #32-bit disp
+      assert(is_simm32(offs - long_size),
+             "must be 32bit offset (call4)");
+      emit_byte(0x0F);
+      emit_byte(0x80 | cc);
+      emit_long(offs - long_size);
+    }
+  } else {
+    // Note: could eliminate cond. jumps to this jump if condition
+    //       is the same however, seems to be rather unlikely case.
+    // Note: use jccb() if label to be bound is very close to get
+    //       an 8-bit displacement
+    L.add_patch_at(code(), locator());
+    emit_byte(0x0F);
+    emit_byte(0x80 | cc);
+    emit_long(0);
+  }
+}
+
+void Assembler::jccb(Condition cc, Label& L) {
+  if (L.is_bound()) {
+    const int short_size = 2;
+    const int long_size = 6;
+    address entry = target(L);
+    assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
+           "Dispacement too large for a short jmp");
+    intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
+    // 0111 tttn #8-bit disp
+    emit_byte(0x70 | cc);
+    emit_byte((offs - short_size) & 0xFF);
+  } else {
+    InstructionMark im(this);
+    L.add_patch_at(code(), locator());
+    emit_byte(0x70 | cc);
+    emit_byte(0);
+  }
+}
+
+// FP instructions
+
+void Assembler::fxsave(Address dst) {
+  prefixq(dst);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(0), dst);
+}
+
+void Assembler::fxrstor(Address src) {
+  prefixq(src);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(1), src);
+}
+
+void Assembler::ldmxcsr(Address src) {
+  InstructionMark im(this);
+  prefix(src);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(2), src);
+}
+
+void Assembler::stmxcsr(Address dst) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(3), dst);
+}
+
+void Assembler::addss(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::addss(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_operand(dst, src);
+}
+
+void Assembler::subss(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::subss(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_operand(dst, src);
+}
+
+void Assembler::mulss(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::mulss(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_operand(dst, src);
+}
+
+void Assembler::divss(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::divss(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_operand(dst, src);
+}
+
+void Assembler::addsd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::addsd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_operand(dst, src);
+}
+
+void Assembler::subsd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::subsd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_operand(dst, src);
+}
+
+void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::mulsd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_operand(dst, src);
+}
+
+void Assembler::divsd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::divsd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_operand(dst, src);
+}
+
+void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x51);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::sqrtsd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x51);
+  emit_operand(dst, src);
+}
+
+void Assembler::xorps(XMMRegister dst, XMMRegister src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x57);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::xorps(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x57);
+  emit_operand(dst, src);
+}
+
+void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0x66);
+  xorps(dst, src);
+}
+
+void Assembler::xorpd(XMMRegister dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x57);
+  emit_operand(dst, src);
+}
+
+void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
+  emit_byte(0xF3);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
+  emit_byte(0xF2);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttss2sil(Register dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttss2siq(Register dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x60);
+  emit_byte(0xC0 | encode);
+}
+
+// Implementation of MacroAssembler
+
+// On 32 bit it returns a vanilla displacement on 64 bit is a rip relative displacement
+Address MacroAssembler::as_Address(AddressLiteral adr) {
+  assert(!adr.is_lval(), "must be rval");
+  assert(reachable(adr), "must be");
+  return Address((int)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
+}
+
+Address MacroAssembler::as_Address(ArrayAddress adr) {
+#ifdef _LP64
+  AddressLiteral base = adr.base();
+  lea(rscratch1, base);
+  Address index = adr.index();
+  assert(index._disp == 0, "must not have disp"); // maybe it can?
+  Address array(rscratch1, index._index, index._scale, index._disp);
+  return array;
+#else
+  return Address::make_array(adr);
+#endif // _LP64
+
+}
+
+void MacroAssembler::fat_nop() {
+  // A 5 byte nop that is safe for patching (see patch_verified_entry)
+  // Recommened sequence from 'Software Optimization Guide for the AMD
+  // Hammer Processor'
+  emit_byte(0x66);
+  emit_byte(0x66);
+  emit_byte(0x90);
+  emit_byte(0x66);
+  emit_byte(0x90);
+}
+
+static Assembler::Condition reverse[] = {
+    Assembler::noOverflow     /* overflow      = 0x0 */ ,
+    Assembler::overflow       /* noOverflow    = 0x1 */ ,
+    Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
+    Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
+    Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
+    Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
+    Assembler::above          /* belowEqual    = 0x6 */ ,
+    Assembler::belowEqual     /* above         = 0x7 */ ,
+    Assembler::positive       /* negative      = 0x8 */ ,
+    Assembler::negative       /* positive      = 0x9 */ ,
+    Assembler::noParity       /* parity        = 0xa */ ,
+    Assembler::parity         /* noParity      = 0xb */ ,
+    Assembler::greaterEqual   /* less          = 0xc */ ,
+    Assembler::less           /* greaterEqual  = 0xd */ ,
+    Assembler::greater        /* lessEqual     = 0xe */ ,
+    Assembler::lessEqual      /* greater       = 0xf, */
+
+};
+
+// 32bit can do a case table jump in one instruction but we no longer allow the base
+// to be installed in the Address class
+void MacroAssembler::jump(ArrayAddress entry) {
+#ifdef _LP64
+  lea(rscratch1, entry.base());
+  Address dispatch = entry.index();
+  assert(dispatch._base == noreg, "must be");
+  dispatch._base = rscratch1;
+  jmp(dispatch);
+#else
+  jmp(as_Address(entry));
+#endif // _LP64
+}
+
+void MacroAssembler::jump(AddressLiteral dst) {
+  if (reachable(dst)) {
+    jmp_literal(dst.target(), dst.rspec());
+  } else {
+    lea(rscratch1, dst);
+    jmp(rscratch1);
+  }
+}
+
+void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
+  if (reachable(dst)) {
+    InstructionMark im(this);
+    relocate(dst.reloc());
+    const int short_size = 2;
+    const int long_size = 6;
+    int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
+    if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
+      // 0111 tttn #8-bit disp
+      emit_byte(0x70 | cc);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      // 0000 1111 1000 tttn #32-bit disp
+      emit_byte(0x0F);
+      emit_byte(0x80 | cc);
+      emit_long(offs - long_size);
+    }
+  } else {
+#ifdef ASSERT
+    warning("reversing conditional branch");
+#endif /* ASSERT */
+    Label skip;
+    jccb(reverse[cc], skip);
+    lea(rscratch1, dst);
+    Assembler::jmp(rscratch1);
+    bind(skip);
+  }
+}
+
+// Wouldn't need if AddressLiteral version had new name
+void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
+  Assembler::call(L, rtype);
+}
+
+// Wouldn't need if AddressLiteral version had new name
+void MacroAssembler::call(Register entry) {
+  Assembler::call(entry);
+}
+
+void MacroAssembler::call(AddressLiteral entry) {
+  if (reachable(entry)) {
+    Assembler::call_literal(entry.target(), entry.rspec());
+  } else {
+    lea(rscratch1, entry);
+    Assembler::call(rscratch1);
+  }
+}
+
+void MacroAssembler::cmp8(AddressLiteral src1, int8_t src2) {
+  if (reachable(src1)) {
+    cmpb(as_Address(src1), src2);
+  } else {
+    lea(rscratch1, src1);
+    cmpb(Address(rscratch1, 0), src2);
+  }
+}
+
+void MacroAssembler::cmp32(AddressLiteral src1, int32_t src2) {
+  if (reachable(src1)) {
+    cmpl(as_Address(src1), src2);
+  } else {
+    lea(rscratch1, src1);
+    cmpl(Address(rscratch1, 0), src2);
+  }
+}
+
+void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
+  if (reachable(src2)) {
+    cmpl(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    cmpl(src1, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
+#ifdef _LP64
+  if (src2.is_lval()) {
+    movptr(rscratch1, src2);
+    Assembler::cmpq(src1, rscratch1);
+  } else if (reachable(src2)) {
+    cmpq(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    Assembler::cmpq(src1, Address(rscratch1, 0));
+  }
+#else
+  if (src2.is_lval()) {
+    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+  } else {
+    cmpl(src1, as_Address(src2));
+  }
+#endif // _LP64
+}
+
+void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
+  assert(src2.is_lval(), "not a mem-mem compare");
+#ifdef _LP64
+  // moves src2's literal address
+  movptr(rscratch1, src2);
+  Assembler::cmpq(src1, rscratch1);
+#else
+  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+#endif // _LP64
+}
+
+void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
+  assert(!src2.is_lval(), "should use cmpptr");
+
+  if (reachable(src2)) {
+#ifdef _LP64
+    cmpq(src1, as_Address(src2));
+#else
+    ShouldNotReachHere();
+#endif // _LP64
+  } else {
+    lea(rscratch1, src2);
+    Assembler::cmpq(src1, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::cmpxchgptr(Register reg, AddressLiteral adr) {
+  if (reachable(adr)) {
+#ifdef _LP64
+    cmpxchgq(reg, as_Address(adr));
+#else
+    cmpxchgl(reg, as_Address(adr));
+#endif // _LP64
+  } else {
+    lea(rscratch1, adr);
+    cmpxchgq(reg, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::incrementl(AddressLiteral dst) {
+  if (reachable(dst)) {
+    incrementl(as_Address(dst));
+  } else {
+    lea(rscratch1, dst);
+    incrementl(Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::incrementl(ArrayAddress dst) {
+  incrementl(as_Address(dst));
+}
+
+void MacroAssembler::lea(Register dst, Address src) {
+#ifdef _LP64
+  leaq(dst, src);
+#else
+  leal(dst, src);
+#endif // _LP64
+}
+
+void MacroAssembler::lea(Register dst, AddressLiteral src) {
+#ifdef _LP64
+    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
+#else
+    mov_literal32(dst, (intptr_t)src.target(), src.rspec());
+#endif // _LP64
+}
+
+void MacroAssembler::mov32(AddressLiteral dst, Register src) {
+  if (reachable(dst)) {
+    movl(as_Address(dst), src);
+  } else {
+    lea(rscratch1, dst);
+    movl(Address(rscratch1, 0), src);
+  }
+}
+
+void MacroAssembler::mov32(Register dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movl(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movl(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    if (UseXmmLoadAndClearUpper) {
+      movsd (dst, as_Address(src));
+    } else {
+      movlpd(dst, as_Address(src));
+    }
+  } else {
+    lea(rscratch1, src);
+    if (UseXmmLoadAndClearUpper) {
+      movsd (dst, Address(rscratch1, 0));
+    } else {
+      movlpd(dst, Address(rscratch1, 0));
+    }
+  }
+}
+
+void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movoop(Register dst, jobject obj) {
+  mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movoop(Address dst, jobject obj) {
+  mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
+  movq(dst, rscratch1);
+}
+
+void MacroAssembler::movptr(Register dst, AddressLiteral src) {
+#ifdef _LP64
+  if (src.is_lval()) {
+    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
+  } else {
+    if (reachable(src)) {
+      movq(dst, as_Address(src));
+    } else {
+      lea(rscratch1, src);
+      movq(dst, Address(rscratch1,0));
+    }
+  }
+#else
+  if (src.is_lval()) {
+    mov_literal32(dst, (intptr_t)src.target(), src.rspec());
+  } else {
+    movl(dst, as_Address(src));
+  }
+#endif // LP64
+}
+
+void MacroAssembler::movptr(ArrayAddress dst, Register src) {
+#ifdef _LP64
+  movq(as_Address(dst), src);
+#else
+  movl(as_Address(dst), src);
+#endif // _LP64
+}
+
+void MacroAssembler::pushoop(jobject obj) {
+#ifdef _LP64
+  movoop(rscratch1, obj);
+  pushq(rscratch1);
+#else
+  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
+#endif // _LP64
+}
+
+void MacroAssembler::pushptr(AddressLiteral src) {
+#ifdef _LP64
+  lea(rscratch1, src);
+  if (src.is_lval()) {
+    pushq(rscratch1);
+  } else {
+    pushq(Address(rscratch1, 0));
+  }
+#else
+  if (src.is_lval()) {
+    push_literal((int32_t)src.target(), src.rspec());
+  else {
+    pushl(as_Address(src));
+  }
+#endif // _LP64
+}
+
+void MacroAssembler::ldmxcsr(AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::ldmxcsr(as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::ldmxcsr(Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movlpd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movlpd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movlpd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movss(dst, Address(rscratch1, 0));
+  }
+}
+void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    xorpd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    xorpd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    xorps(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    xorps(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::null_check(Register reg, int offset) {
+  if (needs_explicit_null_check(offset)) {
+    // provoke OS NULL exception if reg = NULL by
+    // accessing M[reg] w/o changing any (non-CC) registers
+    cmpq(rax, Address(reg, 0));
+    // Note: should probably use testl(rax, Address(reg, 0));
+    //       may be shorter code (however, this version of
+    //       testl needs to be implemented first)
+  } else {
+    // nothing to do, (later) access of M[reg + offset]
+    // will provoke OS NULL exception if reg = NULL
+  }
+}
+
+int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
+  int off = offset();
+  movzbl(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_unsigned_word(Register dst, Address src) {
+  int off = offset();
+  movzwl(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_signed_byte(Register dst, Address src) {
+  int off = offset();
+  movsbl(dst, src);
+  return off;
+}
+
+int MacroAssembler::load_signed_word(Register dst, Address src) {
+  int off = offset();
+  movswl(dst, src);
+  return off;
+}
+
+void MacroAssembler::incrementl(Register reg, int value) {
+  if (value == min_jint) { addl(reg, value); return; }
+  if (value <  0) { decrementl(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incl(reg) ; return; }
+  /* else */      { addl(reg, value)       ; return; }
+}
+
+void MacroAssembler::decrementl(Register reg, int value) {
+  if (value == min_jint) { subl(reg, value); return; }
+  if (value <  0) { incrementl(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decl(reg) ; return; }
+  /* else */      { subl(reg, value)       ; return; }
+}
+
+void MacroAssembler::incrementq(Register reg, int value) {
+  if (value == min_jint) { addq(reg, value); return; }
+  if (value <  0) { decrementq(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incq(reg) ; return; }
+  /* else */      { addq(reg, value)       ; return; }
+}
+
+void MacroAssembler::decrementq(Register reg, int value) {
+  if (value == min_jint) { subq(reg, value); return; }
+  if (value <  0) { incrementq(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decq(reg) ; return; }
+  /* else */      { subq(reg, value)       ; return; }
+}
+
+void MacroAssembler::incrementl(Address dst, int value) {
+  if (value == min_jint) { addl(dst, value); return; }
+  if (value <  0) { decrementl(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incl(dst) ; return; }
+  /* else */      { addl(dst, value)       ; return; }
+}
+
+void MacroAssembler::decrementl(Address dst, int value) {
+  if (value == min_jint) { subl(dst, value); return; }
+  if (value <  0) { incrementl(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decl(dst) ; return; }
+  /* else */      { subl(dst, value)       ; return; }
+}
+
+void MacroAssembler::incrementq(Address dst, int value) {
+  if (value == min_jint) { addq(dst, value); return; }
+  if (value <  0) { decrementq(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incq(dst) ; return; }
+  /* else */      { addq(dst, value)       ; return; }
+}
+
+void MacroAssembler::decrementq(Address dst, int value) {
+  if (value == min_jint) { subq(dst, value); return; }
+  if (value <  0) { incrementq(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decq(dst) ; return; }
+  /* else */      { subq(dst, value)       ; return; }
+}
+
+void MacroAssembler::align(int modulus) {
+  if (offset() % modulus != 0) {
+    nop(modulus - (offset() % modulus));
+  }
+}
+
+void MacroAssembler::enter() {
+  pushq(rbp);
+  movq(rbp, rsp);
+}
+
+void MacroAssembler::leave() {
+  emit_byte(0xC9); // LEAVE
+}
+
+// C++ bool manipulation
+
+void MacroAssembler::movbool(Register dst, Address src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else {
+    // unsupported
+    ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::movbool(Address dst, bool boolconst) {
+  if(sizeof(bool) == 1)
+    movb(dst, (int) boolconst);
+  else if(sizeof(bool) == 2)
+    movw(dst, (int) boolconst);
+  else if(sizeof(bool) == 4)
+    movl(dst, (int) boolconst);
+  else {
+    // unsupported
+    ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::movbool(Address dst, Register src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else {
+    // unsupported
+    ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::testbool(Register dst) {
+  if(sizeof(bool) == 1)
+    testb(dst, (int) 0xff);
+  else if(sizeof(bool) == 2) {
+    // need testw impl
+    ShouldNotReachHere();
+  } else if(sizeof(bool) == 4)
+    testl(dst, dst);
+  else {
+    // unsupported
+    ShouldNotReachHere();
+  }
+}
+
+void MacroAssembler::set_last_Java_frame(Register last_java_sp,
+                                         Register last_java_fp,
+                                         address  last_java_pc) {
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+
+  // last_java_fp is optional
+  if (last_java_fp->is_valid()) {
+    movq(Address(r15_thread, JavaThread::last_Java_fp_offset()),
+         last_java_fp);
+  }
+
+  // last_java_pc is optional
+  if (last_java_pc != NULL) {
+    Address java_pc(r15_thread,
+                    JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
+    lea(rscratch1, InternalAddress(last_java_pc));
+    movq(java_pc, rscratch1);
+  }
+
+  movq(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
+}
+
+void MacroAssembler::reset_last_Java_frame(bool clear_fp,
+                                           bool clear_pc) {
+  // we must set sp to zero to clear frame
+  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
+  // must clear fp, so that compiled frames are not confused; it is
+  // possible that we need it only for debugging
+  if (clear_fp) {
+    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
+  }
+
+  if (clear_pc) {
+    movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
+  }
+}
+
+
+// Implementation of call_VM versions
+
+void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
+  Label L, E;
+
+#ifdef _WIN64
+  // Windows always allocates space for it's register args
+  assert(num_args <= 4, "only register arguments supported");
+  subq(rsp,  frame::arg_reg_save_area_bytes);
+#endif
+
+  // Align stack if necessary
+  testl(rsp, 15);
+  jcc(Assembler::zero, L);
+
+  subq(rsp, 8);
+  {
+    call(RuntimeAddress(entry_point));
+  }
+  addq(rsp, 8);
+  jmp(E);
+
+  bind(L);
+  {
+    call(RuntimeAddress(entry_point));
+  }
+
+  bind(E);
+
+#ifdef _WIN64
+  // restore stack pointer
+  addq(rsp, frame::arg_reg_save_area_bytes);
+#endif
+
+}
+
+
+void MacroAssembler::call_VM_base(Register oop_result,
+                                  Register java_thread,
+                                  Register last_java_sp,
+                                  address entry_point,
+                                  int num_args,
+                                  bool check_exceptions) {
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+
+  // debugging support
+  assert(num_args >= 0, "cannot have negative number of arguments");
+  assert(r15_thread != oop_result,
+         "cannot use the same register for java_thread & oop_result");
+  assert(r15_thread != last_java_sp,
+         "cannot use the same register for java_thread & last_java_sp");
+
+  // set last Java frame before call
+
+  // This sets last_Java_fp which is only needed from interpreted frames
+  // and should really be done only from the interp_masm version before
+  // calling the underlying call_VM. That doesn't happen yet so we set
+  // last_Java_fp here even though some callers don't need it and
+  // also clear it below.
+  set_last_Java_frame(last_java_sp, rbp, NULL);
+
+  {
+    Label L, E;
+
+    // Align stack if necessary
+#ifdef _WIN64
+    assert(num_args <= 4, "only register arguments supported");
+    // Windows always allocates space for it's register args
+    subq(rsp, frame::arg_reg_save_area_bytes);
+#endif
+    testl(rsp, 15);
+    jcc(Assembler::zero, L);
+
+    subq(rsp, 8);
+    {
+      call(RuntimeAddress(entry_point));
+    }
+    addq(rsp, 8);
+    jmp(E);
+
+
+    bind(L);
+    {
+      call(RuntimeAddress(entry_point));
+    }
+
+    bind(E);
+
+#ifdef _WIN64
+    // restore stack pointer
+    addq(rsp, frame::arg_reg_save_area_bytes);
+#endif
+  }
+
+#ifdef ASSERT
+  pushq(rax);
+  {
+    Label L;
+    get_thread(rax);
+    cmpq(r15_thread, rax);
+    jcc(Assembler::equal, L);
+    stop("MacroAssembler::call_VM_base: register not callee saved?");
+    bind(L);
+  }
+  popq(rax);
+#endif
+
+  // reset last Java frame
+  // This really shouldn't have to clear fp set note above at the
+  // call to set_last_Java_frame
+  reset_last_Java_frame(true, false);
+
+  check_and_handle_popframe(noreg);
+  check_and_handle_earlyret(noreg);
+
+  if (check_exceptions) {
+    cmpq(Address(r15_thread, Thread::pending_exception_offset()), (int) NULL);
+    // This used to conditionally jump to forward_exception however it is
+    // possible if we relocate that the branch will not reach. So we must jump
+    // around so we can always reach
+    Label ok;
+    jcc(Assembler::equal, ok);
+    jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+    bind(ok);
+  }
+
+  // get oop result if there is one and reset the value in the thread
+  if (oop_result->is_valid()) {
+    movq(oop_result, Address(r15_thread, JavaThread::vm_result_offset()));
+    movptr(Address(r15_thread, JavaThread::vm_result_offset()), NULL_WORD);
+    verify_oop(oop_result);
+  }
+}
+
+void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
+void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
+
+void MacroAssembler::call_VM_helper(Register oop_result,
+                                    address entry_point,
+                                    int num_args,
+                                    bool check_exceptions) {
+  // Java thread becomes first argument of C function
+  movq(c_rarg0, r15_thread);
+
+  // We've pushed one address, correct last_Java_sp
+  leaq(rax, Address(rsp, wordSize));
+
+  call_VM_base(oop_result, noreg, rax, entry_point, num_args,
+               check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             bool check_exceptions) {
+  Label C, E;
+  Assembler::call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  assert(rax != arg_1, "smashed argument");
+  assert(c_rarg0 != arg_1, "smashed argument");
+
+  Label C, E;
+  Assembler::call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  // c_rarg0 is reserved for thread
+  if (c_rarg1 != arg_1) {
+    movq(c_rarg1, arg_1);
+  }
+  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+  assert(rax != arg_1, "smashed argument");
+  assert(rax != arg_2, "smashed argument");
+  assert(c_rarg0 != arg_1, "smashed argument");
+  assert(c_rarg0 != arg_2, "smashed argument");
+  assert(c_rarg1 != arg_2, "smashed argument");
+  assert(c_rarg2 != arg_1, "smashed argument");
+
+  Label C, E;
+  Assembler::call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  // c_rarg0 is reserved for thread
+  if (c_rarg1 != arg_1) {
+    movq(c_rarg1, arg_1);
+  }
+  if (c_rarg2 != arg_2) {
+    movq(c_rarg2, arg_2);
+  }
+  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  assert(rax != arg_1, "smashed argument");
+  assert(rax != arg_2, "smashed argument");
+  assert(rax != arg_3, "smashed argument");
+  assert(c_rarg0 != arg_1, "smashed argument");
+  assert(c_rarg0 != arg_2, "smashed argument");
+  assert(c_rarg0 != arg_3, "smashed argument");
+  assert(c_rarg1 != arg_2, "smashed argument");
+  assert(c_rarg1 != arg_3, "smashed argument");
+  assert(c_rarg2 != arg_1, "smashed argument");
+  assert(c_rarg2 != arg_3, "smashed argument");
+  assert(c_rarg3 != arg_1, "smashed argument");
+  assert(c_rarg3 != arg_2, "smashed argument");
+
+  Label C, E;
+  Assembler::call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  // c_rarg0 is reserved for thread
+  if (c_rarg1 != arg_1) {
+    movq(c_rarg1, arg_1);
+  }
+  if (c_rarg2 != arg_2) {
+    movq(c_rarg2, arg_2);
+  }
+  if (c_rarg3 != arg_3) {
+    movq(c_rarg3, arg_3);
+  }
+  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             int num_args,
+                             bool check_exceptions) {
+  call_VM_base(oop_result, noreg, last_java_sp, entry_point, num_args,
+               check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  assert(c_rarg0 != arg_1, "smashed argument");
+  assert(c_rarg1 != last_java_sp, "smashed argument");
+  // c_rarg0 is reserved for thread
+  if (c_rarg1 != arg_1) {
+    movq(c_rarg1, arg_1);
+  }
+  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+  assert(c_rarg0 != arg_1, "smashed argument");
+  assert(c_rarg0 != arg_2, "smashed argument");
+  assert(c_rarg1 != arg_2, "smashed argument");
+  assert(c_rarg1 != last_java_sp, "smashed argument");
+  assert(c_rarg2 != arg_1, "smashed argument");
+  assert(c_rarg2 != last_java_sp, "smashed argument");
+  // c_rarg0 is reserved for thread
+  if (c_rarg1 != arg_1) {
+    movq(c_rarg1, arg_1);
+  }
+  if (c_rarg2 != arg_2) {
+    movq(c_rarg2, arg_2);
+  }
+  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
+}
+
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  assert(c_rarg0 != arg_1, "smashed argument");
+  assert(c_rarg0 != arg_2, "smashed argument");
+  assert(c_rarg0 != arg_3, "smashed argument");
+  assert(c_rarg1 != arg_2, "smashed argument");
+  assert(c_rarg1 != arg_3, "smashed argument");
+  assert(c_rarg1 != last_java_sp, "smashed argument");
+  assert(c_rarg2 != arg_1, "smashed argument");
+  assert(c_rarg2 != arg_3, "smashed argument");
+  assert(c_rarg2 != last_java_sp, "smashed argument");
+  assert(c_rarg3 != arg_1, "smashed argument");
+  assert(c_rarg3 != arg_2, "smashed argument");
+  assert(c_rarg3 != last_java_sp, "smashed argument");
+  // c_rarg0 is reserved for thread
+  if (c_rarg1 != arg_1) {
+    movq(c_rarg1, arg_1);
+  }
+  if (c_rarg2 != arg_2) {
+    movq(c_rarg2, arg_2);
+  }
+  if (c_rarg3 != arg_3) {
+    movq(c_rarg2, arg_3);
+  }
+  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, int num_args) {
+  call_VM_leaf_base(entry_point, num_args);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
+  if (c_rarg0 != arg_1) {
+    movq(c_rarg0, arg_1);
+  }
+  call_VM_leaf(entry_point, 1);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point,
+                                  Register arg_1,
+                                  Register arg_2) {
+  assert(c_rarg0 != arg_2, "smashed argument");
+  assert(c_rarg1 != arg_1, "smashed argument");
+  if (c_rarg0 != arg_1) {
+    movq(c_rarg0, arg_1);
+  }
+  if (c_rarg1 != arg_2) {
+    movq(c_rarg1, arg_2);
+  }
+  call_VM_leaf(entry_point, 2);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point,
+                                  Register arg_1,
+                                  Register arg_2,
+                                  Register arg_3) {
+  assert(c_rarg0 != arg_2, "smashed argument");
+  assert(c_rarg0 != arg_3, "smashed argument");
+  assert(c_rarg1 != arg_1, "smashed argument");
+  assert(c_rarg1 != arg_3, "smashed argument");
+  assert(c_rarg2 != arg_1, "smashed argument");
+  assert(c_rarg2 != arg_2, "smashed argument");
+  if (c_rarg0 != arg_1) {
+    movq(c_rarg0, arg_1);
+  }
+  if (c_rarg1 != arg_2) {
+    movq(c_rarg1, arg_2);
+  }
+  if (c_rarg2 != arg_3) {
+    movq(c_rarg2, arg_3);
+  }
+  call_VM_leaf(entry_point, 3);
+}
+
+
+// Calls to C land
+//
+// When entering C land, the rbp & rsp of the last Java frame have to
+// be recorded in the (thread-local) JavaThread object. When leaving C
+// land, the last Java fp has to be reset to 0. This is required to
+// allow proper stack traversal.
+void MacroAssembler::store_check(Register obj) {
+  // Does a store check for the oop in register obj. The content of
+  // register obj is destroyed afterwards.
+  store_check_part_1(obj);
+  store_check_part_2(obj);
+}
+
+void MacroAssembler::store_check(Register obj, Address dst) {
+  store_check(obj);
+}
+
+// split the store check operation so that other instructions can be
+// scheduled inbetween
+void MacroAssembler::store_check_part_1(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  shrq(obj, CardTableModRefBS::card_shift);
+}
+
+void MacroAssembler::store_check_part_2(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+  ExternalAddress cardtable((address)ct->byte_map_base);
+  Address index(noreg, obj, Address::times_1);
+  movb(as_Address(ArrayAddress(cardtable, index)), 0);
+}
+
+void MacroAssembler::c2bool(Register x) {
+  // implements x == 0 ? 0 : 1
+  // note: must only look at least-significant byte of x
+  //       since C-style booleans are stored in one byte
+  //       only! (was bug)
+  andl(x, 0xFF);
+  setb(Assembler::notZero, x);
+}
+
+int MacroAssembler::corrected_idivl(Register reg) {
+  // Full implementation of Java idiv and irem; checks for special
+  // case as described in JVM spec., p.243 & p.271.  The function
+  // returns the (pc) offset of the idivl instruction - may be needed
+  // for implicit exceptions.
+  //
+  //         normal case                           special case
+  //
+  // input : eax: dividend                         min_int
+  //         reg: divisor   (may not be eax/edx)   -1
+  //
+  // output: eax: quotient  (= eax idiv reg)       min_int
+  //         edx: remainder (= eax irem reg)       0
+  assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
+  const int min_int = 0x80000000;
+  Label normal_case, special_case;
+
+  // check for special case
+  cmpl(rax, min_int);
+  jcc(Assembler::notEqual, normal_case);
+  xorl(rdx, rdx); // prepare edx for possible special case (where
+                  // remainder = 0)
+  cmpl(reg, -1);
+  jcc(Assembler::equal, special_case);
+
+  // handle normal case
+  bind(normal_case);
+  cdql();
+  int idivl_offset = offset();
+  idivl(reg);
+
+  // normal and special case exit
+  bind(special_case);
+
+  return idivl_offset;
+}
+
+int MacroAssembler::corrected_idivq(Register reg) {
+  // Full implementation of Java ldiv and lrem; checks for special
+  // case as described in JVM spec., p.243 & p.271.  The function
+  // returns the (pc) offset of the idivl instruction - may be needed
+  // for implicit exceptions.
+  //
+  //         normal case                           special case
+  //
+  // input : rax: dividend                         min_long
+  //         reg: divisor   (may not be eax/edx)   -1
+  //
+  // output: rax: quotient  (= rax idiv reg)       min_long
+  //         rdx: remainder (= rax irem reg)       0
+  assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
+  static const int64_t min_long = 0x8000000000000000;
+  Label normal_case, special_case;
+
+  // check for special case
+  cmp64(rax, ExternalAddress((address) &min_long));
+  jcc(Assembler::notEqual, normal_case);
+  xorl(rdx, rdx); // prepare rdx for possible special case (where
+                  // remainder = 0)
+  cmpq(reg, -1);
+  jcc(Assembler::equal, special_case);
+
+  // handle normal case
+  bind(normal_case);
+  cdqq();
+  int idivq_offset = offset();
+  idivq(reg);
+
+  // normal and special case exit
+  bind(special_case);
+
+  return idivq_offset;
+}
+
+void MacroAssembler::push_IU_state() {
+  pushfq();     // Push flags first because pushaq kills them
+  subq(rsp, 8); // Make sure rsp stays 16-byte aligned
+  pushaq();
+}
+
+void MacroAssembler::pop_IU_state() {
+  popaq();
+  addq(rsp, 8);
+  popfq();
+}
+
+void MacroAssembler::push_FPU_state() {
+  subq(rsp, FPUStateSizeInWords * wordSize);
+  fxsave(Address(rsp, 0));
+}
+
+void MacroAssembler::pop_FPU_state() {
+  fxrstor(Address(rsp, 0));
+  addq(rsp, FPUStateSizeInWords * wordSize);
+}
+
+// Save Integer and Float state
+// Warning: Stack must be 16 byte aligned
+void MacroAssembler::push_CPU_state() {
+  push_IU_state();
+  push_FPU_state();
+}
+
+void MacroAssembler::pop_CPU_state() {
+  pop_FPU_state();
+  pop_IU_state();
+}
+
+void MacroAssembler::sign_extend_short(Register reg) {
+  movswl(reg, reg);
+}
+
+void MacroAssembler::sign_extend_byte(Register reg) {
+  movsbl(reg, reg);
+}
+
+void MacroAssembler::division_with_shift(Register reg, int shift_value) {
+  assert (shift_value > 0, "illegal shift value");
+  Label _is_positive;
+  testl (reg, reg);
+  jcc (Assembler::positive, _is_positive);
+  int offset = (1 << shift_value) - 1 ;
+
+  if (offset == 1) {
+    incrementl(reg);
+  } else {
+    addl(reg, offset);
+  }
+
+  bind (_is_positive);
+  sarl(reg, shift_value);
+}
+
+void MacroAssembler::round_to_l(Register reg, int modulus) {
+  addl(reg, modulus - 1);
+  andl(reg, -modulus);
+}
+
+void MacroAssembler::round_to_q(Register reg, int modulus) {
+  addq(reg, modulus - 1);
+  andq(reg, -modulus);
+}
+
+void MacroAssembler::verify_oop(Register reg, const char* s) {
+  if (!VerifyOops) {
+    return;
+  }
+
+  // Pass register number to verify_oop_subroutine
+  char* b = new char[strlen(s) + 50];
+  sprintf(b, "verify_oop: %s: %s", reg->name(), s);
+
+  pushq(rax); // save rax, restored by receiver
+
+  // pass args on stack, only touch rax
+  pushq(reg);
+
+  // avoid using pushptr, as it modifies scratch registers
+  // and our contract is not to modify anything
+  ExternalAddress buffer((address)b);
+  movptr(rax, buffer.addr());
+  pushq(rax);
+
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax); // no alignment requirement
+  // everything popped by receiver
+}
+
+void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
+  if (!VerifyOops) return;
+  // Pass register number to verify_oop_subroutine
+  char* b = new char[strlen(s) + 50];
+  sprintf(b, "verify_oop_addr: %s", s);
+  pushq(rax);                          // save rax
+  movq(addr, rax);
+  pushq(rax);                          // pass register argument
+
+
+  // avoid using pushptr, as it modifies scratch registers
+  // and our contract is not to modify anything
+  ExternalAddress buffer((address)b);
+  movptr(rax, buffer.addr());
+  pushq(rax);
+
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax); // no alignment requirement
+  // everything popped by receiver
+}
+
+
+void MacroAssembler::stop(const char* msg) {
+  address rip = pc();
+  pushaq(); // get regs on stack
+  lea(c_rarg0, ExternalAddress((address) msg));
+  lea(c_rarg1, InternalAddress(rip));
+  movq(c_rarg2, rsp); // pass pointer to regs array
+  andq(rsp, -16); // align stack as required by ABI
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug)));
+  hlt();
+}
+
+void MacroAssembler::warn(const char* msg) {
+  pushq(r12);
+  movq(r12, rsp);
+  andq(rsp, -16);     // align stack as required by push_CPU_state and call
+
+  push_CPU_state();   // keeps alignment at 16 bytes
+  lea(c_rarg0, ExternalAddress((address) msg));
+  call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
+  pop_CPU_state();
+
+  movq(rsp, r12);
+  popq(r12);
+}
+
+void MacroAssembler::debug(char* msg, int64_t pc, int64_t regs[]) {
+  // In order to get locks to work, we need to fake a in_VM state
+  if (ShowMessageBoxOnError ) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+    ttyLocker ttyl;
+#ifndef PRODUCT
+    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+      BytecodeCounter::print();
+    }
+#endif
+    // To see where a verify_oop failed, get $ebx+40/X for this frame.
+    // XXX correct this offset for amd64
+    // This is the value of eip which points to where verify_oop will return.
+    if (os::message_box(msg, "Execution stopped, print registers?")) {
+      tty->print_cr("rip = 0x%016lx", pc);
+      tty->print_cr("rax = 0x%016lx", regs[15]);
+      tty->print_cr("rbx = 0x%016lx", regs[12]);
+      tty->print_cr("rcx = 0x%016lx", regs[14]);
+      tty->print_cr("rdx = 0x%016lx", regs[13]);
+      tty->print_cr("rdi = 0x%016lx", regs[8]);
+      tty->print_cr("rsi = 0x%016lx", regs[9]);
+      tty->print_cr("rbp = 0x%016lx", regs[10]);
+      tty->print_cr("rsp = 0x%016lx", regs[11]);
+      tty->print_cr("r8  = 0x%016lx", regs[7]);
+      tty->print_cr("r9  = 0x%016lx", regs[6]);
+      tty->print_cr("r10 = 0x%016lx", regs[5]);
+      tty->print_cr("r11 = 0x%016lx", regs[4]);
+      tty->print_cr("r12 = 0x%016lx", regs[3]);
+      tty->print_cr("r13 = 0x%016lx", regs[2]);
+      tty->print_cr("r14 = 0x%016lx", regs[1]);
+      tty->print_cr("r15 = 0x%016lx", regs[0]);
+      BREAKPOINT;
+    }
+    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
+  } else {
+    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
+                    msg);
+  }
+}
+
+void MacroAssembler::os_breakpoint() {
+  // instead of directly emitting a breakpoint, call os:breakpoint for
+  // better debugability
+  // This shouldn't need alignment, it's an empty function
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
+}
+
+// Write serialization page so VM thread can do a pseudo remote membar.
+// We use the current thread pointer to calculate a thread specific
+// offset to write to within the page. This minimizes bus traffic
+// due to cache line collision.
+void MacroAssembler::serialize_memory(Register thread,
+                                      Register tmp) {
+
+  movl(tmp, thread);
+  shrl(tmp, os::get_serialize_page_shift_count());
+  andl(tmp, (os::vm_page_size() - sizeof(int)));
+
+  Address index(noreg, tmp, Address::times_1);
+  ExternalAddress page(os::get_memory_serialize_page());
+
+  movptr(ArrayAddress(page, index), tmp);
+}
+
+void MacroAssembler::verify_tlab() {
+#ifdef ASSERT
+  if (UseTLAB) {
+    Label next, ok;
+    Register t1 = rsi;
+
+    pushq(t1);
+
+    movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
+    cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_start_offset())));
+    jcc(Assembler::aboveEqual, next);
+    stop("assert(top >= start)");
+    should_not_reach_here();
+
+    bind(next);
+    movq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
+    cmpq(t1, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
+    jcc(Assembler::aboveEqual, ok);
+    stop("assert(top <= end)");
+    should_not_reach_here();
+
+    bind(ok);
+
+    popq(t1);
+  }
+#endif
+}
+
+// Defines obj, preserves var_size_in_bytes
+void MacroAssembler::eden_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Label& slow_case) {
+  assert(obj == rax, "obj must be in rax for cmpxchg");
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  Register end = t1;
+  Label retry;
+  bind(retry);
+  ExternalAddress heap_top((address) Universe::heap()->top_addr());
+  movptr(obj, heap_top);
+  if (var_size_in_bytes == noreg) {
+    leaq(end, Address(obj, con_size_in_bytes));
+  } else {
+    leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
+  }
+  // if end < obj then we wrapped around => object too long => slow case
+  cmpq(end, obj);
+  jcc(Assembler::below, slow_case);
+  cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
+
+  jcc(Assembler::above, slow_case);
+  // Compare obj with the top addr, and if still equal, store the new
+  // top addr in end at the address of the top addr pointer. Sets ZF
+  // if was equal, and clears it otherwise. Use lock prefix for
+  // atomicity on MPs.
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(end, heap_top);
+  // if someone beat us on the allocation, try again, otherwise continue
+  jcc(Assembler::notEqual, retry);
+}
+
+// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
+void MacroAssembler::tlab_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Register t2,
+                                   Label& slow_case) {
+  assert_different_registers(obj, t1, t2);
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  Register end = t2;
+
+  verify_tlab();
+
+  movq(obj, Address(r15_thread, JavaThread::tlab_top_offset()));
+  if (var_size_in_bytes == noreg) {
+    leaq(end, Address(obj, con_size_in_bytes));
+  } else {
+    leaq(end, Address(obj, var_size_in_bytes, Address::times_1));
+  }
+  cmpq(end, Address(r15_thread, JavaThread::tlab_end_offset()));
+  jcc(Assembler::above, slow_case);
+
+  // update the tlab top pointer
+  movq(Address(r15_thread, JavaThread::tlab_top_offset()), end);
+
+  // recover var_size_in_bytes if necessary
+  if (var_size_in_bytes == end) {
+    subq(var_size_in_bytes, obj);
+  }
+  verify_tlab();
+}
+
+// Preserves rbx and rdx.
+void MacroAssembler::tlab_refill(Label& retry,
+                                 Label& try_eden,
+                                 Label& slow_case) {
+  Register top = rax;
+  Register t1 = rcx;
+  Register t2 = rsi;
+  Register t3 = r10;
+  Register thread_reg = r15_thread;
+  assert_different_registers(top, thread_reg, t1, t2, t3,
+                             /* preserve: */ rbx, rdx);
+  Label do_refill, discard_tlab;
+
+  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
+    // No allocation in the shared eden.
+    jmp(slow_case);
+  }
+
+  movq(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+  movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
+
+  // calculate amount of free space
+  subq(t1, top);
+  shrq(t1, LogHeapWordSize);
+
+  // Retain tlab and allocate object in shared space if
+  // the amount free in the tlab is too large to discard.
+  cmpq(t1, Address(thread_reg, // size_t
+                   in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
+  jcc(Assembler::lessEqual, discard_tlab);
+
+  // Retain
+  mov64(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment());
+  addq(Address(thread_reg,  // size_t
+               in_bytes(JavaThread::tlab_refill_waste_limit_offset())),
+       t2);
+  if (TLABStats) {
+    // increment number of slow_allocations
+    addl(Address(thread_reg, // unsigned int
+                 in_bytes(JavaThread::tlab_slow_allocations_offset())),
+         1);
+  }
+  jmp(try_eden);
+
+  bind(discard_tlab);
+  if (TLABStats) {
+    // increment number of refills
+    addl(Address(thread_reg, // unsigned int
+                 in_bytes(JavaThread::tlab_number_of_refills_offset())),
+         1);
+    // accumulate wastage -- t1 is amount free in tlab
+    addl(Address(thread_reg, // unsigned int
+                 in_bytes(JavaThread::tlab_fast_refill_waste_offset())),
+         t1);
+  }
+
+  // if tlab is currently allocated (top or end != null) then
+  // fill [top, end + alignment_reserve) with array object
+  testq(top, top);
+  jcc(Assembler::zero, do_refill);
+
+  // set up the mark word
+  mov64(t3, (int64_t) markOopDesc::prototype()->copy_set_hash(0x2));
+  movq(Address(top, oopDesc::mark_offset_in_bytes()), t3);
+  // set the length to the remaining space
+  subq(t1, typeArrayOopDesc::header_size(T_INT));
+  addq(t1, (int)ThreadLocalAllocBuffer::alignment_reserve());
+  shlq(t1, log2_intptr(HeapWordSize / sizeof(jint)));
+  movq(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
+  // set klass to intArrayKlass
+  movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
+  movq(Address(top, oopDesc::klass_offset_in_bytes()), t1);
+
+  // refill the tlab with an eden allocation
+  bind(do_refill);
+  movq(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+  shlq(t1, LogHeapWordSize);
+  // add object_size ??
+  eden_allocate(top, t1, 0, t2, slow_case);
+
+  // Check that t1 was preserved in eden_allocate.
+#ifdef ASSERT
+  if (UseTLAB) {
+    Label ok;
+    Register tsize = rsi;
+    assert_different_registers(tsize, thread_reg, t1);
+    pushq(tsize);
+    movq(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+    shlq(tsize, LogHeapWordSize);
+    cmpq(t1, tsize);
+    jcc(Assembler::equal, ok);
+    stop("assert(t1 != tlab size)");
+    should_not_reach_here();
+
+    bind(ok);
+    popq(tsize);
+  }
+#endif
+  movq(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
+  movq(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
+  addq(top, t1);
+  subq(top, (int)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
+  movq(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
+  verify_tlab();
+  jmp(retry);
+}
+
+
+int MacroAssembler::biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg,
+                                         bool swap_reg_contains_mark,
+                                         Label& done, Label* slow_case,
+                                         BiasedLockingCounters* counters) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+  assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
+  assert(tmp_reg != noreg, "tmp_reg must be supplied");
+  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
+  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
+  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
+  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
+  Address saved_mark_addr(lock_reg, 0);
+
+  if (PrintBiasedLockingStatistics && counters == NULL)
+    counters = BiasedLocking::counters();
+
+  // Biased locking
+  // See whether the lock is currently biased toward our thread and
+  // whether the epoch is still valid
+  // Note that the runtime guarantees sufficient alignment of JavaThread
+  // pointers to allow age to be placed into low bits
+  // First check to see whether biasing is even enabled for this object
+  Label cas_label;
+  int null_check_offset = -1;
+  if (!swap_reg_contains_mark) {
+    null_check_offset = offset();
+    movq(swap_reg, mark_addr);
+  }
+  movq(tmp_reg, swap_reg);
+  andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
+  jcc(Assembler::notEqual, cas_label);
+  // The bias pattern is present in the object's header. Need to check
+  // whether the bias owner and the epoch are both still current.
+  movq(tmp_reg, klass_addr);
+  movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  orq(tmp_reg, r15_thread);
+  xorq(tmp_reg, swap_reg);
+  andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
+  }
+  jcc(Assembler::equal, done);
+
+  Label try_revoke_bias;
+  Label try_rebias;
+
+  // At this point we know that the header has the bias pattern and
+  // that we are not the bias owner in the current epoch. We need to
+  // figure out more details about the state of the header in order to
+  // know what operations can be legally performed on the object's
+  // header.
+
+  // If the low three bits in the xor result aren't clear, that means
+  // the prototype header is no longer biased and we have to revoke
+  // the bias on this object.
+  testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  jcc(Assembler::notZero, try_revoke_bias);
+
+  // Biasing is still enabled for this data type. See whether the
+  // epoch of the current bias is still valid, meaning that the epoch
+  // bits of the mark word are equal to the epoch bits of the
+  // prototype header. (Note that the prototype header's epoch bits
+  // only change at a safepoint.) If not, attempt to rebias the object
+  // toward the current thread. Note that we must be absolutely sure
+  // that the current epoch is invalid in order to do this because
+  // otherwise the manipulations it performs on the mark word are
+  // illegal.
+  testq(tmp_reg, markOopDesc::epoch_mask_in_place);
+  jcc(Assembler::notZero, try_rebias);
+
+  // The epoch of the current bias is still valid but we know nothing
+  // about the owner; it might be set or it might be clear. Try to
+  // acquire the bias of the object using an atomic operation. If this
+  // fails we will go in to the runtime to revoke the object's bias.
+  // Note that we first construct the presumed unbiased header so we
+  // don't accidentally blow away another thread's valid bias.
+  andq(swap_reg,
+       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
+  movq(tmp_reg, swap_reg);
+  orq(tmp_reg, r15_thread);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgq(tmp_reg, Address(obj_reg, 0));
+  // If the biasing toward our thread failed, this means that
+  // another thread succeeded in biasing it toward itself and we
+  // need to revoke that bias. The revocation will occur in the
+  // interpreter runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_rebias);
+  // At this point we know the epoch has expired, meaning that the
+  // current "bias owner", if any, is actually invalid. Under these
+  // circumstances _only_, we are allowed to use the current header's
+  // value as the comparison value when doing the cas to acquire the
+  // bias in the current epoch. In other words, we allow transfer of
+  // the bias from one thread to another directly in this situation.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  movq(tmp_reg, klass_addr);
+  movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  orq(tmp_reg, r15_thread);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgq(tmp_reg, Address(obj_reg, 0));
+  // If the biasing toward our thread failed, then another thread
+  // succeeded in biasing it toward itself and we need to revoke that
+  // bias. The revocation will occur in the runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_revoke_bias);
+  // The prototype mark in the klass doesn't have the bias bit set any
+  // more, indicating that objects of this data type are not supposed
+  // to be biased any more. We are going to try to reset the mark of
+  // this object to the prototype value and fall through to the
+  // CAS-based locking scheme. Note that if our CAS fails, it means
+  // that another thread raced us for the privilege of revoking the
+  // bias of this particular object, so it's okay to continue in the
+  // normal locking code.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  movq(tmp_reg, klass_addr);
+  movq(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgq(tmp_reg, Address(obj_reg, 0));
+  // Fall through to the normal CAS-based lock, because no matter what
+  // the result of the above CAS, some thread must have succeeded in
+  // removing the bias bit from the object's header.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
+  }
+
+  bind(cas_label);
+
+  return null_check_offset;
+}
+
+
+void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+
+  // Check for biased locking unlock case, which is a no-op
+  // Note: we do not have to check the thread ID for two reasons.
+  // First, the interpreter checks for IllegalMonitorStateException at
+  // a higher level. Second, if the bias was revoked while we held the
+  // lock, the object could not be rebiased toward another thread, so
+  // the bias bit would be clear.
+  movq(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+  andq(temp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpq(temp_reg, markOopDesc::biased_lock_pattern);
+  jcc(Assembler::equal, done);
+}
+
+
+Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
+  switch (cond) {
+    // Note some conditions are synonyms for others
+    case Assembler::zero:         return Assembler::notZero;
+    case Assembler::notZero:      return Assembler::zero;
+    case Assembler::less:         return Assembler::greaterEqual;
+    case Assembler::lessEqual:    return Assembler::greater;
+    case Assembler::greater:      return Assembler::lessEqual;
+    case Assembler::greaterEqual: return Assembler::less;
+    case Assembler::below:        return Assembler::aboveEqual;
+    case Assembler::belowEqual:   return Assembler::above;
+    case Assembler::above:        return Assembler::belowEqual;
+    case Assembler::aboveEqual:   return Assembler::below;
+    case Assembler::overflow:     return Assembler::noOverflow;
+    case Assembler::noOverflow:   return Assembler::overflow;
+    case Assembler::negative:     return Assembler::positive;
+    case Assembler::positive:     return Assembler::negative;
+    case Assembler::parity:       return Assembler::noParity;
+    case Assembler::noParity:     return Assembler::parity;
+  }
+  ShouldNotReachHere(); return Assembler::overflow;
+}
+
+
+void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
+  Condition negated_cond = negate_condition(cond);
+  Label L;
+  jcc(negated_cond, L);
+  atomic_incl(counter_addr);
+  bind(L);
+}
+
+void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
+  pushfq();
+  if (os::is_MP())
+    lock();
+  incrementl(counter_addr);
+  popfq();
+}
+
+SkipIfEqual::SkipIfEqual(
+    MacroAssembler* masm, const bool* flag_addr, bool value) {
+  _masm = masm;
+  _masm->cmp8(ExternalAddress((address)flag_addr), value);
+  _masm->jcc(Assembler::equal, _label);
+}
+
+SkipIfEqual::~SkipIfEqual() {
+  _masm->bind(_label);
+}
+
+void MacroAssembler::bang_stack_size(Register size, Register tmp) {
+  movq(tmp, rsp);
+  // Bang stack for total size given plus shadow page size.
+  // Bang one page at a time because large size can bang beyond yellow and
+  // red zones.
+  Label loop;
+  bind(loop);
+  movl(Address(tmp, (-os::vm_page_size())), size );
+  subq(tmp, os::vm_page_size());
+  subl(size, os::vm_page_size());
+  jcc(Assembler::greater, loop);
+
+  // Bang down shadow pages too.
+  // The -1 because we already subtracted 1 page.
+  for (int i = 0; i< StackShadowPages-1; i++) {
+    movq(Address(tmp, (-i*os::vm_page_size())), size );
+  }
+}