diff src/cpu/x86/vm/x86_32.ad @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3d62cb85208d
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/x86/vm/x86_32.ad	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,12778 @@
+//
+// Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+//
+// This code is free software; you can redistribute it and/or modify it
+// under the terms of the GNU General Public License version 2 only, as
+// published by the Free Software Foundation.
+//
+// This code is distributed in the hope that it will be useful, but WITHOUT
+// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+// version 2 for more details (a copy is included in the LICENSE file that
+// accompanied this code).
+//
+// You should have received a copy of the GNU General Public License version
+// 2 along with this work; if not, write to the Free Software Foundation,
+// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+//
+// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+// CA 95054 USA or visit www.sun.com if you need additional information or
+// have any questions.
+//
+//
+
+// X86 Architecture Description File
+
+//----------REGISTER DEFINITION BLOCK------------------------------------------
+// This information is used by the matcher and the register allocator to
+// describe individual registers and classes of registers within the target
+// archtecture.
+
+register %{
+//----------Architecture Description Register Definitions----------------------
+// General Registers
+// "reg_def"  name ( register save type, C convention save type,
+//                   ideal register type, encoding );
+// Register Save Types:
+//
+// NS  = No-Save:       The register allocator assumes that these registers
+//                      can be used without saving upon entry to the method, &
+//                      that they do not need to be saved at call sites.
+//
+// SOC = Save-On-Call:  The register allocator assumes that these registers
+//                      can be used without saving upon entry to the method,
+//                      but that they must be saved at call sites.
+//
+// SOE = Save-On-Entry: The register allocator assumes that these registers
+//                      must be saved before using them upon entry to the
+//                      method, but they do not need to be saved at call
+//                      sites.
+//
+// AS  = Always-Save:   The register allocator assumes that these registers
+//                      must be saved before using them upon entry to the
+//                      method, & that they must be saved at call sites.
+//
+// Ideal Register Type is used to determine how to save & restore a
+// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
+// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
+//
+// The encoding number is the actual bit-pattern placed into the opcodes.
+
+// General Registers
+// Previously set EBX, ESI, and EDI as save-on-entry for java code
+// Turn off SOE in java-code due to frequent use of uncommon-traps.
+// Now that allocator is better, turn on ESI and EDI as SOE registers.
+
+reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
+reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
+reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
+reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
+// now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
+reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
+reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
+reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
+reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
+
+// Special Registers
+reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
+
+// Float registers.  We treat TOS/FPR0 special.  It is invisible to the
+// allocator, and only shows up in the encodings.
+reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
+reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
+// Ok so here's the trick FPR1 is really st(0) except in the midst
+// of emission of assembly for a machnode. During the emission the fpu stack
+// is pushed making FPR1 == st(1) temporarily. However at any safepoint
+// the stack will not have this element so FPR1 == st(0) from the
+// oopMap viewpoint. This same weirdness with numbering causes
+// instruction encoding to have to play games with the register
+// encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
+// where it does flt->flt moves to see an example
+//
+reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
+reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
+reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
+reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
+reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
+reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
+reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
+reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
+reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
+reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
+reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
+reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
+reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
+reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
+
+// XMM registers.  128-bit registers or 4 words each, labeled a-d.
+// Word a in each register holds a Float, words ab hold a Double.
+// We currently do not use the SIMD capabilities, so registers cd
+// are unused at the moment.
+reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
+reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
+reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
+reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
+reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
+reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
+reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
+reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
+reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
+reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
+reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
+reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
+reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
+reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
+reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
+reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
+
+// Specify priority of register selection within phases of register
+// allocation.  Highest priority is first.  A useful heuristic is to
+// give registers a low priority when they are required by machine
+// instructions, like EAX and EDX.  Registers which are used as
+// pairs must fall on an even boundry (witness the FPR#L's in this list).
+// For the Intel integer registers, the equivalent Long pairs are
+// EDX:EAX, EBX:ECX, and EDI:EBP.
+alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
+                    FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
+                    FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
+                    FPR6L, FPR6H, FPR7L, FPR7H );
+
+alloc_class chunk1( XMM0a, XMM0b,
+                    XMM1a, XMM1b,
+                    XMM2a, XMM2b,
+                    XMM3a, XMM3b,
+                    XMM4a, XMM4b,
+                    XMM5a, XMM5b,
+                    XMM6a, XMM6b,
+                    XMM7a, XMM7b, EFLAGS);
+
+
+//----------Architecture Description Register Classes--------------------------
+// Several register classes are automatically defined based upon information in
+// this architecture description.
+// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
+// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
+// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
+// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
+//
+// Class for all registers
+reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
+// Class for general registers
+reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
+// Class for general registers which may be used for implicit null checks on win95
+// Also safe for use by tailjump. We don't want to allocate in rbp,
+reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
+// Class of "X" registers
+reg_class x_reg(EBX, ECX, EDX, EAX);
+// Class of registers that can appear in an address with no offset.
+// EBP and ESP require an extra instruction byte for zero offset.
+// Used in fast-unlock
+reg_class p_reg(EDX, EDI, ESI, EBX);
+// Class for general registers not including ECX
+reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
+// Class for general registers not including EAX
+reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
+// Class for general registers not including EAX or EBX.
+reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
+// Class of EAX (for multiply and divide operations)
+reg_class eax_reg(EAX);
+// Class of EBX (for atomic add)
+reg_class ebx_reg(EBX);
+// Class of ECX (for shift and JCXZ operations and cmpLTMask)
+reg_class ecx_reg(ECX);
+// Class of EDX (for multiply and divide operations)
+reg_class edx_reg(EDX);
+// Class of EDI (for synchronization)
+reg_class edi_reg(EDI);
+// Class of ESI (for synchronization)
+reg_class esi_reg(ESI);
+// Singleton class for interpreter's stack pointer
+reg_class ebp_reg(EBP);
+// Singleton class for stack pointer
+reg_class sp_reg(ESP);
+// Singleton class for instruction pointer
+// reg_class ip_reg(EIP);
+// Singleton class for condition codes
+reg_class int_flags(EFLAGS);
+// Class of integer register pairs
+reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
+// Class of integer register pairs that aligns with calling convention
+reg_class eadx_reg( EAX,EDX );
+reg_class ebcx_reg( ECX,EBX );
+// Not AX or DX, used in divides
+reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
+
+// Floating point registers.  Notice FPR0 is not a choice.
+// FPR0 is not ever allocated; we use clever encodings to fake
+// a 2-address instructions out of Intels FP stack.
+reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
+
+// make a register class for SSE registers
+reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
+
+// make a double register class for SSE2 registers
+reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
+                  XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
+
+reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
+                   FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
+                   FPR7L,FPR7H );
+
+reg_class flt_reg0( FPR1L );
+reg_class dbl_reg0( FPR1L,FPR1H );
+reg_class dbl_reg1( FPR2L,FPR2H );
+reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
+                       FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
+
+// XMM6 and XMM7 could be used as temporary registers for long, float and
+// double values for SSE2.
+reg_class xdb_reg6( XMM6a,XMM6b );
+reg_class xdb_reg7( XMM7a,XMM7b );
+%}
+
+
+//----------SOURCE BLOCK-------------------------------------------------------
+// This is a block of C++ code which provides values, functions, and
+// definitions necessary in the rest of the architecture description
+source %{
+#define   RELOC_IMM32    Assembler::imm32_operand
+#define   RELOC_DISP32   Assembler::disp32_operand
+
+#define __ _masm.
+
+// How to find the high register of a Long pair, given the low register
+#define   HIGH_FROM_LOW(x) ((x)+2)
+
+// These masks are used to provide 128-bit aligned bitmasks to the XMM
+// instructions, to allow sign-masking or sign-bit flipping.  They allow
+// fast versions of NegF/NegD and AbsF/AbsD.
+
+// Note: 'double' and 'long long' have 32-bits alignment on x86.
+static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
+  // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
+  // of 128-bits operands for SSE instructions.
+  jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
+  // Store the value to a 128-bits operand.
+  operand[0] = lo;
+  operand[1] = hi;
+  return operand;
+}
+
+// Buffer for 128-bits masks used by SSE instructions.
+static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
+
+// Static initialization during VM startup.
+static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
+static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
+static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
+static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
+
+// !!!!! Special hack to get all type of calls to specify the byte offset
+//       from the start of the call to the point where the return address
+//       will point.
+int MachCallStaticJavaNode::ret_addr_offset() {
+  return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 5 bytes from start of call to where return address points
+}
+
+int MachCallDynamicJavaNode::ret_addr_offset() {
+  return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 10 bytes from start of call to where return address points
+}
+
+static int sizeof_FFree_Float_Stack_All = -1;
+
+int MachCallRuntimeNode::ret_addr_offset() {
+  assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
+  return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
+}
+
+// Indicate if the safepoint node needs the polling page as an input.
+// Since x86 does have absolute addressing, it doesn't.
+bool SafePointNode::needs_polling_address_input() {
+  return false;
+}
+
+//
+// Compute padding required for nodes which need alignment
+//
+
+// The address of the call instruction needs to be 4-byte aligned to
+// ensure that it does not span a cache line so that it can be patched.
+int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
+  if (Compile::current()->in_24_bit_fp_mode())
+    current_offset += 6;    // skip fldcw in pre_call_FPU, if any
+  current_offset += 1;      // skip call opcode byte
+  return round_to(current_offset, alignment_required()) - current_offset;
+}
+
+// The address of the call instruction needs to be 4-byte aligned to
+// ensure that it does not span a cache line so that it can be patched.
+int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
+  if (Compile::current()->in_24_bit_fp_mode())
+    current_offset += 6;    // skip fldcw in pre_call_FPU, if any
+  current_offset += 5;      // skip MOV instruction
+  current_offset += 1;      // skip call opcode byte
+  return round_to(current_offset, alignment_required()) - current_offset;
+}
+
+#ifndef PRODUCT
+void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
+  st->print("INT3");
+}
+#endif
+
+// EMIT_RM()
+void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
+  unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
+  *(cbuf.code_end()) = c;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_CC()
+void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
+  unsigned char c = (unsigned char)( f1 | f2 );
+  *(cbuf.code_end()) = c;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_OPCODE()
+void emit_opcode(CodeBuffer &cbuf, int code) {
+  *(cbuf.code_end()) = (unsigned char)code;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_OPCODE() w/ relocation information
+void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
+  cbuf.relocate(cbuf.inst_mark() + offset, reloc);
+  emit_opcode(cbuf, code);
+}
+
+// EMIT_D8()
+void emit_d8(CodeBuffer &cbuf, int d8) {
+  *(cbuf.code_end()) = (unsigned char)d8;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_D16()
+void emit_d16(CodeBuffer &cbuf, int d16) {
+  *((short *)(cbuf.code_end())) = d16;
+  cbuf.set_code_end(cbuf.code_end() + 2);
+}
+
+// EMIT_D32()
+void emit_d32(CodeBuffer &cbuf, int d32) {
+  *((int *)(cbuf.code_end())) = d32;
+  cbuf.set_code_end(cbuf.code_end() + 4);
+}
+
+// emit 32 bit value and construct relocation entry from relocInfo::relocType
+void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
+        int format) {
+  cbuf.relocate(cbuf.inst_mark(), reloc, format);
+
+  *((int *)(cbuf.code_end())) = d32;
+  cbuf.set_code_end(cbuf.code_end() + 4);
+}
+
+// emit 32 bit value and construct relocation entry from RelocationHolder
+void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
+        int format) {
+#ifdef ASSERT
+  if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
+    assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code");
+  }
+#endif
+  cbuf.relocate(cbuf.inst_mark(), rspec, format);
+
+  *((int *)(cbuf.code_end())) = d32;
+  cbuf.set_code_end(cbuf.code_end() + 4);
+}
+
+// Access stack slot for load or store
+void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
+  emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
+  if( -128 <= disp && disp <= 127 ) {
+    emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
+    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
+    emit_d8 (cbuf, disp);     // Displacement  // R/M byte
+  } else {
+    emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
+    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
+    emit_d32(cbuf, disp);     // Displacement  // R/M byte
+  }
+}
+
+   // eRegI ereg, memory mem) %{    // emit_reg_mem
+void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
+  // There is no index & no scale, use form without SIB byte
+  if ((index == 0x4) &&
+      (scale == 0) && (base != ESP_enc)) {
+    // If no displacement, mode is 0x0; unless base is [EBP]
+    if ( (displace == 0) && (base != EBP_enc) ) {
+      emit_rm(cbuf, 0x0, reg_encoding, base);
+    }
+    else {                    // If 8-bit displacement, mode 0x1
+      if ((displace >= -128) && (displace <= 127)
+          && !(displace_is_oop) ) {
+        emit_rm(cbuf, 0x1, reg_encoding, base);
+        emit_d8(cbuf, displace);
+      }
+      else {                  // If 32-bit displacement
+        if (base == -1) { // Special flag for absolute address
+          emit_rm(cbuf, 0x0, reg_encoding, 0x5);
+          // (manual lies; no SIB needed here)
+          if ( displace_is_oop ) {
+            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
+          } else {
+            emit_d32      (cbuf, displace);
+          }
+        }
+        else {                // Normal base + offset
+          emit_rm(cbuf, 0x2, reg_encoding, base);
+          if ( displace_is_oop ) {
+            emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
+          } else {
+            emit_d32      (cbuf, displace);
+          }
+        }
+      }
+    }
+  }
+  else {                      // Else, encode with the SIB byte
+    // If no displacement, mode is 0x0; unless base is [EBP]
+    if (displace == 0 && (base != EBP_enc)) {  // If no displacement
+      emit_rm(cbuf, 0x0, reg_encoding, 0x4);
+      emit_rm(cbuf, scale, index, base);
+    }
+    else {                    // If 8-bit displacement, mode 0x1
+      if ((displace >= -128) && (displace <= 127)
+          && !(displace_is_oop) ) {
+        emit_rm(cbuf, 0x1, reg_encoding, 0x4);
+        emit_rm(cbuf, scale, index, base);
+        emit_d8(cbuf, displace);
+      }
+      else {                  // If 32-bit displacement
+        if (base == 0x04 ) {
+          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
+          emit_rm(cbuf, scale, index, 0x04);
+        } else {
+          emit_rm(cbuf, 0x2, reg_encoding, 0x4);
+          emit_rm(cbuf, scale, index, base);
+        }
+        if ( displace_is_oop ) {
+          emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
+        } else {
+          emit_d32      (cbuf, displace);
+        }
+      }
+    }
+  }
+}
+
+
+void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
+  if( dst_encoding == src_encoding ) {
+    // reg-reg copy, use an empty encoding
+  } else {
+    emit_opcode( cbuf, 0x8B );
+    emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
+  }
+}
+
+void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
+  if( dst_encoding == src_encoding ) {
+    // reg-reg copy, use an empty encoding
+  } else {
+    MacroAssembler _masm(&cbuf);
+
+    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
+  }
+}
+
+
+//=============================================================================
+#ifndef PRODUCT
+void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
+  Compile* C = ra_->C;
+  if( C->in_24_bit_fp_mode() ) {
+    tty->print("FLDCW  24 bit fpu control word");
+    tty->print_cr(""); tty->print("\t");
+  }
+
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove two words for return addr and rbp,
+  framesize -= 2*wordSize;
+
+  // Calls to C2R adapters often do not accept exceptional returns.
+  // We require that their callers must bang for them.  But be careful, because
+  // some VM calls (such as call site linkage) can use several kilobytes of
+  // stack.  But the stack safety zone should account for that.
+  // See bugs 4446381, 4468289, 4497237.
+  if (C->need_stack_bang(framesize)) {
+    tty->print_cr("# stack bang"); tty->print("\t");
+  }
+  tty->print_cr("PUSHL  EBP"); tty->print("\t");
+
+  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
+    tty->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
+    tty->print_cr(""); tty->print("\t");
+    framesize -= wordSize;
+  }
+
+  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
+    if (framesize) {
+      tty->print("SUB    ESP,%d\t# Create frame",framesize);
+    }
+  } else {
+    tty->print("SUB    ESP,%d\t# Create frame",framesize);
+  }
+}
+#endif
+
+
+void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
+  Compile* C = ra_->C;
+
+  if (UseSSE >= 2 && VerifyFPU) {
+    MacroAssembler masm(&cbuf);
+    masm.verify_FPU(0, "FPU stack must be clean on entry");
+  }
+
+  // WARNING: Initial instruction MUST be 5 bytes or longer so that
+  // NativeJump::patch_verified_entry will be able to patch out the entry
+  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
+  // depth is ok at 5 bytes, the frame allocation can be either 3 or
+  // 6 bytes. So if we don't do the fldcw or the push then we must
+  // use the 6 byte frame allocation even if we have no frame. :-(
+  // If method sets FPU control word do it now
+  if( C->in_24_bit_fp_mode() ) {
+    MacroAssembler masm(&cbuf);
+    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
+  }
+
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove two words for return addr and rbp,
+  framesize -= 2*wordSize;
+
+  // Calls to C2R adapters often do not accept exceptional returns.
+  // We require that their callers must bang for them.  But be careful, because
+  // some VM calls (such as call site linkage) can use several kilobytes of
+  // stack.  But the stack safety zone should account for that.
+  // See bugs 4446381, 4468289, 4497237.
+  if (C->need_stack_bang(framesize)) {
+    MacroAssembler masm(&cbuf);
+    masm.generate_stack_overflow_check(framesize);
+  }
+
+  // We always push rbp, so that on return to interpreter rbp, will be
+  // restored correctly and we can correct the stack.
+  emit_opcode(cbuf, 0x50 | EBP_enc);
+
+  if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
+    emit_opcode(cbuf, 0x68); // push 0xbadb100d
+    emit_d32(cbuf, 0xbadb100d);
+    framesize -= wordSize;
+  }
+
+  if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
+    if (framesize) {
+      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
+      emit_rm(cbuf, 0x3, 0x05, ESP_enc);
+      emit_d8(cbuf, framesize);
+    }
+  } else {
+    emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
+    emit_rm(cbuf, 0x3, 0x05, ESP_enc);
+    emit_d32(cbuf, framesize);
+  }
+  C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
+
+#ifdef ASSERT
+  if (VerifyStackAtCalls) {
+    Label L;
+    MacroAssembler masm(&cbuf);
+    masm.pushl(rax);
+    masm.movl(rax, rsp);
+    masm.andl(rax, StackAlignmentInBytes-1);
+    masm.cmpl(rax, StackAlignmentInBytes-wordSize);
+    masm.popl(rax);
+    masm.jcc(Assembler::equal, L);
+    masm.stop("Stack is not properly aligned!");
+    masm.bind(L);
+  }
+#endif
+
+}
+
+uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
+  return MachNode::size(ra_); // too many variables; just compute it the hard way
+}
+
+int MachPrologNode::reloc() const {
+  return 0; // a large enough number
+}
+
+//=============================================================================
+#ifndef PRODUCT
+void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
+  Compile *C = ra_->C;
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove two words for return addr and rbp,
+  framesize -= 2*wordSize;
+
+  if( C->in_24_bit_fp_mode() ) {
+    st->print("FLDCW  standard control word");
+    st->cr(); st->print("\t");
+  }
+  if( framesize ) {
+    st->print("ADD    ESP,%d\t# Destroy frame",framesize);
+    st->cr(); st->print("\t");
+  }
+  st->print_cr("POPL   EBP"); st->print("\t");
+  if( do_polling() && C->is_method_compilation() ) {
+    st->print("TEST   PollPage,EAX\t! Poll Safepoint");
+    st->cr(); st->print("\t");
+  }
+}
+#endif
+
+void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
+  Compile *C = ra_->C;
+
+  // If method set FPU control word, restore to standard control word
+  if( C->in_24_bit_fp_mode() ) {
+    MacroAssembler masm(&cbuf);
+    masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
+  }
+
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove two words for return addr and rbp,
+  framesize -= 2*wordSize;
+
+  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
+
+  if( framesize >= 128 ) {
+    emit_opcode(cbuf, 0x81); // add  SP, #framesize
+    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
+    emit_d32(cbuf, framesize);
+  }
+  else if( framesize ) {
+    emit_opcode(cbuf, 0x83); // add  SP, #framesize
+    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
+    emit_d8(cbuf, framesize);
+  }
+
+  emit_opcode(cbuf, 0x58 | EBP_enc);
+
+  if( do_polling() && C->is_method_compilation() ) {
+    cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
+    emit_opcode(cbuf,0x85);
+    emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
+    emit_d32(cbuf, (intptr_t)os::get_polling_page());
+  }
+}
+
+uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
+  Compile *C = ra_->C;
+  // If method set FPU control word, restore to standard control word
+  int size = C->in_24_bit_fp_mode() ? 6 : 0;
+  if( do_polling() && C->is_method_compilation() ) size += 6;
+
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove two words for return addr and rbp,
+  framesize -= 2*wordSize;
+
+  size++; // popl rbp,
+
+  if( framesize >= 128 ) {
+    size += 6;
+  } else {
+    size += framesize ? 3 : 0;
+  }
+  return size;
+}
+
+int MachEpilogNode::reloc() const {
+  return 0; // a large enough number
+}
+
+const Pipeline * MachEpilogNode::pipeline() const {
+  return MachNode::pipeline_class();
+}
+
+int MachEpilogNode::safepoint_offset() const { return 0; }
+
+//=============================================================================
+
+enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
+static enum RC rc_class( OptoReg::Name reg ) {
+
+  if( !OptoReg::is_valid(reg)  ) return rc_bad;
+  if (OptoReg::is_stack(reg)) return rc_stack;
+
+  VMReg r = OptoReg::as_VMReg(reg);
+  if (r->is_Register()) return rc_int;
+  if (r->is_FloatRegister()) {
+    assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
+    return rc_float;
+  }
+  assert(r->is_XMMRegister(), "must be");
+  return rc_xmm;
+}
+
+static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size ) {
+  if( cbuf ) {
+    emit_opcode  (*cbuf, opcode );
+    encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
+#ifndef PRODUCT
+  } else if( !do_size ) {
+    if( size != 0 ) tty->print("\n\t");
+    if( opcode == 0x8B || opcode == 0x89 ) { // MOV
+      if( is_load ) tty->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
+      else          tty->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
+    } else { // FLD, FST, PUSH, POP
+      tty->print("%s [ESP + #%d]",op_str,offset);
+    }
+#endif
+  }
+  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
+  return size+3+offset_size;
+}
+
+// Helper for XMM registers.  Extra opcode bits, limited syntax.
+static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
+                         int offset, int reg_lo, int reg_hi, int size ) {
+  if( cbuf ) {
+    if( reg_lo+1 == reg_hi ) { // double move?
+      if( is_load && !UseXmmLoadAndClearUpper )
+        emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
+      else
+        emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
+    } else {
+      emit_opcode(*cbuf, 0xF3 );
+    }
+    emit_opcode(*cbuf, 0x0F );
+    if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
+      emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
+    else
+      emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
+    encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
+#ifndef PRODUCT
+  } else if( !do_size ) {
+    if( size != 0 ) tty->print("\n\t");
+    if( reg_lo+1 == reg_hi ) { // double move?
+      if( is_load ) tty->print("%s %s,[ESP + #%d]",
+                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
+                               Matcher::regName[reg_lo], offset);
+      else          tty->print("MOVSD  [ESP + #%d],%s",
+                               offset, Matcher::regName[reg_lo]);
+    } else {
+      if( is_load ) tty->print("MOVSS  %s,[ESP + #%d]",
+                               Matcher::regName[reg_lo], offset);
+      else          tty->print("MOVSS  [ESP + #%d],%s",
+                               offset, Matcher::regName[reg_lo]);
+    }
+#endif
+  }
+  int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
+  return size+5+offset_size;
+}
+
+
+static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
+                            int src_hi, int dst_hi, int size ) {
+  if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
+    if( cbuf ) {
+      if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
+        emit_opcode(*cbuf, 0x66 );
+      }
+      emit_opcode(*cbuf, 0x0F );
+      emit_opcode(*cbuf, 0x28 );
+      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
+#ifndef PRODUCT
+    } else if( !do_size ) {
+      if( size != 0 ) tty->print("\n\t");
+      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
+        tty->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
+      } else {
+        tty->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
+      }
+#endif
+    }
+    return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
+  } else {
+    if( cbuf ) {
+      emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
+      emit_opcode(*cbuf, 0x0F );
+      emit_opcode(*cbuf, 0x10 );
+      emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
+#ifndef PRODUCT
+    } else if( !do_size ) {
+      if( size != 0 ) tty->print("\n\t");
+      if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
+        tty->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
+      } else {
+        tty->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
+      }
+#endif
+    }
+    return size+4;
+  }
+}
+
+static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size ) {
+  if( cbuf ) {
+    emit_opcode(*cbuf, 0x8B );
+    emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
+#ifndef PRODUCT
+  } else if( !do_size ) {
+    if( size != 0 ) tty->print("\n\t");
+    tty->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
+#endif
+  }
+  return size+2;
+}
+
+static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi, int offset, int size ) {
+  if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
+    if( cbuf ) {
+      emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
+      emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
+#ifndef PRODUCT
+    } else if( !do_size ) {
+      if( size != 0 ) tty->print("\n\t");
+      tty->print("FLD    %s",Matcher::regName[src_lo]);
+#endif
+    }
+    size += 2;
+  }
+
+  int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
+  const char *op_str;
+  int op;
+  if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
+    op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
+    op = 0xDD;
+  } else {                   // 32-bit store
+    op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
+    op = 0xD9;
+    assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
+  }
+
+  return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size);
+}
+
+uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
+  // Get registers to move
+  OptoReg::Name src_second = ra_->get_reg_second(in(1));
+  OptoReg::Name src_first = ra_->get_reg_first(in(1));
+  OptoReg::Name dst_second = ra_->get_reg_second(this );
+  OptoReg::Name dst_first = ra_->get_reg_first(this );
+
+  enum RC src_second_rc = rc_class(src_second);
+  enum RC src_first_rc = rc_class(src_first);
+  enum RC dst_second_rc = rc_class(dst_second);
+  enum RC dst_first_rc = rc_class(dst_first);
+
+  assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
+
+  // Generate spill code!
+  int size = 0;
+
+  if( src_first == dst_first && src_second == dst_second )
+    return size;            // Self copy, no move
+
+  // --------------------------------------
+  // Check for mem-mem move.  push/pop to move.
+  if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
+    if( src_second == dst_first ) { // overlapping stack copy ranges
+      assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
+      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size);
+      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size);
+      src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
+    }
+    // move low bits
+    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size);
+    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size);
+    if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
+      size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size);
+      size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size);
+    }
+    return size;
+  }
+
+  // --------------------------------------
+  // Check for integer reg-reg copy
+  if( src_first_rc == rc_int && dst_first_rc == rc_int )
+    size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size);
+
+  // Check for integer store
+  if( src_first_rc == rc_int && dst_first_rc == rc_stack )
+    size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size);
+
+  // Check for integer load
+  if( dst_first_rc == rc_int && src_first_rc == rc_stack )
+    size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size);
+
+  // --------------------------------------
+  // Check for float reg-reg copy
+  if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
+    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
+            (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
+    if( cbuf ) {
+
+      // Note the mucking with the register encode to compensate for the 0/1
+      // indexing issue mentioned in a comment in the reg_def sections
+      // for FPR registers many lines above here.
+
+      if( src_first != FPR1L_num ) {
+        emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
+        emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
+        emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
+        emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
+     } else {
+        emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
+        emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
+     }
+#ifndef PRODUCT
+    } else if( !do_size ) {
+      if( size != 0 ) st->print("\n\t");
+      if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
+      else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
+#endif
+    }
+    return size + ((src_first != FPR1L_num) ? 2+2 : 2);
+  }
+
+  // Check for float store
+  if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
+    return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size);
+  }
+
+  // Check for float load
+  if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
+    int offset = ra_->reg2offset(src_first);
+    const char *op_str;
+    int op;
+    if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
+      op_str = "FLD_D";
+      op = 0xDD;
+    } else {                   // 32-bit load
+      op_str = "FLD_S";
+      op = 0xD9;
+      assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
+    }
+    if( cbuf ) {
+      emit_opcode  (*cbuf, op );
+      encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
+      emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
+      emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
+#ifndef PRODUCT
+    } else if( !do_size ) {
+      if( size != 0 ) st->print("\n\t");
+      st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
+#endif
+    }
+    int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
+    return size + 3+offset_size+2;
+  }
+
+  // Check for xmm reg-reg copy
+  if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
+    assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
+            (src_first+1 == src_second && dst_first+1 == dst_second),
+            "no non-adjacent float-moves" );
+    return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size);
+  }
+
+  // Check for xmm store
+  if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
+    return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size);
+  }
+
+  // Check for float xmm load
+  if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
+    return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size);
+  }
+
+  // Copy from float reg to xmm reg
+  if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
+    // copy to the top of stack from floating point reg
+    // and use LEA to preserve flags
+    if( cbuf ) {
+      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
+      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
+      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
+      emit_d8(*cbuf,0xF8);
+#ifndef PRODUCT
+    } else if( !do_size ) {
+      if( size != 0 ) st->print("\n\t");
+      st->print("LEA    ESP,[ESP-8]");
+#endif
+    }
+    size += 4;
+
+    size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size);
+
+    // Copy from the temp memory to the xmm reg.
+    size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size);
+
+    if( cbuf ) {
+      emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
+      emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
+      emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
+      emit_d8(*cbuf,0x08);
+#ifndef PRODUCT
+    } else if( !do_size ) {
+      if( size != 0 ) st->print("\n\t");
+      st->print("LEA    ESP,[ESP+8]");
+#endif
+    }
+    size += 4;
+    return size;
+  }
+
+  assert( size > 0, "missed a case" );
+
+  // --------------------------------------------------------------------
+  // Check for second bits still needing moving.
+  if( src_second == dst_second )
+    return size;               // Self copy; no move
+  assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
+
+  // Check for second word int-int move
+  if( src_second_rc == rc_int && dst_second_rc == rc_int )
+    return impl_mov_helper(cbuf,do_size,src_second,dst_second,size);
+
+  // Check for second word integer store
+  if( src_second_rc == rc_int && dst_second_rc == rc_stack )
+    return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size);
+
+  // Check for second word integer load
+  if( dst_second_rc == rc_int && src_second_rc == rc_stack )
+    return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size);
+
+
+  Unimplemented();
+}
+
+#ifndef PRODUCT
+void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
+  implementation( NULL, ra_, false, st );
+}
+#endif
+
+void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
+  implementation( &cbuf, ra_, false, NULL );
+}
+
+uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
+  return implementation( NULL, ra_, true, NULL );
+}
+
+//=============================================================================
+#ifndef PRODUCT
+void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
+  st->print("NOP \t# %d bytes pad for loops and calls", _count);
+}
+#endif
+
+void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
+  MacroAssembler _masm(&cbuf);
+  __ nop(_count);
+}
+
+uint MachNopNode::size(PhaseRegAlloc *) const {
+  return _count;
+}
+
+
+//=============================================================================
+#ifndef PRODUCT
+void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
+  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
+  int reg = ra_->get_reg_first(this);
+  st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
+}
+#endif
+
+void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
+  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
+  int reg = ra_->get_encode(this);
+  if( offset >= 128 ) {
+    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
+    emit_rm(cbuf, 0x2, reg, 0x04);
+    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
+    emit_d32(cbuf, offset);
+  }
+  else {
+    emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
+    emit_rm(cbuf, 0x1, reg, 0x04);
+    emit_rm(cbuf, 0x0, 0x04, ESP_enc);
+    emit_d8(cbuf, offset);
+  }
+}
+
+uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
+  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
+  if( offset >= 128 ) {
+    return 7;
+  }
+  else {
+    return 4;
+  }
+}
+
+//=============================================================================
+
+// emit call stub, compiled java to interpreter
+void emit_java_to_interp(CodeBuffer &cbuf ) {
+  // Stub is fixed up when the corresponding call is converted from calling
+  // compiled code to calling interpreted code.
+  // mov rbx,0
+  // jmp -1
+
+  address mark = cbuf.inst_mark();  // get mark within main instrs section
+
+  // Note that the code buffer's inst_mark is always relative to insts.
+  // That's why we must use the macroassembler to generate a stub.
+  MacroAssembler _masm(&cbuf);
+
+  address base =
+  __ start_a_stub(Compile::MAX_stubs_size);
+  if (base == NULL)  return;  // CodeBuffer::expand failed
+  // static stub relocation stores the instruction address of the call
+  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
+  // static stub relocation also tags the methodOop in the code-stream.
+  __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
+  __ jump(RuntimeAddress((address)-1));
+
+  __ end_a_stub();
+  // Update current stubs pointer and restore code_end.
+}
+// size of call stub, compiled java to interpretor
+uint size_java_to_interp() {
+  return 10;  // movl; jmp
+}
+// relocation entries for call stub, compiled java to interpretor
+uint reloc_java_to_interp() {
+  return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
+}
+
+//=============================================================================
+#ifndef PRODUCT
+void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
+  st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
+  st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
+  st->print_cr("\tNOP");
+  st->print_cr("\tNOP");
+  if( !OptoBreakpoint )
+    st->print_cr("\tNOP");
+}
+#endif
+
+void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
+  MacroAssembler masm(&cbuf);
+#ifdef ASSERT
+  uint code_size = cbuf.code_size();
+#endif
+  masm.cmpl(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
+  masm.jump_cc(Assembler::notEqual,
+               RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+  /* WARNING these NOPs are critical so that verified entry point is properly
+     aligned for patching by NativeJump::patch_verified_entry() */
+  int nops_cnt = 2;
+  if( !OptoBreakpoint ) // Leave space for int3
+     nops_cnt += 1;
+  masm.nop(nops_cnt);
+
+  assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
+}
+
+uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
+  return OptoBreakpoint ? 11 : 12;
+}
+
+
+//=============================================================================
+uint size_exception_handler() {
+  // NativeCall instruction size is the same as NativeJump.
+  // exception handler starts out as jump and can be patched to
+  // a call be deoptimization.  (4932387)
+  // Note that this value is also credited (in output.cpp) to
+  // the size of the code section.
+  return NativeJump::instruction_size;
+}
+
+// Emit exception handler code.  Stuff framesize into a register
+// and call a VM stub routine.
+int emit_exception_handler(CodeBuffer& cbuf) {
+
+  // Note that the code buffer's inst_mark is always relative to insts.
+  // That's why we must use the macroassembler to generate a handler.
+  MacroAssembler _masm(&cbuf);
+  address base =
+  __ start_a_stub(size_exception_handler());
+  if (base == NULL)  return 0;  // CodeBuffer::expand failed
+  int offset = __ offset();
+  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
+  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
+  __ end_a_stub();
+  return offset;
+}
+
+uint size_deopt_handler() {
+  // NativeCall instruction size is the same as NativeJump.
+  // exception handler starts out as jump and can be patched to
+  // a call be deoptimization.  (4932387)
+  // Note that this value is also credited (in output.cpp) to
+  // the size of the code section.
+  return 5 + NativeJump::instruction_size; // pushl(); jmp;
+}
+
+// Emit deopt handler code.
+int emit_deopt_handler(CodeBuffer& cbuf) {
+
+  // Note that the code buffer's inst_mark is always relative to insts.
+  // That's why we must use the macroassembler to generate a handler.
+  MacroAssembler _masm(&cbuf);
+  address base =
+  __ start_a_stub(size_exception_handler());
+  if (base == NULL)  return 0;  // CodeBuffer::expand failed
+  int offset = __ offset();
+  InternalAddress here(__ pc());
+  __ pushptr(here.addr());
+
+  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
+  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
+  __ end_a_stub();
+  return offset;
+}
+
+
+static void emit_double_constant(CodeBuffer& cbuf, double x) {
+  int mark = cbuf.insts()->mark_off();
+  MacroAssembler _masm(&cbuf);
+  address double_address = __ double_constant(x);
+  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
+  emit_d32_reloc(cbuf,
+                 (int)double_address,
+                 internal_word_Relocation::spec(double_address),
+                 RELOC_DISP32);
+}
+
+static void emit_float_constant(CodeBuffer& cbuf, float x) {
+  int mark = cbuf.insts()->mark_off();
+  MacroAssembler _masm(&cbuf);
+  address float_address = __ float_constant(x);
+  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
+  emit_d32_reloc(cbuf,
+                 (int)float_address,
+                 internal_word_Relocation::spec(float_address),
+                 RELOC_DISP32);
+}
+
+
+int Matcher::regnum_to_fpu_offset(int regnum) {
+  return regnum - 32; // The FP registers are in the second chunk
+}
+
+bool is_positive_zero_float(jfloat f) {
+  return jint_cast(f) == jint_cast(0.0F);
+}
+
+bool is_positive_one_float(jfloat f) {
+  return jint_cast(f) == jint_cast(1.0F);
+}
+
+bool is_positive_zero_double(jdouble d) {
+  return jlong_cast(d) == jlong_cast(0.0);
+}
+
+bool is_positive_one_double(jdouble d) {
+  return jlong_cast(d) == jlong_cast(1.0);
+}
+
+// This is UltraSparc specific, true just means we have fast l2f conversion
+const bool Matcher::convL2FSupported(void) {
+  return true;
+}
+
+// Vector width in bytes
+const uint Matcher::vector_width_in_bytes(void) {
+  return UseSSE >= 2 ? 8 : 0;
+}
+
+// Vector ideal reg
+const uint Matcher::vector_ideal_reg(void) {
+  return Op_RegD;
+}
+
+// Is this branch offset short enough that a short branch can be used?
+//
+// NOTE: If the platform does not provide any short branch variants, then
+//       this method should return false for offset 0.
+bool Matcher::is_short_branch_offset(int offset) {
+  return (-128 <= offset && offset <= 127);
+}
+
+const bool Matcher::isSimpleConstant64(jlong value) {
+  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
+  return false;
+}
+
+// The ecx parameter to rep stos for the ClearArray node is in dwords.
+const bool Matcher::init_array_count_is_in_bytes = false;
+
+// Threshold size for cleararray.
+const int Matcher::init_array_short_size = 8 * BytesPerLong;
+
+// Should the Matcher clone shifts on addressing modes, expecting them to
+// be subsumed into complex addressing expressions or compute them into
+// registers?  True for Intel but false for most RISCs
+const bool Matcher::clone_shift_expressions = true;
+
+// Is it better to copy float constants, or load them directly from memory?
+// Intel can load a float constant from a direct address, requiring no
+// extra registers.  Most RISCs will have to materialize an address into a
+// register first, so they would do better to copy the constant from stack.
+const bool Matcher::rematerialize_float_constants = true;
+
+// If CPU can load and store mis-aligned doubles directly then no fixup is
+// needed.  Else we split the double into 2 integer pieces and move it
+// piece-by-piece.  Only happens when passing doubles into C code as the
+// Java calling convention forces doubles to be aligned.
+const bool Matcher::misaligned_doubles_ok = true;
+
+
+void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
+  // Get the memory operand from the node
+  uint numopnds = node->num_opnds();        // Virtual call for number of operands
+  uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
+  assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
+  uint opcnt     = 1;                 // First operand
+  uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
+  while( idx >= skipped+num_edges ) {
+    skipped += num_edges;
+    opcnt++;                          // Bump operand count
+    assert( opcnt < numopnds, "Accessing non-existent operand" );
+    num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
+  }
+
+  MachOper *memory = node->_opnds[opcnt];
+  MachOper *new_memory = NULL;
+  switch (memory->opcode()) {
+  case DIRECT:
+  case INDOFFSET32X:
+    // No transformation necessary.
+    return;
+  case INDIRECT:
+    new_memory = new (C) indirect_win95_safeOper( );
+    break;
+  case INDOFFSET8:
+    new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
+    break;
+  case INDOFFSET32:
+    new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
+    break;
+  case INDINDEXOFFSET:
+    new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
+    break;
+  case INDINDEXSCALE:
+    new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
+    break;
+  case INDINDEXSCALEOFFSET:
+    new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
+    break;
+  case LOAD_LONG_INDIRECT:
+  case LOAD_LONG_INDOFFSET32:
+    // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
+    return;
+  default:
+    assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
+    return;
+  }
+  node->_opnds[opcnt] = new_memory;
+}
+
+// Advertise here if the CPU requires explicit rounding operations
+// to implement the UseStrictFP mode.
+const bool Matcher::strict_fp_requires_explicit_rounding = true;
+
+// Do floats take an entire double register or just half?
+const bool Matcher::float_in_double = true;
+// Do ints take an entire long register or just half?
+const bool Matcher::int_in_long = false;
+
+// Return whether or not this register is ever used as an argument.  This
+// function is used on startup to build the trampoline stubs in generateOptoStub.
+// Registers not mentioned will be killed by the VM call in the trampoline, and
+// arguments in those registers not be available to the callee.
+bool Matcher::can_be_java_arg( int reg ) {
+  if(  reg == ECX_num   || reg == EDX_num   ) return true;
+  if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
+  if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
+  return false;
+}
+
+bool Matcher::is_spillable_arg( int reg ) {
+  return can_be_java_arg(reg);
+}
+
+// Register for DIVI projection of divmodI
+RegMask Matcher::divI_proj_mask() {
+  return EAX_REG_mask;
+}
+
+// Register for MODI projection of divmodI
+RegMask Matcher::modI_proj_mask() {
+  return EDX_REG_mask;
+}
+
+// Register for DIVL projection of divmodL
+RegMask Matcher::divL_proj_mask() {
+  ShouldNotReachHere();
+  return RegMask();
+}
+
+// Register for MODL projection of divmodL
+RegMask Matcher::modL_proj_mask() {
+  ShouldNotReachHere();
+  return RegMask();
+}
+
+%}
+
+//----------ENCODING BLOCK-----------------------------------------------------
+// This block specifies the encoding classes used by the compiler to output
+// byte streams.  Encoding classes generate functions which are called by
+// Machine Instruction Nodes in order to generate the bit encoding of the
+// instruction.  Operands specify their base encoding interface with the
+// interface keyword.  There are currently supported four interfaces,
+// REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
+// operand to generate a function which returns its register number when
+// queried.   CONST_INTER causes an operand to generate a function which
+// returns the value of the constant when queried.  MEMORY_INTER causes an
+// operand to generate four functions which return the Base Register, the
+// Index Register, the Scale Value, and the Offset Value of the operand when
+// queried.  COND_INTER causes an operand to generate six functions which
+// return the encoding code (ie - encoding bits for the instruction)
+// associated with each basic boolean condition for a conditional instruction.
+// Instructions specify two basic values for encoding.  They use the
+// ins_encode keyword to specify their encoding class (which must be one of
+// the class names specified in the encoding block), and they use the
+// opcode keyword to specify, in order, their primary, secondary, and
+// tertiary opcode.  Only the opcode sections which a particular instruction
+// needs for encoding need to be specified.
+encode %{
+  // Build emit functions for each basic byte or larger field in the intel
+  // encoding scheme (opcode, rm, sib, immediate), and call them from C++
+  // code in the enc_class source block.  Emit functions will live in the
+  // main source block for now.  In future, we can generalize this by
+  // adding a syntax that specifies the sizes of fields in an order,
+  // so that the adlc can build the emit functions automagically
+  enc_class OpcP %{             // Emit opcode
+    emit_opcode(cbuf,$primary);
+  %}
+
+  enc_class OpcS %{             // Emit opcode
+    emit_opcode(cbuf,$secondary);
+  %}
+
+  enc_class Opcode(immI d8 ) %{ // Emit opcode
+    emit_opcode(cbuf,$d8$$constant);
+  %}
+
+  enc_class SizePrefix %{
+    emit_opcode(cbuf,0x66);
+  %}
+
+  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
+    emit_opcode(cbuf,$opcode$$constant);
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class mov_r32_imm0( eRegI dst ) %{
+    emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
+    emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
+  %}
+
+  enc_class cdq_enc %{
+    // Full implementation of Java idiv and irem; checks for
+    // special case as described in JVM spec., p.243 & p.271.
+    //
+    //         normal case                           special case
+    //
+    // input : rax,: dividend                         min_int
+    //         reg: divisor                          -1
+    //
+    // output: rax,: quotient  (= rax, idiv reg)       min_int
+    //         rdx: remainder (= rax, irem reg)       0
+    //
+    //  Code sequnce:
+    //
+    //  81 F8 00 00 00 80    cmp         rax,80000000h
+    //  0F 85 0B 00 00 00    jne         normal_case
+    //  33 D2                xor         rdx,edx
+    //  83 F9 FF             cmp         rcx,0FFh
+    //  0F 84 03 00 00 00    je          done
+    //                  normal_case:
+    //  99                   cdq
+    //  F7 F9                idiv        rax,ecx
+    //                  done:
+    //
+    emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
+    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
+    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
+    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
+    emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
+    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
+    emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
+    emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
+    emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
+    emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
+    emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
+    // normal_case:
+    emit_opcode(cbuf,0x99);                                         // cdq
+    // idiv (note: must be emitted by the user of this rule)
+    // normal:
+  %}
+
+  // Dense encoding for older common ops
+  enc_class Opc_plus(immI opcode, eRegI reg) %{
+    emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
+  %}
+
+
+  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
+  enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
+      emit_opcode(cbuf, $primary | 0x02);
+    }
+    else {                          // If 32-bit immediate
+      emit_opcode(cbuf, $primary);
+    }
+  %}
+
+  enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
+    // Emit primary opcode and set sign-extend bit
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
+      emit_opcode(cbuf, $primary | 0x02);    }
+    else {                          // If 32-bit immediate
+      emit_opcode(cbuf, $primary);
+    }
+    // Emit r/m byte with secondary opcode, after primary opcode.
+    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
+  %}
+
+  enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
+      $$$emit8$imm$$constant;
+    }
+    else {                          // If 32-bit immediate
+      // Output immediate
+      $$$emit32$imm$$constant;
+    }
+  %}
+
+  enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
+    // Emit primary opcode and set sign-extend bit
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    int con = (int)$imm$$constant; // Throw away top bits
+    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
+    // Emit r/m byte with secondary opcode, after primary opcode.
+    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
+    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
+    else                               emit_d32(cbuf,con);
+  %}
+
+  enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
+    // Emit primary opcode and set sign-extend bit
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    int con = (int)($imm$$constant >> 32); // Throw away bottom bits
+    emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
+    // Emit r/m byte with tertiary opcode, after primary opcode.
+    emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
+    if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
+    else                               emit_d32(cbuf,con);
+  %}
+
+  enc_class Lbl (label labl) %{ // JMP, CALL
+    Label *l = $labl$$label;
+    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
+  %}
+
+  enc_class LblShort (label labl) %{ // JMP, CALL
+    Label *l = $labl$$label;
+    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
+    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
+    emit_d8(cbuf, disp);
+  %}
+
+  enc_class OpcSReg (eRegI dst) %{    // BSWAP
+    emit_cc(cbuf, $secondary, $dst$$reg );
+  %}
+
+  enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
+    int destlo = $dst$$reg;
+    int desthi = HIGH_FROM_LOW(destlo);
+    // bswap lo
+    emit_opcode(cbuf, 0x0F);
+    emit_cc(cbuf, 0xC8, destlo);
+    // bswap hi
+    emit_opcode(cbuf, 0x0F);
+    emit_cc(cbuf, 0xC8, desthi);
+    // xchg lo and hi
+    emit_opcode(cbuf, 0x87);
+    emit_rm(cbuf, 0x3, destlo, desthi);
+  %}
+
+  enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
+    emit_rm(cbuf, 0x3, $secondary, $div$$reg );
+  %}
+
+  enc_class Jcc (cmpOp cop, label labl) %{    // JCC
+    Label *l = $labl$$label;
+    $$$emit8$primary;
+    emit_cc(cbuf, $secondary, $cop$$cmpcode);
+    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
+  %}
+
+  enc_class JccShort (cmpOp cop, label labl) %{    // JCC
+    Label *l = $labl$$label;
+    emit_cc(cbuf, $primary, $cop$$cmpcode);
+    int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
+    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
+    emit_d8(cbuf, disp);
+  %}
+
+  enc_class enc_cmov(cmpOp cop ) %{ // CMOV
+    $$$emit8$primary;
+    emit_cc(cbuf, $secondary, $cop$$cmpcode);
+  %}
+
+  enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
+    int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
+    emit_d8(cbuf, op >> 8 );
+    emit_d8(cbuf, op & 255);
+  %}
+
+  // emulate a CMOV with a conditional branch around a MOV
+  enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
+    // Invert sense of branch from sense of CMOV
+    emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
+    emit_d8( cbuf, $brOffs$$constant );
+  %}
+
+  enc_class enc_PartialSubtypeCheck( ) %{
+    Register Redi = as_Register(EDI_enc); // result register
+    Register Reax = as_Register(EAX_enc); // super class
+    Register Recx = as_Register(ECX_enc); // killed
+    Register Resi = as_Register(ESI_enc); // sub class
+    Label hit, miss;
+
+    MacroAssembler _masm(&cbuf);
+    // Compare super with sub directly, since super is not in its own SSA.
+    // The compiler used to emit this test, but we fold it in here,
+    // to allow platform-specific tweaking on sparc.
+    __ cmpl(Reax, Resi);
+    __ jcc(Assembler::equal, hit);
+#ifndef PRODUCT
+    __ increment(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
+#endif //PRODUCT
+    __ movl(Redi,Address(Resi,sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()));
+    __ movl(Recx,Address(Redi,arrayOopDesc::length_offset_in_bytes()));
+    __ addl(Redi,arrayOopDesc::base_offset_in_bytes(T_OBJECT));
+    __ repne_scan();
+    __ jcc(Assembler::notEqual, miss);
+    __ movl(Address(Resi,sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()),Reax);
+    __ bind(hit);
+    if( $primary )
+      __ xorl(Redi,Redi);
+    __ bind(miss);
+  %}
+
+  enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
+    MacroAssembler masm(&cbuf);
+    int start = masm.offset();
+    if (UseSSE >= 2) {
+      if (VerifyFPU) {
+        masm.verify_FPU(0, "must be empty in SSE2+ mode");
+      }
+    } else {
+      // External c_calling_convention expects the FPU stack to be 'clean'.
+      // Compiled code leaves it dirty.  Do cleanup now.
+      masm.empty_FPU_stack();
+    }
+    if (sizeof_FFree_Float_Stack_All == -1) {
+      sizeof_FFree_Float_Stack_All = masm.offset() - start;
+    } else {
+      assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
+    }
+  %}
+
+  enc_class Verify_FPU_For_Leaf %{
+    if( VerifyFPU ) {
+      MacroAssembler masm(&cbuf);
+      masm.verify_FPU( -3, "Returning from Runtime Leaf call");
+    }
+  %}
+
+  enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
+    // This is the instruction starting address for relocation info.
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    // CALL directly to the runtime
+    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
+                runtime_call_Relocation::spec(), RELOC_IMM32 );
+
+    if (UseSSE >= 2) {
+      MacroAssembler _masm(&cbuf);
+      BasicType rt = tf()->return_type();
+
+      if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
+        // A C runtime call where the return value is unused.  In SSE2+
+        // mode the result needs to be removed from the FPU stack.  It's
+        // likely that this function call could be removed by the
+        // optimizer if the C function is a pure function.
+        __ ffree(0);
+      } else if (rt == T_FLOAT) {
+        __ leal(rsp, Address(rsp, -4));
+        __ fstp_s(Address(rsp, 0));
+        __ movflt(xmm0, Address(rsp, 0));
+        __ leal(rsp, Address(rsp,  4));
+      } else if (rt == T_DOUBLE) {
+        __ leal(rsp, Address(rsp, -8));
+        __ fstp_d(Address(rsp, 0));
+        __ movdbl(xmm0, Address(rsp, 0));
+        __ leal(rsp, Address(rsp,  8));
+      }
+    }
+  %}
+
+
+  enc_class pre_call_FPU %{
+    // If method sets FPU control word restore it here
+    if( Compile::current()->in_24_bit_fp_mode() ) {
+      MacroAssembler masm(&cbuf);
+      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
+    }
+  %}
+
+  enc_class post_call_FPU %{
+    // If method sets FPU control word do it here also
+    if( Compile::current()->in_24_bit_fp_mode() ) {
+      MacroAssembler masm(&cbuf);
+      masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
+    }
+  %}
+
+  enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
+    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
+    // who we intended to call.
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    if ( !_method ) {
+      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
+                     runtime_call_Relocation::spec(), RELOC_IMM32 );
+    } else if(_optimized_virtual) {
+      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
+                     opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
+    } else {
+      emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
+                     static_call_Relocation::spec(), RELOC_IMM32 );
+    }
+    if( _method ) {  // Emit stub for static call
+      emit_java_to_interp(cbuf);
+    }
+  %}
+
+  enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
+    // !!!!!
+    // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
+    // emit_call_dynamic_prologue( cbuf );
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
+    emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
+    address  virtual_call_oop_addr = cbuf.inst_mark();
+    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
+    // who we intended to call.
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
+                virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
+  %}
+
+  enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
+    int disp = in_bytes(methodOopDesc::from_compiled_offset());
+    assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
+
+    // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
+    emit_d8(cbuf, disp);             // Displacement
+
+  %}
+
+  enc_class Xor_Reg (eRegI dst) %{
+    emit_opcode(cbuf, 0x33);
+    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
+  %}
+
+//   Following encoding is no longer used, but may be restored if calling
+//   convention changes significantly.
+//   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
+//
+//   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
+//     // int ic_reg     = Matcher::inline_cache_reg();
+//     // int ic_encode  = Matcher::_regEncode[ic_reg];
+//     // int imo_reg    = Matcher::interpreter_method_oop_reg();
+//     // int imo_encode = Matcher::_regEncode[imo_reg];
+//
+//     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
+//     // // so we load it immediately before the call
+//     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
+//     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
+//
+//     // xor rbp,ebp
+//     emit_opcode(cbuf, 0x33);
+//     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
+//
+//     // CALL to interpreter.
+//     cbuf.set_inst_mark();
+//     $$$emit8$primary;
+//     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
+//                 runtime_call_Relocation::spec(), RELOC_IMM32 );
+//   %}
+
+  enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
+    $$$emit8$primary;
+    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
+    $$$emit8$shift$$constant;
+  %}
+
+  enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
+    // Load immediate does not have a zero or sign extended version
+    // for 8-bit immediates
+    emit_opcode(cbuf, 0xB8 + $dst$$reg);
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
+    // Load immediate does not have a zero or sign extended version
+    // for 8-bit immediates
+    emit_opcode(cbuf, $primary + $dst$$reg);
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
+    // Load immediate does not have a zero or sign extended version
+    // for 8-bit immediates
+    int dst_enc = $dst$$reg;
+    int src_con = $src$$constant & 0x0FFFFFFFFL;
+    if (src_con == 0) {
+      // xor dst, dst
+      emit_opcode(cbuf, 0x33);
+      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
+    } else {
+      emit_opcode(cbuf, $primary + dst_enc);
+      emit_d32(cbuf, src_con);
+    }
+  %}
+
+  enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
+    // Load immediate does not have a zero or sign extended version
+    // for 8-bit immediates
+    int dst_enc = $dst$$reg + 2;
+    int src_con = ((julong)($src$$constant)) >> 32;
+    if (src_con == 0) {
+      // xor dst, dst
+      emit_opcode(cbuf, 0x33);
+      emit_rm(cbuf, 0x3, dst_enc, dst_enc);
+    } else {
+      emit_opcode(cbuf, $primary + dst_enc);
+      emit_d32(cbuf, src_con);
+    }
+  %}
+
+
+  enc_class LdImmD (immD src) %{    // Load Immediate
+    if( is_positive_zero_double($src$$constant)) {
+      // FLDZ
+      emit_opcode(cbuf,0xD9);
+      emit_opcode(cbuf,0xEE);
+    } else if( is_positive_one_double($src$$constant)) {
+      // FLD1
+      emit_opcode(cbuf,0xD9);
+      emit_opcode(cbuf,0xE8);
+    } else {
+      emit_opcode(cbuf,0xDD);
+      emit_rm(cbuf, 0x0, 0x0, 0x5);
+      emit_double_constant(cbuf, $src$$constant);
+    }
+  %}
+
+
+  enc_class LdImmF (immF src) %{    // Load Immediate
+    if( is_positive_zero_float($src$$constant)) {
+      emit_opcode(cbuf,0xD9);
+      emit_opcode(cbuf,0xEE);
+    } else if( is_positive_one_float($src$$constant)) {
+      emit_opcode(cbuf,0xD9);
+      emit_opcode(cbuf,0xE8);
+    } else {
+      $$$emit8$primary;
+      // Load immediate does not have a zero or sign extended version
+      // for 8-bit immediates
+      // First load to TOS, then move to dst
+      emit_rm(cbuf, 0x0, 0x0, 0x5);
+      emit_float_constant(cbuf, $src$$constant);
+    }
+  %}
+
+  enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
+    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
+    emit_float_constant(cbuf, $con$$constant);
+  %}
+
+  enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
+    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
+    emit_double_constant(cbuf, $con$$constant);
+  %}
+
+  enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
+    // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
+    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
+    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
+    emit_double_constant(cbuf, $con$$constant);
+  %}
+
+  enc_class Opc_MemImm_F(immF src) %{
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    emit_rm(cbuf, 0x0, $secondary, 0x5);
+    emit_float_constant(cbuf, $src$$constant);
+  %}
+
+
+  enc_class MovI2X_reg(regX dst, eRegI src) %{
+    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
+    emit_opcode(cbuf, 0x0F );
+    emit_opcode(cbuf, 0x6E );
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class MovX2I_reg(eRegI dst, regX src) %{
+    emit_opcode(cbuf, 0x66 );     // MOVD dst,src
+    emit_opcode(cbuf, 0x0F );
+    emit_opcode(cbuf, 0x7E );
+    emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
+  %}
+
+  enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
+    { // MOVD $dst,$src.lo
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x6E);
+      emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+    }
+    { // MOVD $tmp,$src.hi
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x6E);
+      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
+    }
+    { // PUNPCKLDQ $dst,$tmp
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x62);
+      emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
+     }
+  %}
+
+  enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
+    { // MOVD $dst.lo,$src
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x7E);
+      emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
+    }
+    { // PSHUFLW $tmp,$src,0x4E  (01001110b)
+      emit_opcode(cbuf,0xF2);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x70);
+      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
+      emit_d8(cbuf, 0x4E);
+    }
+    { // MOVD $dst.hi,$tmp
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x7E);
+      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
+    }
+  %}
+
+
+  // Encode a reg-reg copy.  If it is useless, then empty encoding.
+  enc_class enc_Copy( eRegI dst, eRegI src ) %{
+    encode_Copy( cbuf, $dst$$reg, $src$$reg );
+  %}
+
+  enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
+    encode_Copy( cbuf, $dst$$reg, $src$$reg );
+  %}
+
+  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
+  enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
+    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
+  %}
+
+  enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
+    $$$emit8$primary;
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
+    $$$emit8$secondary;
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
+  %}
+
+  enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
+  %}
+
+  enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
+    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
+  %}
+
+  enc_class Con32 (immI src) %{    // Con32(storeImmI)
+    // Output immediate
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class Con32F_as_bits(immF src) %{        // storeF_imm
+    // Output Float immediate bits
+    jfloat jf = $src$$constant;
+    int    jf_as_bits = jint_cast( jf );
+    emit_d32(cbuf, jf_as_bits);
+  %}
+
+  enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
+    // Output Float immediate bits
+    jfloat jf = $src$$constant;
+    int    jf_as_bits = jint_cast( jf );
+    emit_d32(cbuf, jf_as_bits);
+  %}
+
+  enc_class Con16 (immI src) %{    // Con16(storeImmI)
+    // Output immediate
+    $$$emit16$src$$constant;
+  %}
+
+  enc_class Con_d32(immI src) %{
+    emit_d32(cbuf,$src$$constant);
+  %}
+
+  enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
+    // Output immediate memory reference
+    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
+    emit_d32(cbuf, 0x00);
+  %}
+
+  enc_class lock_prefix( ) %{
+    if( os::is_MP() )
+      emit_opcode(cbuf,0xF0);         // [Lock]
+  %}
+
+  // Cmp-xchg long value.
+  // Note: we need to swap rbx, and rcx before and after the
+  //       cmpxchg8 instruction because the instruction uses
+  //       rcx as the high order word of the new value to store but
+  //       our register encoding uses rbx,.
+  enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
+
+    // XCHG  rbx,ecx
+    emit_opcode(cbuf,0x87);
+    emit_opcode(cbuf,0xD9);
+    // [Lock]
+    if( os::is_MP() )
+      emit_opcode(cbuf,0xF0);
+    // CMPXCHG8 [Eptr]
+    emit_opcode(cbuf,0x0F);
+    emit_opcode(cbuf,0xC7);
+    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
+    // XCHG  rbx,ecx
+    emit_opcode(cbuf,0x87);
+    emit_opcode(cbuf,0xD9);
+  %}
+
+  enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
+    // [Lock]
+    if( os::is_MP() )
+      emit_opcode(cbuf,0xF0);
+
+    // CMPXCHG [Eptr]
+    emit_opcode(cbuf,0x0F);
+    emit_opcode(cbuf,0xB1);
+    emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
+  %}
+
+  enc_class enc_flags_ne_to_boolean( iRegI res ) %{
+    int res_encoding = $res$$reg;
+
+    // MOV  res,0
+    emit_opcode( cbuf, 0xB8 + res_encoding);
+    emit_d32( cbuf, 0 );
+    // JNE,s  fail
+    emit_opcode(cbuf,0x75);
+    emit_d8(cbuf, 5 );
+    // MOV  res,1
+    emit_opcode( cbuf, 0xB8 + res_encoding);
+    emit_d32( cbuf, 1 );
+    // fail:
+  %}
+
+  enc_class set_instruction_start( ) %{
+    cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
+  %}
+
+  enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
+    int reg_encoding = $ereg$$reg;
+    int base  = $mem$$base;
+    int index = $mem$$index;
+    int scale = $mem$$scale;
+    int displace = $mem$$disp;
+    bool disp_is_oop = $mem->disp_is_oop();
+    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
+  %}
+
+  enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
+    int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
+    int base  = $mem$$base;
+    int index = $mem$$index;
+    int scale = $mem$$scale;
+    int displace = $mem$$disp + 4;      // Offset is 4 further in memory
+    assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
+    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
+  %}
+
+  enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
+    int r1, r2;
+    if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
+    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
+    emit_opcode(cbuf,0x0F);
+    emit_opcode(cbuf,$tertiary);
+    emit_rm(cbuf, 0x3, r1, r2);
+    emit_d8(cbuf,$cnt$$constant);
+    emit_d8(cbuf,$primary);
+    emit_rm(cbuf, 0x3, $secondary, r1);
+    emit_d8(cbuf,$cnt$$constant);
+  %}
+
+  enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
+    emit_opcode( cbuf, 0x8B ); // Move
+    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
+    emit_d8(cbuf,$primary);
+    emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
+    emit_d8(cbuf,$cnt$$constant-32);
+    emit_d8(cbuf,$primary);
+    emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
+    emit_d8(cbuf,31);
+  %}
+
+  enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
+    int r1, r2;
+    if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
+    else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
+
+    emit_opcode( cbuf, 0x8B ); // Move r1,r2
+    emit_rm(cbuf, 0x3, r1, r2);
+    if( $cnt$$constant > 32 ) { // Shift, if not by zero
+      emit_opcode(cbuf,$primary);
+      emit_rm(cbuf, 0x3, $secondary, r1);
+      emit_d8(cbuf,$cnt$$constant-32);
+    }
+    emit_opcode(cbuf,0x33);  // XOR r2,r2
+    emit_rm(cbuf, 0x3, r2, r2);
+  %}
+
+  // Clone of RegMem but accepts an extra parameter to access each
+  // half of a double in memory; it never needs relocation info.
+  enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
+    emit_opcode(cbuf,$opcode$$constant);
+    int reg_encoding = $rm_reg$$reg;
+    int base     = $mem$$base;
+    int index    = $mem$$index;
+    int scale    = $mem$$scale;
+    int displace = $mem$$disp + $disp_for_half$$constant;
+    bool disp_is_oop = false;
+    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
+  %}
+
+  // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
+  //
+  // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
+  // and it never needs relocation information.
+  // Frequently used to move data between FPU's Stack Top and memory.
+  enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
+    int rm_byte_opcode = $rm_opcode$$constant;
+    int base     = $mem$$base;
+    int index    = $mem$$index;
+    int scale    = $mem$$scale;
+    int displace = $mem$$disp;
+    assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
+    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
+  %}
+
+  enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
+    int rm_byte_opcode = $rm_opcode$$constant;
+    int base     = $mem$$base;
+    int index    = $mem$$index;
+    int scale    = $mem$$scale;
+    int displace = $mem$$disp;
+    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
+  %}
+
+  enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
+    int reg_encoding = $dst$$reg;
+    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
+    int index        = 0x04;            // 0x04 indicates no index
+    int scale        = 0x00;            // 0x00 indicates no scale
+    int displace     = $src1$$constant; // 0x00 indicates no displacement
+    bool disp_is_oop = false;
+    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
+  %}
+
+  enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
+    // Compare dst,src
+    emit_opcode(cbuf,0x3B);
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+    // jmp dst < src around move
+    emit_opcode(cbuf,0x7C);
+    emit_d8(cbuf,2);
+    // move dst,src
+    emit_opcode(cbuf,0x8B);
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
+    // Compare dst,src
+    emit_opcode(cbuf,0x3B);
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+    // jmp dst > src around move
+    emit_opcode(cbuf,0x7F);
+    emit_d8(cbuf,2);
+    // move dst,src
+    emit_opcode(cbuf,0x8B);
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+  %}
+
+  enc_class enc_FP_store(memory mem, regD src) %{
+    // If src is FPR1, we can just FST to store it.
+    // Else we need to FLD it to FPR1, then FSTP to store/pop it.
+    int reg_encoding = 0x2; // Just store
+    int base  = $mem$$base;
+    int index = $mem$$index;
+    int scale = $mem$$scale;
+    int displace = $mem$$disp;
+    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+    if( $src$$reg != FPR1L_enc ) {
+      reg_encoding = 0x3;  // Store & pop
+      emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
+      emit_d8( cbuf, 0xC0-1+$src$$reg );
+    }
+    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
+    emit_opcode(cbuf,$primary);
+    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
+  %}
+
+  enc_class neg_reg(eRegI dst) %{
+    // NEG $dst
+    emit_opcode(cbuf,0xF7);
+    emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
+  %}
+
+  enc_class setLT_reg(eCXRegI dst) %{
+    // SETLT $dst
+    emit_opcode(cbuf,0x0F);
+    emit_opcode(cbuf,0x9C);
+    emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
+  %}
+
+  enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
+    int tmpReg = $tmp$$reg;
+
+    // SUB $p,$q
+    emit_opcode(cbuf,0x2B);
+    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
+    // SBB $tmp,$tmp
+    emit_opcode(cbuf,0x1B);
+    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
+    // AND $tmp,$y
+    emit_opcode(cbuf,0x23);
+    emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
+    // ADD $p,$tmp
+    emit_opcode(cbuf,0x03);
+    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
+  %}
+
+  enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
+    int tmpReg = $tmp$$reg;
+
+    // SUB $p,$q
+    emit_opcode(cbuf,0x2B);
+    emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
+    // SBB $tmp,$tmp
+    emit_opcode(cbuf,0x1B);
+    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
+    // AND $tmp,$y
+    cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
+    emit_opcode(cbuf,0x23);
+    int reg_encoding = tmpReg;
+    int base  = $mem$$base;
+    int index = $mem$$index;
+    int scale = $mem$$scale;
+    int displace = $mem$$disp;
+    bool disp_is_oop = $mem->disp_is_oop();
+    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
+    // ADD $p,$tmp
+    emit_opcode(cbuf,0x03);
+    emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
+  %}
+
+  enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
+    // TEST shift,32
+    emit_opcode(cbuf,0xF7);
+    emit_rm(cbuf, 0x3, 0, ECX_enc);
+    emit_d32(cbuf,0x20);
+    // JEQ,s small
+    emit_opcode(cbuf, 0x74);
+    emit_d8(cbuf, 0x04);
+    // MOV    $dst.hi,$dst.lo
+    emit_opcode( cbuf, 0x8B );
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
+    // CLR    $dst.lo
+    emit_opcode(cbuf, 0x33);
+    emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
+// small:
+    // SHLD   $dst.hi,$dst.lo,$shift
+    emit_opcode(cbuf,0x0F);
+    emit_opcode(cbuf,0xA5);
+    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
+    // SHL    $dst.lo,$shift"
+    emit_opcode(cbuf,0xD3);
+    emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
+  %}
+
+  enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
+    // TEST shift,32
+    emit_opcode(cbuf,0xF7);
+    emit_rm(cbuf, 0x3, 0, ECX_enc);
+    emit_d32(cbuf,0x20);
+    // JEQ,s small
+    emit_opcode(cbuf, 0x74);
+    emit_d8(cbuf, 0x04);
+    // MOV    $dst.lo,$dst.hi
+    emit_opcode( cbuf, 0x8B );
+    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
+    // CLR    $dst.hi
+    emit_opcode(cbuf, 0x33);
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
+// small:
+    // SHRD   $dst.lo,$dst.hi,$shift
+    emit_opcode(cbuf,0x0F);
+    emit_opcode(cbuf,0xAD);
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
+    // SHR    $dst.hi,$shift"
+    emit_opcode(cbuf,0xD3);
+    emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
+  %}
+
+  enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
+    // TEST shift,32
+    emit_opcode(cbuf,0xF7);
+    emit_rm(cbuf, 0x3, 0, ECX_enc);
+    emit_d32(cbuf,0x20);
+    // JEQ,s small
+    emit_opcode(cbuf, 0x74);
+    emit_d8(cbuf, 0x05);
+    // MOV    $dst.lo,$dst.hi
+    emit_opcode( cbuf, 0x8B );
+    emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
+    // SAR    $dst.hi,31
+    emit_opcode(cbuf, 0xC1);
+    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
+    emit_d8(cbuf, 0x1F );
+// small:
+    // SHRD   $dst.lo,$dst.hi,$shift
+    emit_opcode(cbuf,0x0F);
+    emit_opcode(cbuf,0xAD);
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
+    // SAR    $dst.hi,$shift"
+    emit_opcode(cbuf,0xD3);
+    emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
+  %}
+
+
+  // ----------------- Encodings for floating point unit -----------------
+  // May leave result in FPU-TOS or FPU reg depending on opcodes
+  enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
+    $$$emit8$primary;
+    emit_rm(cbuf, 0x3, $secondary, $src$$reg );
+  %}
+
+  // Pop argument in FPR0 with FSTP ST(0)
+  enc_class PopFPU() %{
+    emit_opcode( cbuf, 0xDD );
+    emit_d8( cbuf, 0xD8 );
+  %}
+
+  // !!!!! equivalent to Pop_Reg_F
+  enc_class Pop_Reg_D( regD dst ) %{
+    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
+    emit_d8( cbuf, 0xD8+$dst$$reg );
+  %}
+
+  enc_class Push_Reg_D( regD dst ) %{
+    emit_opcode( cbuf, 0xD9 );
+    emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
+  %}
+
+  enc_class strictfp_bias1( regD dst ) %{
+    emit_opcode( cbuf, 0xDB );           // FLD m80real
+    emit_opcode( cbuf, 0x2D );
+    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
+    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
+    emit_opcode( cbuf, 0xC8+$dst$$reg );
+  %}
+
+  enc_class strictfp_bias2( regD dst ) %{
+    emit_opcode( cbuf, 0xDB );           // FLD m80real
+    emit_opcode( cbuf, 0x2D );
+    emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
+    emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
+    emit_opcode( cbuf, 0xC8+$dst$$reg );
+  %}
+
+  // Special case for moving an integer register to a stack slot.
+  enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
+    store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
+  %}
+
+  // Special case for moving a register to a stack slot.
+  enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
+    // Opcode already emitted
+    emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
+    emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
+    emit_d32(cbuf, $dst$$disp);   // Displacement
+  %}
+
+  // Push the integer in stackSlot 'src' onto FP-stack
+  enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
+    store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
+  %}
+
+  // Push the float in stackSlot 'src' onto FP-stack
+  enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
+    store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
+  %}
+
+  // Push the double in stackSlot 'src' onto FP-stack
+  enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
+    store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
+  %}
+
+  // Push FPU's TOS float to a stack-slot, and pop FPU-stack
+  enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
+    store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
+  %}
+
+  // Same as Pop_Mem_F except for opcode
+  // Push FPU's TOS double to a stack-slot, and pop FPU-stack
+  enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
+    store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
+  %}
+
+  enc_class Pop_Reg_F( regF dst ) %{
+    emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
+    emit_d8( cbuf, 0xD8+$dst$$reg );
+  %}
+
+  enc_class Push_Reg_F( regF dst ) %{
+    emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
+    emit_d8( cbuf, 0xC0-1+$dst$$reg );
+  %}
+
+  // Push FPU's float to a stack-slot, and pop FPU-stack
+  enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
+    int pop = 0x02;
+    if ($src$$reg != FPR1L_enc) {
+      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
+      emit_d8( cbuf, 0xC0-1+$src$$reg );
+      pop = 0x03;
+    }
+    store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
+  %}
+
+  // Push FPU's double to a stack-slot, and pop FPU-stack
+  enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
+    int pop = 0x02;
+    if ($src$$reg != FPR1L_enc) {
+      emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
+      emit_d8( cbuf, 0xC0-1+$src$$reg );
+      pop = 0x03;
+    }
+    store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
+  %}
+
+  // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
+  enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
+    int pop = 0xD0 - 1; // -1 since we skip FLD
+    if ($src$$reg != FPR1L_enc) {
+      emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
+      emit_d8( cbuf, 0xC0-1+$src$$reg );
+      pop = 0xD8;
+    }
+    emit_opcode( cbuf, 0xDD );
+    emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
+  %}
+
+
+  enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
+    MacroAssembler masm(&cbuf);
+    masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
+    masm.fmul(   $src2$$reg+0);   // value at TOS
+    masm.fadd(   $src$$reg+0);    // value at TOS
+    masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
+  %}
+
+
+  enc_class Push_Reg_Mod_D( regD dst, regD src) %{
+    // load dst in FPR0
+    emit_opcode( cbuf, 0xD9 );
+    emit_d8( cbuf, 0xC0-1+$dst$$reg );
+    if ($src$$reg != FPR1L_enc) {
+      // fincstp
+      emit_opcode (cbuf, 0xD9);
+      emit_opcode (cbuf, 0xF7);
+      // swap src with FPR1:
+      // FXCH FPR1 with src
+      emit_opcode(cbuf, 0xD9);
+      emit_d8(cbuf, 0xC8-1+$src$$reg );
+      // fdecstp
+      emit_opcode (cbuf, 0xD9);
+      emit_opcode (cbuf, 0xF6);
+    }
+  %}
+
+  enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
+    // Allocate a word
+    emit_opcode(cbuf,0x83);            // SUB ESP,8
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x08);
+
+    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+  %}
+
+  enc_class Push_ModX_encoding( regX src0, regX src1) %{
+    // Allocate a word
+    emit_opcode(cbuf,0x83);            // SUB ESP,4
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x04);
+
+    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xD9 );      // FLD [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+  %}
+
+  enc_class Push_ResultXD(regXD dst) %{
+    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
+
+    // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
+    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
+    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0x83);    // ADD ESP,8
+    emit_opcode(cbuf,0xC4);
+    emit_d8(cbuf,0x08);
+  %}
+
+  enc_class Push_ResultX(regX dst, immI d8) %{
+    store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
+
+    emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x10 );
+    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
+    emit_opcode(cbuf,0xC4);
+    emit_d8(cbuf,$d8$$constant);
+  %}
+
+  enc_class Push_SrcXD(regXD src) %{
+    // Allocate a word
+    emit_opcode(cbuf,0x83);            // SUB ESP,8
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x08);
+
+    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+  %}
+
+  enc_class push_stack_temp_qword() %{
+    emit_opcode(cbuf,0x83);     // SUB ESP,8
+    emit_opcode(cbuf,0xEC);
+    emit_d8    (cbuf,0x08);
+  %}
+
+  enc_class pop_stack_temp_qword() %{
+    emit_opcode(cbuf,0x83);     // ADD ESP,8
+    emit_opcode(cbuf,0xC4);
+    emit_d8    (cbuf,0x08);
+  %}
+
+  enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
+    emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+  %}
+
+  // Compute X^Y using Intel's fast hardware instructions, if possible.
+  // Otherwise return a NaN.
+  enc_class pow_exp_core_encoding %{
+    // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
+    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
+    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
+    emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
+    emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
+    emit_opcode(cbuf,0x1C);
+    emit_d8(cbuf,0x24);
+    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
+    emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
+    emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
+    emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
+    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
+    emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
+    emit_rm(cbuf, 0x3, 0x0, ECX_enc);
+    emit_d32(cbuf,0xFFFFF800);
+    emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
+    emit_rm(cbuf, 0x3, 0x0, EAX_enc);
+    emit_d32(cbuf,1023);
+    emit_opcode(cbuf,0x8B);                          // mov rbx,eax
+    emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
+    emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
+    emit_rm(cbuf,0x3,0x4,EAX_enc);
+    emit_d8(cbuf,20);
+    emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
+    emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
+    emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
+    emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
+    emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
+    encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
+    emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+    emit_d32(cbuf,0);
+    emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
+    encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
+  %}
+
+//   enc_class Pop_Reg_Mod_D( regD dst, regD src)
+//   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
+
+  enc_class Push_Result_Mod_D( regD src) %{
+    if ($src$$reg != FPR1L_enc) {
+      // fincstp
+      emit_opcode (cbuf, 0xD9);
+      emit_opcode (cbuf, 0xF7);
+      // FXCH FPR1 with src
+      emit_opcode(cbuf, 0xD9);
+      emit_d8(cbuf, 0xC8-1+$src$$reg );
+      // fdecstp
+      emit_opcode (cbuf, 0xD9);
+      emit_opcode (cbuf, 0xF6);
+    }
+    // // following asm replaced with Pop_Reg_F or Pop_Mem_F
+    // // FSTP   FPR$dst$$reg
+    // emit_opcode( cbuf, 0xDD );
+    // emit_d8( cbuf, 0xD8+$dst$$reg );
+  %}
+
+  enc_class fnstsw_sahf_skip_parity() %{
+    // fnstsw ax
+    emit_opcode( cbuf, 0xDF );
+    emit_opcode( cbuf, 0xE0 );
+    // sahf
+    emit_opcode( cbuf, 0x9E );
+    // jnp  ::skip
+    emit_opcode( cbuf, 0x7B );
+    emit_opcode( cbuf, 0x05 );
+  %}
+
+  enc_class emitModD() %{
+    // fprem must be iterative
+    // :: loop
+    // fprem
+    emit_opcode( cbuf, 0xD9 );
+    emit_opcode( cbuf, 0xF8 );
+    // wait
+    emit_opcode( cbuf, 0x9b );
+    // fnstsw ax
+    emit_opcode( cbuf, 0xDF );
+    emit_opcode( cbuf, 0xE0 );
+    // sahf
+    emit_opcode( cbuf, 0x9E );
+    // jp  ::loop
+    emit_opcode( cbuf, 0x0F );
+    emit_opcode( cbuf, 0x8A );
+    emit_opcode( cbuf, 0xF4 );
+    emit_opcode( cbuf, 0xFF );
+    emit_opcode( cbuf, 0xFF );
+    emit_opcode( cbuf, 0xFF );
+  %}
+
+  enc_class fpu_flags() %{
+    // fnstsw_ax
+    emit_opcode( cbuf, 0xDF);
+    emit_opcode( cbuf, 0xE0);
+    // test ax,0x0400
+    emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
+    emit_opcode( cbuf, 0xA9 );
+    emit_d16   ( cbuf, 0x0400 );
+    // // // This sequence works, but stalls for 12-16 cycles on PPro
+    // // test rax,0x0400
+    // emit_opcode( cbuf, 0xA9 );
+    // emit_d32   ( cbuf, 0x00000400 );
+    //
+    // jz exit (no unordered comparison)
+    emit_opcode( cbuf, 0x74 );
+    emit_d8    ( cbuf, 0x02 );
+    // mov ah,1 - treat as LT case (set carry flag)
+    emit_opcode( cbuf, 0xB4 );
+    emit_d8    ( cbuf, 0x01 );
+    // sahf
+    emit_opcode( cbuf, 0x9E);
+  %}
+
+  enc_class cmpF_P6_fixup() %{
+    // Fixup the integer flags in case comparison involved a NaN
+    //
+    // JNP exit (no unordered comparison, P-flag is set by NaN)
+    emit_opcode( cbuf, 0x7B );
+    emit_d8    ( cbuf, 0x03 );
+    // MOV AH,1 - treat as LT case (set carry flag)
+    emit_opcode( cbuf, 0xB4 );
+    emit_d8    ( cbuf, 0x01 );
+    // SAHF
+    emit_opcode( cbuf, 0x9E);
+    // NOP     // target for branch to avoid branch to branch
+    emit_opcode( cbuf, 0x90);
+  %}
+
+//     fnstsw_ax();
+//     sahf();
+//     movl(dst, nan_result);
+//     jcc(Assembler::parity, exit);
+//     movl(dst, less_result);
+//     jcc(Assembler::below, exit);
+//     movl(dst, equal_result);
+//     jcc(Assembler::equal, exit);
+//     movl(dst, greater_result);
+
+// less_result     =  1;
+// greater_result  = -1;
+// equal_result    = 0;
+// nan_result      = -1;
+
+  enc_class CmpF_Result(eRegI dst) %{
+    // fnstsw_ax();
+    emit_opcode( cbuf, 0xDF);
+    emit_opcode( cbuf, 0xE0);
+    // sahf
+    emit_opcode( cbuf, 0x9E);
+    // movl(dst, nan_result);
+    emit_opcode( cbuf, 0xB8 + $dst$$reg);
+    emit_d32( cbuf, -1 );
+    // jcc(Assembler::parity, exit);
+    emit_opcode( cbuf, 0x7A );
+    emit_d8    ( cbuf, 0x13 );
+    // movl(dst, less_result);
+    emit_opcode( cbuf, 0xB8 + $dst$$reg);
+    emit_d32( cbuf, -1 );
+    // jcc(Assembler::below, exit);
+    emit_opcode( cbuf, 0x72 );
+    emit_d8    ( cbuf, 0x0C );
+    // movl(dst, equal_result);
+    emit_opcode( cbuf, 0xB8 + $dst$$reg);
+    emit_d32( cbuf, 0 );
+    // jcc(Assembler::equal, exit);
+    emit_opcode( cbuf, 0x74 );
+    emit_d8    ( cbuf, 0x05 );
+    // movl(dst, greater_result);
+    emit_opcode( cbuf, 0xB8 + $dst$$reg);
+    emit_d32( cbuf, 1 );
+  %}
+
+
+  // XMM version of CmpF_Result. Because the XMM compare
+  // instructions set the EFLAGS directly. It becomes simpler than
+  // the float version above.
+  enc_class CmpX_Result(eRegI dst) %{
+    MacroAssembler _masm(&cbuf);
+    Label nan, inc, done;
+
+    __ jccb(Assembler::parity, nan);
+    __ jccb(Assembler::equal,  done);
+    __ jccb(Assembler::above,  inc);
+    __ bind(nan);
+    __ decrement(as_Register($dst$$reg));
+    __ jmpb(done);
+    __ bind(inc);
+    __ increment(as_Register($dst$$reg));
+    __ bind(done);
+  %}
+
+  // Compare the longs and set flags
+  // BROKEN!  Do Not use as-is
+  enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
+    // CMP    $src1.hi,$src2.hi
+    emit_opcode( cbuf, 0x3B );
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
+    // JNE,s  done
+    emit_opcode(cbuf,0x75);
+    emit_d8(cbuf, 2 );
+    // CMP    $src1.lo,$src2.lo
+    emit_opcode( cbuf, 0x3B );
+    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
+// done:
+  %}
+
+  enc_class convert_int_long( regL dst, eRegI src ) %{
+    // mov $dst.lo,$src
+    int dst_encoding = $dst$$reg;
+    int src_encoding = $src$$reg;
+    encode_Copy( cbuf, dst_encoding  , src_encoding );
+    // mov $dst.hi,$src
+    encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
+    // sar $dst.hi,31
+    emit_opcode( cbuf, 0xC1 );
+    emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
+    emit_d8(cbuf, 0x1F );
+  %}
+
+  enc_class convert_long_double( eRegL src ) %{
+    // push $src.hi
+    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
+    // push $src.lo
+    emit_opcode(cbuf, 0x50+$src$$reg  );
+    // fild 64-bits at [SP]
+    emit_opcode(cbuf,0xdf);
+    emit_d8(cbuf, 0x6C);
+    emit_d8(cbuf, 0x24);
+    emit_d8(cbuf, 0x00);
+    // pop stack
+    emit_opcode(cbuf, 0x83); // add  SP, #8
+    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
+    emit_d8(cbuf, 0x8);
+  %}
+
+  enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
+    // IMUL   EDX:EAX,$src1
+    emit_opcode( cbuf, 0xF7 );
+    emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
+    // SAR    EDX,$cnt-32
+    int shift_count = ((int)$cnt$$constant) - 32;
+    if (shift_count > 0) {
+      emit_opcode(cbuf, 0xC1);
+      emit_rm(cbuf, 0x3, 7, $dst$$reg );
+      emit_d8(cbuf, shift_count);
+    }
+  %}
+
+  // this version doesn't have add sp, 8
+  enc_class convert_long_double2( eRegL src ) %{
+    // push $src.hi
+    emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
+    // push $src.lo
+    emit_opcode(cbuf, 0x50+$src$$reg  );
+    // fild 64-bits at [SP]
+    emit_opcode(cbuf,0xdf);
+    emit_d8(cbuf, 0x6C);
+    emit_d8(cbuf, 0x24);
+    emit_d8(cbuf, 0x00);
+  %}
+
+  enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
+    // Basic idea: long = (long)int * (long)int
+    // IMUL EDX:EAX, src
+    emit_opcode( cbuf, 0xF7 );
+    emit_rm( cbuf, 0x3, 0x5, $src$$reg);
+  %}
+
+  enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
+    // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
+    // MUL EDX:EAX, src
+    emit_opcode( cbuf, 0xF7 );
+    emit_rm( cbuf, 0x3, 0x4, $src$$reg);
+  %}
+
+  enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
+    // Basic idea: lo(result) = lo(x_lo * y_lo)
+    //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
+    // MOV    $tmp,$src.lo
+    encode_Copy( cbuf, $tmp$$reg, $src$$reg );
+    // IMUL   $tmp,EDX
+    emit_opcode( cbuf, 0x0F );
+    emit_opcode( cbuf, 0xAF );
+    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
+    // MOV    EDX,$src.hi
+    encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
+    // IMUL   EDX,EAX
+    emit_opcode( cbuf, 0x0F );
+    emit_opcode( cbuf, 0xAF );
+    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
+    // ADD    $tmp,EDX
+    emit_opcode( cbuf, 0x03 );
+    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
+    // MUL   EDX:EAX,$src.lo
+    emit_opcode( cbuf, 0xF7 );
+    emit_rm( cbuf, 0x3, 0x4, $src$$reg );
+    // ADD    EDX,ESI
+    emit_opcode( cbuf, 0x03 );
+    emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
+  %}
+
+  enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
+    // Basic idea: lo(result) = lo(src * y_lo)
+    //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
+    // IMUL   $tmp,EDX,$src
+    emit_opcode( cbuf, 0x6B );
+    emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
+    emit_d8( cbuf, (int)$src$$constant );
+    // MOV    EDX,$src
+    emit_opcode(cbuf, 0xB8 + EDX_enc);
+    emit_d32( cbuf, (int)$src$$constant );
+    // MUL   EDX:EAX,EDX
+    emit_opcode( cbuf, 0xF7 );
+    emit_rm( cbuf, 0x3, 0x4, EDX_enc );
+    // ADD    EDX,ESI
+    emit_opcode( cbuf, 0x03 );
+    emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
+  %}
+
+  enc_class long_div( eRegL src1, eRegL src2 ) %{
+    // PUSH src1.hi
+    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
+    // PUSH src1.lo
+    emit_opcode(cbuf,               0x50+$src1$$reg  );
+    // PUSH src2.hi
+    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
+    // PUSH src2.lo
+    emit_opcode(cbuf,               0x50+$src2$$reg  );
+    // CALL directly to the runtime
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf,0xE8);       // Call into runtime
+    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
+    // Restore stack
+    emit_opcode(cbuf, 0x83); // add  SP, #framesize
+    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
+    emit_d8(cbuf, 4*4);
+  %}
+
+  enc_class long_mod( eRegL src1, eRegL src2 ) %{
+    // PUSH src1.hi
+    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
+    // PUSH src1.lo
+    emit_opcode(cbuf,               0x50+$src1$$reg  );
+    // PUSH src2.hi
+    emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
+    // PUSH src2.lo
+    emit_opcode(cbuf,               0x50+$src2$$reg  );
+    // CALL directly to the runtime
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf,0xE8);       // Call into runtime
+    emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
+    // Restore stack
+    emit_opcode(cbuf, 0x83); // add  SP, #framesize
+    emit_rm(cbuf, 0x3, 0x00, ESP_enc);
+    emit_d8(cbuf, 4*4);
+  %}
+
+  enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
+    // MOV   $tmp,$src.lo
+    emit_opcode(cbuf, 0x8B);
+    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
+    // OR    $tmp,$src.hi
+    emit_opcode(cbuf, 0x0B);
+    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
+  %}
+
+  enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
+    // CMP    $src1.lo,$src2.lo
+    emit_opcode( cbuf, 0x3B );
+    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
+    // JNE,s  skip
+    emit_cc(cbuf, 0x70, 0x5);
+    emit_d8(cbuf,2);
+    // CMP    $src1.hi,$src2.hi
+    emit_opcode( cbuf, 0x3B );
+    emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
+  %}
+
+  enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
+    // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
+    emit_opcode( cbuf, 0x3B );
+    emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
+    // MOV    $tmp,$src1.hi
+    emit_opcode( cbuf, 0x8B );
+    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
+    // SBB   $tmp,$src2.hi\t! Compute flags for long compare
+    emit_opcode( cbuf, 0x1B );
+    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
+  %}
+
+  enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
+    // XOR    $tmp,$tmp
+    emit_opcode(cbuf,0x33);  // XOR
+    emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
+    // CMP    $tmp,$src.lo
+    emit_opcode( cbuf, 0x3B );
+    emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
+    // SBB    $tmp,$src.hi
+    emit_opcode( cbuf, 0x1B );
+    emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
+  %}
+
+ // Sniff, sniff... smells like Gnu Superoptimizer
+  enc_class neg_long( eRegL dst ) %{
+    emit_opcode(cbuf,0xF7);    // NEG hi
+    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
+    emit_opcode(cbuf,0xF7);    // NEG lo
+    emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
+    emit_opcode(cbuf,0x83);    // SBB hi,0
+    emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
+    emit_d8    (cbuf,0 );
+  %}
+
+  enc_class movq_ld(regXD dst, memory mem) %{
+    MacroAssembler _masm(&cbuf);
+    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
+    __ movq(as_XMMRegister($dst$$reg), madr);
+  %}
+
+  enc_class movq_st(memory mem, regXD src) %{
+    MacroAssembler _masm(&cbuf);
+    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
+    __ movq(madr, as_XMMRegister($src$$reg));
+  %}
+
+  enc_class pshufd_8x8(regX dst, regX src) %{
+    MacroAssembler _masm(&cbuf);
+
+    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
+    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
+    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
+  %}
+
+  enc_class pshufd_4x16(regX dst, regX src) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
+  %}
+
+  enc_class pshufd(regXD dst, regXD src, int mode) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
+  %}
+
+  enc_class pxor(regXD dst, regXD src) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
+  %}
+
+  enc_class mov_i2x(regXD dst, eRegI src) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ movd(as_XMMRegister($dst$$reg), as_Register($src$$reg));
+  %}
+
+
+  // Because the transitions from emitted code to the runtime
+  // monitorenter/exit helper stubs are so slow it's critical that
+  // we inline both the stack-locking fast-path and the inflated fast path.
+  //
+  // See also: cmpFastLock and cmpFastUnlock.
+  //
+  // What follows is a specialized inline transliteration of the code
+  // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
+  // another option would be to emit TrySlowEnter and TrySlowExit methods
+  // at startup-time.  These methods would accept arguments as
+  // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
+  // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
+  // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
+  // In practice, however, the # of lock sites is bounded and is usually small.
+  // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
+  // if the processor uses simple bimodal branch predictors keyed by EIP
+  // Since the helper routines would be called from multiple synchronization
+  // sites.
+  //
+  // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
+  // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
+  // to those specialized methods.  That'd give us a mostly platform-independent
+  // implementation that the JITs could optimize and inline at their pleasure.
+  // Done correctly, the only time we'd need to cross to native could would be
+  // to park() or unpark() threads.  We'd also need a few more unsafe operators
+  // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
+  // (b) explicit barriers or fence operations.
+  //
+  // TODO:
+  //
+  // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
+  //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
+  //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
+  //    the lock operators would typically be faster than reifying Self.
+  //
+  // *  Ideally I'd define the primitives as:
+  //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
+  //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
+  //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
+  //    Instead, we're stuck with a rather awkward and brittle register assignments below.
+  //    Furthermore the register assignments are overconstrained, possibly resulting in
+  //    sub-optimal code near the synchronization site.
+  //
+  // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
+  //    Alternately, use a better sp-proximity test.
+  //
+  // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
+  //    Either one is sufficient to uniquely identify a thread.
+  //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
+  //
+  // *  Intrinsify notify() and notifyAll() for the common cases where the
+  //    object is locked by the calling thread but the waitlist is empty.
+  //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
+  //
+  // *  use jccb and jmpb instead of jcc and jmp to improve code density.
+  //    But beware of excessive branch density on AMD Opterons.
+  //
+  // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
+  //    or failure of the fast-path.  If the fast-path fails then we pass
+  //    control to the slow-path, typically in C.  In Fast_Lock and
+  //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
+  //    will emit a conditional branch immediately after the node.
+  //    So we have branches to branches and lots of ICC.ZF games.
+  //    Instead, it might be better to have C2 pass a "FailureLabel"
+  //    into Fast_Lock and Fast_Unlock.  In the case of success, control
+  //    will drop through the node.  ICC.ZF is undefined at exit.
+  //    In the case of failure, the node will branch directly to the
+  //    FailureLabel
+
+
+  // obj: object to lock
+  // box: on-stack box address (displaced header location) - KILLED
+  // rax,: tmp -- KILLED
+  // scr: tmp -- KILLED
+  enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
+
+    Register objReg = as_Register($obj$$reg);
+    Register boxReg = as_Register($box$$reg);
+    Register tmpReg = as_Register($tmp$$reg);
+    Register scrReg = as_Register($scr$$reg);
+
+    // Ensure the register assignents are disjoint
+    guarantee (objReg != boxReg, "") ;
+    guarantee (objReg != tmpReg, "") ;
+    guarantee (objReg != scrReg, "") ;
+    guarantee (boxReg != tmpReg, "") ;
+    guarantee (boxReg != scrReg, "") ;
+    guarantee (tmpReg == as_Register(EAX_enc), "") ;
+
+    MacroAssembler masm(&cbuf);
+
+    if (_counters != NULL) {
+      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
+    }
+    if (EmitSync & 1) {
+        // set box->dhw = unused_mark (3)
+        // Force all sync thru slow-path: slow_enter() and slow_exit()
+        masm.movl (Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
+        masm.cmpl (rsp, 0) ;
+    } else
+    if (EmitSync & 2) {
+        Label DONE_LABEL ;
+        if (UseBiasedLocking) {
+           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
+           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
+        }
+
+        masm.movl  (tmpReg, Address(objReg, 0)) ;          // fetch markword
+        masm.orl   (tmpReg, 0x1);
+        masm.movl  (Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
+        if (os::is_MP()) { masm.lock();  }
+        masm.cmpxchg(boxReg, Address(objReg, 0));          // Updates tmpReg
+        masm.jcc(Assembler::equal, DONE_LABEL);
+        // Recursive locking
+        masm.subl(tmpReg, rsp);
+        masm.andl(tmpReg, 0xFFFFF003 );
+        masm.movl(Address(boxReg, 0), tmpReg);
+        masm.bind(DONE_LABEL) ;
+    } else {
+      // Possible cases that we'll encounter in fast_lock
+      // ------------------------------------------------
+      // * Inflated
+      //    -- unlocked
+      //    -- Locked
+      //       = by self
+      //       = by other
+      // * biased
+      //    -- by Self
+      //    -- by other
+      // * neutral
+      // * stack-locked
+      //    -- by self
+      //       = sp-proximity test hits
+      //       = sp-proximity test generates false-negative
+      //    -- by other
+      //
+
+      Label IsInflated, DONE_LABEL, PopDone ;
+
+      // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
+      // order to reduce the number of conditional branches in the most common cases.
+      // Beware -- there's a subtle invariant that fetch of the markword
+      // at [FETCH], below, will never observe a biased encoding (*101b).
+      // If this invariant is not held we risk exclusion (safety) failure.
+      if (UseBiasedLocking) {
+        masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
+      }
+
+      masm.movl  (tmpReg, Address(objReg, 0)) ;        // [FETCH]
+      masm.testl (tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
+      masm.jccb  (Assembler::notZero, IsInflated) ;
+
+      // Attempt stack-locking ...
+      masm.orl   (tmpReg, 0x1);
+      masm.movl  (Address(boxReg, 0), tmpReg);            // Anticipate successful CAS
+      if (os::is_MP()) { masm.lock();  }
+      masm.cmpxchg(boxReg, Address(objReg, 0));           // Updates tmpReg
+      if (_counters != NULL) {
+        masm.cond_inc32(Assembler::equal,
+                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
+      }
+      masm.jccb (Assembler::equal, DONE_LABEL);
+
+      // Recursive locking
+      masm.subl(tmpReg, rsp);
+      masm.andl(tmpReg, 0xFFFFF003 );
+      masm.movl(Address(boxReg, 0), tmpReg);
+      if (_counters != NULL) {
+        masm.cond_inc32(Assembler::equal,
+                        ExternalAddress((address)_counters->fast_path_entry_count_addr()));
+      }
+      masm.jmp  (DONE_LABEL) ;
+
+      masm.bind (IsInflated) ;
+
+      // The object is inflated.
+      //
+      // TODO-FIXME: eliminate the ugly use of manifest constants:
+      //   Use markOopDesc::monitor_value instead of "2".
+      //   use markOop::unused_mark() instead of "3".
+      // The tmpReg value is an objectMonitor reference ORed with
+      // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
+      // objectmonitor pointer by masking off the "2" bit or we can just
+      // use tmpReg as an objectmonitor pointer but bias the objectmonitor
+      // field offsets with "-2" to compensate for and annul the low-order tag bit.
+      //
+      // I use the latter as it avoids AGI stalls.
+      // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
+      // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
+      //
+      #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
+
+      // boxReg refers to the on-stack BasicLock in the current frame.
+      // We'd like to write:
+      //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
+      // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
+      // additional latency as we have another ST in the store buffer that must drain.
+
+      if (EmitSync & 8192) {
+         masm.movl  (Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
+         masm.get_thread (scrReg) ;
+         masm.movl  (boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
+         masm.movl  (tmpReg, 0);                         // consider: xor vs mov
+         if (os::is_MP()) { masm.lock(); }
+         masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+      } else
+      if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
+         masm.movl (scrReg, boxReg) ;
+         masm.movl (boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
+
+         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
+         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
+            // prefetchw [eax + Offset(_owner)-2]
+            masm.emit_raw (0x0F) ;
+            masm.emit_raw (0x0D) ;
+            masm.emit_raw (0x48) ;
+            masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ;
+         }
+
+         if ((EmitSync & 64) == 0) {
+           // Optimistic form: consider XORL tmpReg,tmpReg
+           masm.movl  (tmpReg, 0 ) ;
+         } else {
+           // Can suffer RTS->RTO upgrades on shared or cold $ lines
+           // Test-And-CAS instead of CAS
+           masm.movl  (tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
+           masm.testl (tmpReg, tmpReg) ;                   // Locked ?
+           masm.jccb  (Assembler::notZero, DONE_LABEL) ;
+         }
+
+         // Appears unlocked - try to swing _owner from null to non-null.
+         // Ideally, I'd manifest "Self" with get_thread and then attempt
+         // to CAS the register containing Self into m->Owner.
+         // But we don't have enough registers, so instead we can either try to CAS
+         // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
+         // we later store "Self" into m->Owner.  Transiently storing a stack address
+         // (rsp or the address of the box) into  m->owner is harmless.
+         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
+         if (os::is_MP()) { masm.lock();  }
+         masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+         masm.movl  (Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
+         masm.jccb  (Assembler::notZero, DONE_LABEL) ;
+         masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
+         masm.movl  (Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ;
+         masm.xorl  (boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
+
+         // If the CAS fails we can either retry or pass control to the slow-path.
+         // We use the latter tactic.
+         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
+         // If the CAS was successful ...
+         //   Self has acquired the lock
+         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
+         // Intentional fall-through into DONE_LABEL ...
+      } else {
+         masm.movl (Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
+         masm.movl (boxReg, tmpReg) ;
+
+         // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
+         if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
+            // prefetchw [eax + Offset(_owner)-2]
+            masm.emit_raw (0x0F) ;
+            masm.emit_raw (0x0D) ;
+            masm.emit_raw (0x48) ;
+            masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ;
+         }
+
+         if ((EmitSync & 64) == 0) {
+           // Optimistic form
+           masm.xorl  (tmpReg, tmpReg) ;
+         } else {
+           // Can suffer RTS->RTO upgrades on shared or cold $ lines
+           masm.movl  (tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
+           masm.testl (tmpReg, tmpReg) ;                   // Locked ?
+           masm.jccb  (Assembler::notZero, DONE_LABEL) ;
+         }
+
+         // Appears unlocked - try to swing _owner from null to non-null.
+         // Use either "Self" (in scr) or rsp as thread identity in _owner.
+         // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
+         masm.get_thread (scrReg) ;
+         if (os::is_MP()) { masm.lock(); }
+         masm.cmpxchg (scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+
+         // If the CAS fails we can either retry or pass control to the slow-path.
+         // We use the latter tactic.
+         // Pass the CAS result in the icc.ZFlag into DONE_LABEL
+         // If the CAS was successful ...
+         //   Self has acquired the lock
+         //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
+         // Intentional fall-through into DONE_LABEL ...
+      }
+
+      // DONE_LABEL is a hot target - we'd really like to place it at the
+      // start of cache line by padding with NOPs.
+      // See the AMD and Intel software optimization manuals for the
+      // most efficient "long" NOP encodings.
+      // Unfortunately none of our alignment mechanisms suffice.
+      masm.bind(DONE_LABEL);
+
+      // Avoid branch-to-branch on AMD processors
+      // This appears to be superstition.
+      if (EmitSync & 32) masm.nop() ;
+
+
+      // At DONE_LABEL the icc ZFlag is set as follows ...
+      // Fast_Unlock uses the same protocol.
+      // ZFlag == 1 -> Success
+      // ZFlag == 0 -> Failure - force control through the slow-path
+    }
+  %}
+
+  // obj: object to unlock
+  // box: box address (displaced header location), killed.  Must be EAX.
+  // rbx,: killed tmp; cannot be obj nor box.
+  //
+  // Some commentary on balanced locking:
+  //
+  // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
+  // Methods that don't have provably balanced locking are forced to run in the
+  // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
+  // The interpreter provides two properties:
+  // I1:  At return-time the interpreter automatically and quietly unlocks any
+  //      objects acquired the current activation (frame).  Recall that the
+  //      interpreter maintains an on-stack list of locks currently held by
+  //      a frame.
+  // I2:  If a method attempts to unlock an object that is not held by the
+  //      the frame the interpreter throws IMSX.
+  //
+  // Lets say A(), which has provably balanced locking, acquires O and then calls B().
+  // B() doesn't have provably balanced locking so it runs in the interpreter.
+  // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
+  // is still locked by A().
+  //
+  // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
+  // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
+  // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
+  // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
+
+  enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
+
+    Register objReg = as_Register($obj$$reg);
+    Register boxReg = as_Register($box$$reg);
+    Register tmpReg = as_Register($tmp$$reg);
+
+    guarantee (objReg != boxReg, "") ;
+    guarantee (objReg != tmpReg, "") ;
+    guarantee (boxReg != tmpReg, "") ;
+    guarantee (boxReg == as_Register(EAX_enc), "") ;
+    MacroAssembler masm(&cbuf);
+
+    if (EmitSync & 4) {
+      // Disable - inhibit all inlining.  Force control through the slow-path
+      masm.cmpl (rsp, 0) ;
+    } else
+    if (EmitSync & 8) {
+      Label DONE_LABEL ;
+      if (UseBiasedLocking) {
+         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
+      }
+      // classic stack-locking code ...
+      masm.movl  (tmpReg, Address(boxReg, 0)) ;
+      masm.testl (tmpReg, tmpReg) ;
+      masm.jcc   (Assembler::zero, DONE_LABEL) ;
+      if (os::is_MP()) { masm.lock(); }
+      masm.cmpxchg(tmpReg, Address(objReg, 0));          // Uses EAX which is box
+      masm.bind(DONE_LABEL);
+    } else {
+      Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
+
+      // Critically, the biased locking test must have precedence over
+      // and appear before the (box->dhw == 0) recursive stack-lock test.
+      if (UseBiasedLocking) {
+         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
+      }
+
+      masm.cmpl  (Address(boxReg, 0), 0) ;            // Examine the displaced header
+      masm.movl  (tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
+      masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
+
+      masm.testl (tmpReg, 0x02) ;                     // Inflated?
+      masm.jccb  (Assembler::zero, Stacked) ;
+
+      masm.bind  (Inflated) ;
+      // It's inflated.
+      // Despite our balanced locking property we still check that m->_owner == Self
+      // as java routines or native JNI code called by this thread might
+      // have released the lock.
+      // Refer to the comments in synchronizer.cpp for how we might encode extra
+      // state in _succ so we can avoid fetching EntryList|cxq.
+      //
+      // I'd like to add more cases in fast_lock() and fast_unlock() --
+      // such as recursive enter and exit -- but we have to be wary of
+      // I$ bloat, T$ effects and BP$ effects.
+      //
+      // If there's no contention try a 1-0 exit.  That is, exit without
+      // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
+      // we detect and recover from the race that the 1-0 exit admits.
+      //
+      // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
+      // before it STs null into _owner, releasing the lock.  Updates
+      // to data protected by the critical section must be visible before
+      // we drop the lock (and thus before any other thread could acquire
+      // the lock and observe the fields protected by the lock).
+      // IA32's memory-model is SPO, so STs are ordered with respect to
+      // each other and there's no need for an explicit barrier (fence).
+      // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
+
+      masm.get_thread (boxReg) ;
+      if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
+         // prefetchw [ebx + Offset(_owner)-2]
+         masm.emit_raw (0x0F) ;
+         masm.emit_raw (0x0D) ;
+         masm.emit_raw (0x4B) ;
+         masm.emit_raw (ObjectMonitor::owner_offset_in_bytes()-2) ;
+      }
+
+      // Note that we could employ various encoding schemes to reduce
+      // the number of loads below (currently 4) to just 2 or 3.
+      // Refer to the comments in synchronizer.cpp.
+      // In practice the chain of fetches doesn't seem to impact performance, however.
+      if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
+         // Attempt to reduce branch density - AMD's branch predictor.
+         masm.xorl  (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
+         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
+         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
+         masm.jccb  (Assembler::notZero, DONE_LABEL) ;
+         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
+         masm.jmpb  (DONE_LABEL) ;
+      } else {
+         masm.xorl  (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
+         masm.jccb  (Assembler::notZero, DONE_LABEL) ;
+         masm.movl  (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
+         masm.orl   (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
+         masm.jccb  (Assembler::notZero, CheckSucc) ;
+         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
+         masm.jmpb  (DONE_LABEL) ;
+      }
+
+      // The Following code fragment (EmitSync & 65536) improves the performance of
+      // contended applications and contended synchronization microbenchmarks.
+      // Unfortunately the emission of the code - even though not executed - causes regressions
+      // in scimark and jetstream, evidently because of $ effects.  Replacing the code
+      // with an equal number of never-executed NOPs results in the same regression.
+      // We leave it off by default.
+
+      if ((EmitSync & 65536) != 0) {
+         Label LSuccess, LGoSlowPath ;
+
+         masm.bind  (CheckSucc) ;
+
+         // Optional pre-test ... it's safe to elide this
+         if ((EmitSync & 16) == 0) {
+            masm.cmpl  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ;
+            masm.jccb  (Assembler::zero, LGoSlowPath) ;
+         }
+
+         // We have a classic Dekker-style idiom:
+         //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
+         // There are a number of ways to implement the barrier:
+         // (1) lock:andl &m->_owner, 0
+         //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
+         //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
+         //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
+         // (2) If supported, an explicit MFENCE is appealing.
+         //     In older IA32 processors MFENCE is slower than lock:add or xchg
+         //     particularly if the write-buffer is full as might be the case if
+         //     if stores closely precede the fence or fence-equivalent instruction.
+         //     In more modern implementations MFENCE appears faster, however.
+         // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
+         //     The $lines underlying the top-of-stack should be in M-state.
+         //     The locked add instruction is serializing, of course.
+         // (4) Use xchg, which is serializing
+         //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
+         // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
+         //     The integer condition codes will tell us if succ was 0.
+         //     Since _succ and _owner should reside in the same $line and
+         //     we just stored into _owner, it's likely that the $line
+         //     remains in M-state for the lock:orl.
+         //
+         // We currently use (3), although it's likely that switching to (2)
+         // is correct for the future.
+
+         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ;
+         if (os::is_MP()) {
+            if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
+              masm.emit_raw (0x0F) ;    // MFENCE ...
+              masm.emit_raw (0xAE) ;
+              masm.emit_raw (0xF0) ;
+            } else {
+              masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
+            }
+         }
+         // Ratify _succ remains non-null
+         masm.cmpl  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ;
+         masm.jccb  (Assembler::notZero, LSuccess) ;
+
+         masm.xorl  (boxReg, boxReg) ;                  // box is really EAX
+         if (os::is_MP()) { masm.lock(); }
+         masm.cmpxchg(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
+         masm.jccb  (Assembler::notEqual, LSuccess) ;
+         // Since we're low on registers we installed rsp as a placeholding in _owner.
+         // Now install Self over rsp.  This is safe as we're transitioning from
+         // non-null to non=null
+         masm.get_thread (boxReg) ;
+         masm.movl  (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
+         // Intentional fall-through into LGoSlowPath ...
+
+         masm.bind  (LGoSlowPath) ;
+         masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
+         masm.jmpb  (DONE_LABEL) ;
+
+         masm.bind  (LSuccess) ;
+         masm.xorl  (boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
+         masm.jmpb  (DONE_LABEL) ;
+      }
+
+      masm.bind (Stacked) ;
+      // It's not inflated and it's not recursively stack-locked and it's not biased.
+      // It must be stack-locked.
+      // Try to reset the header to displaced header.
+      // The "box" value on the stack is stable, so we can reload
+      // and be assured we observe the same value as above.
+      masm.movl (tmpReg, Address(boxReg, 0)) ;
+      if (os::is_MP()) {   masm.lock();    }
+      masm.cmpxchg(tmpReg, Address(objReg, 0)); // Uses EAX which is box
+      // Intention fall-thru into DONE_LABEL
+
+
+      // DONE_LABEL is a hot target - we'd really like to place it at the
+      // start of cache line by padding with NOPs.
+      // See the AMD and Intel software optimization manuals for the
+      // most efficient "long" NOP encodings.
+      // Unfortunately none of our alignment mechanisms suffice.
+      if ((EmitSync & 65536) == 0) {
+         masm.bind (CheckSucc) ;
+      }
+      masm.bind(DONE_LABEL);
+
+      // Avoid branch to branch on AMD processors
+      if (EmitSync & 32768) { masm.nop() ; }
+    }
+  %}
+
+  enc_class enc_String_Compare() %{
+    Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL,
+          POP_LABEL, DONE_LABEL, CONT_LABEL,
+          WHILE_HEAD_LABEL;
+    MacroAssembler masm(&cbuf);
+
+    // Get the first character position in both strings
+    //         [8] char array, [12] offset, [16] count
+    int value_offset  = java_lang_String::value_offset_in_bytes();
+    int offset_offset = java_lang_String::offset_offset_in_bytes();
+    int count_offset  = java_lang_String::count_offset_in_bytes();
+    int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
+
+    masm.movl(rax, Address(rsi, value_offset));
+    masm.movl(rcx, Address(rsi, offset_offset));
+    masm.leal(rax, Address(rax, rcx, Address::times_2, base_offset));
+    masm.movl(rbx, Address(rdi, value_offset));
+    masm.movl(rcx, Address(rdi, offset_offset));
+    masm.leal(rbx, Address(rbx, rcx, Address::times_2, base_offset));
+
+    // Compute the minimum of the string lengths(rsi) and the
+    // difference of the string lengths (stack)
+
+
+    if (VM_Version::supports_cmov()) {
+      masm.movl(rdi, Address(rdi, count_offset));
+      masm.movl(rsi, Address(rsi, count_offset));
+      masm.movl(rcx, rdi);
+      masm.subl(rdi, rsi);
+      masm.pushl(rdi);
+      masm.cmovl(Assembler::lessEqual, rsi, rcx);
+    } else {
+      masm.movl(rdi, Address(rdi, count_offset));
+      masm.movl(rcx, Address(rsi, count_offset));
+      masm.movl(rsi, rdi);
+      masm.subl(rdi, rcx);
+      masm.pushl(rdi);
+      masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL);
+      masm.movl(rsi, rcx);
+      // rsi holds min, rcx is unused
+    }
+
+    // Is the minimum length zero?
+    masm.bind(ECX_GOOD_LABEL);
+    masm.testl(rsi, rsi);
+    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+
+    // Load first characters
+    masm.load_unsigned_word(rcx, Address(rbx, 0));
+    masm.load_unsigned_word(rdi, Address(rax, 0));
+
+    // Compare first characters
+    masm.subl(rcx, rdi);
+    masm.jcc(Assembler::notZero,  POP_LABEL);
+    masm.decrement(rsi);
+    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+
+    {
+      // Check after comparing first character to see if strings are equivalent
+      Label LSkip2;
+      // Check if the strings start at same location
+      masm.cmpl(rbx,rax);
+      masm.jcc(Assembler::notEqual, LSkip2);
+
+      // Check if the length difference is zero (from stack)
+      masm.cmpl(Address(rsp, 0), 0x0);
+      masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
+
+      // Strings might not be equivalent
+      masm.bind(LSkip2);
+    }
+
+    // Shift rax, and rbx, to the end of the arrays, negate min
+    masm.leal(rax, Address(rax, rsi, Address::times_2, 2));
+    masm.leal(rbx, Address(rbx, rsi, Address::times_2, 2));
+    masm.negl(rsi);
+
+    // Compare the rest of the characters
+    masm.bind(WHILE_HEAD_LABEL);
+    masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
+    masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
+    masm.subl(rcx, rdi);
+    masm.jcc(Assembler::notZero, POP_LABEL);
+    masm.increment(rsi);
+    masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
+
+    // Strings are equal up to min length.  Return the length difference.
+    masm.bind(LENGTH_DIFF_LABEL);
+    masm.popl(rcx);
+    masm.jmp(DONE_LABEL);
+
+    // Discard the stored length difference
+    masm.bind(POP_LABEL);
+    masm.addl(rsp, 4);
+
+    // That's it
+    masm.bind(DONE_LABEL);
+  %}
+
+  enc_class enc_pop_rdx() %{
+    emit_opcode(cbuf,0x5A);
+  %}
+
+  enc_class enc_rethrow() %{
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0xE9);        // jmp    entry
+    emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
+                   runtime_call_Relocation::spec(), RELOC_IMM32 );
+  %}
+
+
+  // Convert a double to an int.  Java semantics require we do complex
+  // manglelations in the corner cases.  So we set the rounding mode to
+  // 'zero', store the darned double down as an int, and reset the
+  // rounding mode to 'nearest'.  The hardware throws an exception which
+  // patches up the correct value directly to the stack.
+  enc_class D2I_encoding( regD src ) %{
+    // Flip to round-to-zero mode.  We attempted to allow invalid-op
+    // exceptions here, so that a NAN or other corner-case value will
+    // thrown an exception (but normal values get converted at full speed).
+    // However, I2C adapters and other float-stack manglers leave pending
+    // invalid-op exceptions hanging.  We would have to clear them before
+    // enabling them and that is more expensive than just testing for the
+    // invalid value Intel stores down in the corner cases.
+    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
+    emit_opcode(cbuf,0x2D);
+    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
+    // Allocate a word
+    emit_opcode(cbuf,0x83);            // SUB ESP,4
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x04);
+    // Encoding assumes a double has been pushed into FPR0.
+    // Store down the double as an int, popping the FPU stack
+    emit_opcode(cbuf,0xDB);            // FISTP [ESP]
+    emit_opcode(cbuf,0x1C);
+    emit_d8(cbuf,0x24);
+    // Restore the rounding mode; mask the exception
+    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
+    emit_opcode(cbuf,0x2D);
+    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
+        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
+        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
+
+    // Load the converted int; adjust CPU stack
+    emit_opcode(cbuf,0x58);       // POP EAX
+    emit_opcode(cbuf,0x3D);       // CMP EAX,imm
+    emit_d32   (cbuf,0x80000000); //         0x80000000
+    emit_opcode(cbuf,0x75);       // JNE around_slow_call
+    emit_d8    (cbuf,0x07);       // Size of slow_call
+    // Push src onto stack slow-path
+    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
+    emit_d8    (cbuf,0xC0-1+$src$$reg );
+    // CALL directly to the runtime
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf,0xE8);       // Call into runtime
+    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
+    // Carry on here...
+  %}
+
+  enc_class D2L_encoding( regD src ) %{
+    emit_opcode(cbuf,0xD9);            // FLDCW  trunc
+    emit_opcode(cbuf,0x2D);
+    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
+    // Allocate a word
+    emit_opcode(cbuf,0x83);            // SUB ESP,8
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x08);
+    // Encoding assumes a double has been pushed into FPR0.
+    // Store down the double as a long, popping the FPU stack
+    emit_opcode(cbuf,0xDF);            // FISTP [ESP]
+    emit_opcode(cbuf,0x3C);
+    emit_d8(cbuf,0x24);
+    // Restore the rounding mode; mask the exception
+    emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
+    emit_opcode(cbuf,0x2D);
+    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
+        ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
+        : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
+
+    // Load the converted int; adjust CPU stack
+    emit_opcode(cbuf,0x58);       // POP EAX
+    emit_opcode(cbuf,0x5A);       // POP EDX
+    emit_opcode(cbuf,0x81);       // CMP EDX,imm
+    emit_d8    (cbuf,0xFA);       // rdx
+    emit_d32   (cbuf,0x80000000); //         0x80000000
+    emit_opcode(cbuf,0x75);       // JNE around_slow_call
+    emit_d8    (cbuf,0x07+4);     // Size of slow_call
+    emit_opcode(cbuf,0x85);       // TEST EAX,EAX
+    emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
+    emit_opcode(cbuf,0x75);       // JNE around_slow_call
+    emit_d8    (cbuf,0x07);       // Size of slow_call
+    // Push src onto stack slow-path
+    emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
+    emit_d8    (cbuf,0xC0-1+$src$$reg );
+    // CALL directly to the runtime
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf,0xE8);       // Call into runtime
+    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
+    // Carry on here...
+  %}
+
+  enc_class X2L_encoding( regX src ) %{
+    // Allocate a word
+    emit_opcode(cbuf,0x83);      // SUB ESP,8
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x08);
+
+    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
+    emit_opcode(cbuf,0x2D);
+    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
+
+    // Encoding assumes a double has been pushed into FPR0.
+    // Store down the double as a long, popping the FPU stack
+    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
+    emit_opcode(cbuf,0x3C);
+    emit_d8(cbuf,0x24);
+
+    // Restore the rounding mode; mask the exception
+    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
+    emit_opcode(cbuf,0x2D);
+    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
+      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
+      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
+
+    // Load the converted int; adjust CPU stack
+    emit_opcode(cbuf,0x58);      // POP EAX
+
+    emit_opcode(cbuf,0x5A);      // POP EDX
+
+    emit_opcode(cbuf,0x81);      // CMP EDX,imm
+    emit_d8    (cbuf,0xFA);      // rdx
+    emit_d32   (cbuf,0x80000000);//         0x80000000
+
+    emit_opcode(cbuf,0x75);      // JNE around_slow_call
+    emit_d8    (cbuf,0x13+4);    // Size of slow_call
+
+    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
+    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
+
+    emit_opcode(cbuf,0x75);      // JNE around_slow_call
+    emit_d8    (cbuf,0x13);      // Size of slow_call
+
+    // Allocate a word
+    emit_opcode(cbuf,0x83);      // SUB ESP,4
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x04);
+
+    emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0x83);      // ADD ESP,4
+    emit_opcode(cbuf,0xC4);
+    emit_d8(cbuf,0x04);
+
+    // CALL directly to the runtime
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf,0xE8);       // Call into runtime
+    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
+    // Carry on here...
+  %}
+
+  enc_class XD2L_encoding( regXD src ) %{
+    // Allocate a word
+    emit_opcode(cbuf,0x83);      // SUB ESP,8
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x08);
+
+    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xD9);      // FLDCW  trunc
+    emit_opcode(cbuf,0x2D);
+    emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
+
+    // Encoding assumes a double has been pushed into FPR0.
+    // Store down the double as a long, popping the FPU stack
+    emit_opcode(cbuf,0xDF);      // FISTP [ESP]
+    emit_opcode(cbuf,0x3C);
+    emit_d8(cbuf,0x24);
+
+    // Restore the rounding mode; mask the exception
+    emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
+    emit_opcode(cbuf,0x2D);
+    emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
+      ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
+      : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
+
+    // Load the converted int; adjust CPU stack
+    emit_opcode(cbuf,0x58);      // POP EAX
+
+    emit_opcode(cbuf,0x5A);      // POP EDX
+
+    emit_opcode(cbuf,0x81);      // CMP EDX,imm
+    emit_d8    (cbuf,0xFA);      // rdx
+    emit_d32   (cbuf,0x80000000); //         0x80000000
+
+    emit_opcode(cbuf,0x75);      // JNE around_slow_call
+    emit_d8    (cbuf,0x13+4);    // Size of slow_call
+
+    emit_opcode(cbuf,0x85);      // TEST EAX,EAX
+    emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
+
+    emit_opcode(cbuf,0x75);      // JNE around_slow_call
+    emit_d8    (cbuf,0x13);      // Size of slow_call
+
+    // Push src onto stack slow-path
+    // Allocate a word
+    emit_opcode(cbuf,0x83);      // SUB ESP,8
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x08);
+
+    emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0x83);      // ADD ESP,8
+    emit_opcode(cbuf,0xC4);
+    emit_d8(cbuf,0x08);
+
+    // CALL directly to the runtime
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf,0xE8);      // Call into runtime
+    emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
+    // Carry on here...
+  %}
+
+  enc_class D2X_encoding( regX dst, regD src ) %{
+    // Allocate a word
+    emit_opcode(cbuf,0x83);            // SUB ESP,4
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x04);
+    int pop = 0x02;
+    if ($src$$reg != FPR1L_enc) {
+      emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
+      emit_d8( cbuf, 0xC0-1+$src$$reg );
+      pop = 0x03;
+    }
+    store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
+
+    emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x10 );
+    encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0x83);            // ADD ESP,4
+    emit_opcode(cbuf,0xC4);
+    emit_d8(cbuf,0x04);
+    // Carry on here...
+  %}
+
+  enc_class FX2I_encoding( regX src, eRegI dst ) %{
+    emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
+
+    // Compare the result to see if we need to go to the slow path
+    emit_opcode(cbuf,0x81);       // CMP dst,imm
+    emit_rm    (cbuf,0x3,0x7,$dst$$reg);
+    emit_d32   (cbuf,0x80000000); //         0x80000000
+
+    emit_opcode(cbuf,0x75);       // JNE around_slow_call
+    emit_d8    (cbuf,0x13);       // Size of slow_call
+    // Store xmm to a temp memory
+    // location and push it onto stack.
+
+    emit_opcode(cbuf,0x83);  // SUB ESP,4
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf, $primary ? 0x8 : 0x4);
+
+    emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0x83);    // ADD ESP,4
+    emit_opcode(cbuf,0xC4);
+    emit_d8(cbuf, $primary ? 0x8 : 0x4);
+
+    // CALL directly to the runtime
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf,0xE8);       // Call into runtime
+    emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
+
+    // Carry on here...
+  %}
+
+  enc_class X2D_encoding( regD dst, regX src ) %{
+    // Allocate a word
+    emit_opcode(cbuf,0x83);     // SUB ESP,4
+    emit_opcode(cbuf,0xEC);
+    emit_d8(cbuf,0x04);
+
+    emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, 0x11 );
+    encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
+    encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
+
+    emit_opcode(cbuf,0x83);     // ADD ESP,4
+    emit_opcode(cbuf,0xC4);
+    emit_d8(cbuf,0x04);
+
+    // Carry on here...
+  %}
+
+  enc_class AbsXF_encoding(regX dst) %{
+    address signmask_address=(address)float_signmask_pool;
+    // andpd:\tANDPS  $dst,[signconst]
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x54);
+    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
+    emit_d32(cbuf, (int)signmask_address);
+  %}
+
+  enc_class AbsXD_encoding(regXD dst) %{
+    address signmask_address=(address)double_signmask_pool;
+    // andpd:\tANDPD  $dst,[signconst]
+    emit_opcode(cbuf, 0x66);
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x54);
+    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
+    emit_d32(cbuf, (int)signmask_address);
+  %}
+
+  enc_class NegXF_encoding(regX dst) %{
+    address signmask_address=(address)float_signflip_pool;
+    // andpd:\tXORPS  $dst,[signconst]
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x57);
+    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
+    emit_d32(cbuf, (int)signmask_address);
+  %}
+
+  enc_class NegXD_encoding(regXD dst) %{
+    address signmask_address=(address)double_signflip_pool;
+    // andpd:\tXORPD  $dst,[signconst]
+    emit_opcode(cbuf, 0x66);
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x57);
+    emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
+    emit_d32(cbuf, (int)signmask_address);
+  %}
+
+  enc_class FMul_ST_reg( eRegF src1 ) %{
+    // Operand was loaded from memory into fp ST (stack top)
+    // FMUL   ST,$src  /* D8 C8+i */
+    emit_opcode(cbuf, 0xD8);
+    emit_opcode(cbuf, 0xC8 + $src1$$reg);
+  %}
+
+  enc_class FAdd_ST_reg( eRegF src2 ) %{
+    // FADDP  ST,src2  /* D8 C0+i */
+    emit_opcode(cbuf, 0xD8);
+    emit_opcode(cbuf, 0xC0 + $src2$$reg);
+    //could use FADDP  src2,fpST  /* DE C0+i */
+  %}
+
+  enc_class FAddP_reg_ST( eRegF src2 ) %{
+    // FADDP  src2,ST  /* DE C0+i */
+    emit_opcode(cbuf, 0xDE);
+    emit_opcode(cbuf, 0xC0 + $src2$$reg);
+  %}
+
+  enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
+    // Operand has been loaded into fp ST (stack top)
+      // FSUB   ST,$src1
+      emit_opcode(cbuf, 0xD8);
+      emit_opcode(cbuf, 0xE0 + $src1$$reg);
+
+      // FDIV
+      emit_opcode(cbuf, 0xD8);
+      emit_opcode(cbuf, 0xF0 + $src2$$reg);
+  %}
+
+  enc_class MulFAddF (eRegF src1, eRegF src2) %{
+    // Operand was loaded from memory into fp ST (stack top)
+    // FADD   ST,$src  /* D8 C0+i */
+    emit_opcode(cbuf, 0xD8);
+    emit_opcode(cbuf, 0xC0 + $src1$$reg);
+
+    // FMUL  ST,src2  /* D8 C*+i */
+    emit_opcode(cbuf, 0xD8);
+    emit_opcode(cbuf, 0xC8 + $src2$$reg);
+  %}
+
+
+  enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
+    // Operand was loaded from memory into fp ST (stack top)
+    // FADD   ST,$src  /* D8 C0+i */
+    emit_opcode(cbuf, 0xD8);
+    emit_opcode(cbuf, 0xC0 + $src1$$reg);
+
+    // FMULP  src2,ST  /* DE C8+i */
+    emit_opcode(cbuf, 0xDE);
+    emit_opcode(cbuf, 0xC8 + $src2$$reg);
+  %}
+
+  enc_class enc_membar_acquire %{
+    // Doug Lea believes this is not needed with current Sparcs and TSO.
+    // MacroAssembler masm(&cbuf);
+    // masm.membar();
+  %}
+
+  enc_class enc_membar_release %{
+    // Doug Lea believes this is not needed with current Sparcs and TSO.
+    // MacroAssembler masm(&cbuf);
+    // masm.membar();
+  %}
+
+  enc_class enc_membar_volatile %{
+    MacroAssembler masm(&cbuf);
+    masm.membar();
+  %}
+
+  // Atomically load the volatile long
+  enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
+    emit_opcode(cbuf,0xDF);
+    int rm_byte_opcode = 0x05;
+    int base     = $mem$$base;
+    int index    = $mem$$index;
+    int scale    = $mem$$scale;
+    int displace = $mem$$disp;
+    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
+    store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
+  %}
+
+  enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
+    { // Atomic long load
+      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
+      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
+      int base     = $mem$$base;
+      int index    = $mem$$index;
+      int scale    = $mem$$scale;
+      int displace = $mem$$disp;
+      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
+    }
+    { // MOVSD $dst,$tmp ! atomic long store
+      emit_opcode(cbuf,0xF2);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x11);
+      int base     = $dst$$base;
+      int index    = $dst$$index;
+      int scale    = $dst$$scale;
+      int displace = $dst$$disp;
+      bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
+      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
+    }
+  %}
+
+  enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
+    { // Atomic long load
+      // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
+      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
+      int base     = $mem$$base;
+      int index    = $mem$$index;
+      int scale    = $mem$$scale;
+      int displace = $mem$$disp;
+      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
+    }
+    { // MOVD $dst.lo,$tmp
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x7E);
+      emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
+    }
+    { // PSRLQ $tmp,32
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x73);
+      emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
+      emit_d8(cbuf, 0x20);
+    }
+    { // MOVD $dst.hi,$tmp
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x7E);
+      emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
+    }
+  %}
+
+  // Volatile Store Long.  Must be atomic, so move it into
+  // the FP TOS and then do a 64-bit FIST.  Has to probe the
+  // target address before the store (for null-ptr checks)
+  // so the memory operand is used twice in the encoding.
+  enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
+    store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
+    cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
+    emit_opcode(cbuf,0xDF);
+    int rm_byte_opcode = 0x07;
+    int base     = $mem$$base;
+    int index    = $mem$$index;
+    int scale    = $mem$$scale;
+    int displace = $mem$$disp;
+    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
+  %}
+
+  enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
+    { // Atomic long load
+      // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
+      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
+      int base     = $src$$base;
+      int index    = $src$$index;
+      int scale    = $src$$scale;
+      int displace = $src$$disp;
+      bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
+      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
+    }
+    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
+    { // MOVSD $mem,$tmp ! atomic long store
+      emit_opcode(cbuf,0xF2);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x11);
+      int base     = $mem$$base;
+      int index    = $mem$$index;
+      int scale    = $mem$$scale;
+      int displace = $mem$$disp;
+      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
+    }
+  %}
+
+  enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
+    { // MOVD $tmp,$src.lo
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x6E);
+      emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
+    }
+    { // MOVD $tmp2,$src.hi
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x6E);
+      emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
+    }
+    { // PUNPCKLDQ $tmp,$tmp2
+      emit_opcode(cbuf,0x66);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x62);
+      emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
+    }
+    cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
+    { // MOVSD $mem,$tmp ! atomic long store
+      emit_opcode(cbuf,0xF2);
+      emit_opcode(cbuf,0x0F);
+      emit_opcode(cbuf,0x11);
+      int base     = $mem$$base;
+      int index    = $mem$$index;
+      int scale    = $mem$$scale;
+      int displace = $mem$$disp;
+      bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
+      encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
+    }
+  %}
+
+  // Safepoint Poll.  This polls the safepoint page, and causes an
+  // exception if it is not readable. Unfortunately, it kills the condition code
+  // in the process
+  // We current use TESTL [spp],EDI
+  // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
+
+  enc_class Safepoint_Poll() %{
+    cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
+    emit_opcode(cbuf,0x85);
+    emit_rm (cbuf, 0x0, 0x7, 0x5);
+    emit_d32(cbuf, (intptr_t)os::get_polling_page());
+  %}
+%}
+
+
+//----------FRAME--------------------------------------------------------------
+// Definition of frame structure and management information.
+//
+//  S T A C K   L A Y O U T    Allocators stack-slot number
+//                             |   (to get allocators register number
+//  G  Owned by    |        |  v    add OptoReg::stack0())
+//  r   CALLER     |        |
+//  o     |        +--------+      pad to even-align allocators stack-slot
+//  w     V        |  pad0  |        numbers; owned by CALLER
+//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
+//  h     ^        |   in   |  5
+//        |        |  args  |  4   Holes in incoming args owned by SELF
+//  |     |        |        |  3
+//  |     |        +--------+
+//  V     |        | old out|      Empty on Intel, window on Sparc
+//        |    old |preserve|      Must be even aligned.
+//        |     SP-+--------+----> Matcher::_old_SP, even aligned
+//        |        |   in   |  3   area for Intel ret address
+//     Owned by    |preserve|      Empty on Sparc.
+//       SELF      +--------+
+//        |        |  pad2  |  2   pad to align old SP
+//        |        +--------+  1
+//        |        | locks  |  0
+//        |        +--------+----> OptoReg::stack0(), even aligned
+//        |        |  pad1  | 11   pad to align new SP
+//        |        +--------+
+//        |        |        | 10
+//        |        | spills |  9   spills
+//        V        |        |  8   (pad0 slot for callee)
+//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
+//        ^        |  out   |  7
+//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
+//     Owned by    +--------+
+//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
+//        |    new |preserve|      Must be even-aligned.
+//        |     SP-+--------+----> Matcher::_new_SP, even aligned
+//        |        |        |
+//
+// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
+//         known from SELF's arguments and the Java calling convention.
+//         Region 6-7 is determined per call site.
+// Note 2: If the calling convention leaves holes in the incoming argument
+//         area, those holes are owned by SELF.  Holes in the outgoing area
+//         are owned by the CALLEE.  Holes should not be nessecary in the
+//         incoming area, as the Java calling convention is completely under
+//         the control of the AD file.  Doubles can be sorted and packed to
+//         avoid holes.  Holes in the outgoing arguments may be nessecary for
+//         varargs C calling conventions.
+// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
+//         even aligned with pad0 as needed.
+//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
+//         region 6-11 is even aligned; it may be padded out more so that
+//         the region from SP to FP meets the minimum stack alignment.
+
+frame %{
+  // What direction does stack grow in (assumed to be same for C & Java)
+  stack_direction(TOWARDS_LOW);
+
+  // These three registers define part of the calling convention
+  // between compiled code and the interpreter.
+  inline_cache_reg(EAX);                // Inline Cache Register
+  interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
+
+  // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
+  cisc_spilling_operand_name(indOffset32);
+
+  // Number of stack slots consumed by locking an object
+  sync_stack_slots(1);
+
+  // Compiled code's Frame Pointer
+  frame_pointer(ESP);
+  // Interpreter stores its frame pointer in a register which is
+  // stored to the stack by I2CAdaptors.
+  // I2CAdaptors convert from interpreted java to compiled java.
+  interpreter_frame_pointer(EBP);
+
+  // Stack alignment requirement
+  // Alignment size in bytes (128-bit -> 16 bytes)
+  stack_alignment(StackAlignmentInBytes);
+
+  // Number of stack slots between incoming argument block and the start of
+  // a new frame.  The PROLOG must add this many slots to the stack.  The
+  // EPILOG must remove this many slots.  Intel needs one slot for
+  // return address and one for rbp, (must save rbp)
+  in_preserve_stack_slots(2+VerifyStackAtCalls);
+
+  // Number of outgoing stack slots killed above the out_preserve_stack_slots
+  // for calls to C.  Supports the var-args backing area for register parms.
+  varargs_C_out_slots_killed(0);
+
+  // The after-PROLOG location of the return address.  Location of
+  // return address specifies a type (REG or STACK) and a number
+  // representing the register number (i.e. - use a register name) or
+  // stack slot.
+  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
+  // Otherwise, it is above the locks and verification slot and alignment word
+  return_addr(STACK - 1 +
+              round_to(1+VerifyStackAtCalls+
+              Compile::current()->fixed_slots(),
+              (StackAlignmentInBytes/wordSize)));
+
+  // Body of function which returns an integer array locating
+  // arguments either in registers or in stack slots.  Passed an array
+  // of ideal registers called "sig" and a "length" count.  Stack-slot
+  // offsets are based on outgoing arguments, i.e. a CALLER setting up
+  // arguments for a CALLEE.  Incoming stack arguments are
+  // automatically biased by the preserve_stack_slots field above.
+  calling_convention %{
+    // No difference between ingoing/outgoing just pass false
+    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
+  %}
+
+
+  // Body of function which returns an integer array locating
+  // arguments either in registers or in stack slots.  Passed an array
+  // of ideal registers called "sig" and a "length" count.  Stack-slot
+  // offsets are based on outgoing arguments, i.e. a CALLER setting up
+  // arguments for a CALLEE.  Incoming stack arguments are
+  // automatically biased by the preserve_stack_slots field above.
+  c_calling_convention %{
+    // This is obviously always outgoing
+    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
+  %}
+
+  // Location of C & interpreter return values
+  c_return_value %{
+    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
+    static int lo[Op_RegL+1] = { 0, 0, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
+    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
+
+    // in SSE2+ mode we want to keep the FPU stack clean so pretend
+    // that C functions return float and double results in XMM0.
+    if( ideal_reg == Op_RegD && UseSSE>=2 )
+      return OptoRegPair(XMM0b_num,XMM0a_num);
+    if( ideal_reg == Op_RegF && UseSSE>=2 )
+      return OptoRegPair(OptoReg::Bad,XMM0a_num);
+
+    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
+  %}
+
+  // Location of return values
+  return_value %{
+    assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
+    static int lo[Op_RegL+1] = { 0, 0, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
+    static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
+    if( ideal_reg == Op_RegD && UseSSE>=2 )
+      return OptoRegPair(XMM0b_num,XMM0a_num);
+    if( ideal_reg == Op_RegF && UseSSE>=1 )
+      return OptoRegPair(OptoReg::Bad,XMM0a_num);
+    return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
+  %}
+
+%}
+
+//----------ATTRIBUTES---------------------------------------------------------
+//----------Operand Attributes-------------------------------------------------
+op_attrib op_cost(0);        // Required cost attribute
+
+//----------Instruction Attributes---------------------------------------------
+ins_attrib ins_cost(100);       // Required cost attribute
+ins_attrib ins_size(8);         // Required size attribute (in bits)
+ins_attrib ins_pc_relative(0);  // Required PC Relative flag
+ins_attrib ins_short_branch(0); // Required flag: is this instruction a
+                                // non-matching short branch variant of some
+                                                            // long branch?
+ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
+                                // specifies the alignment that some part of the instruction (not
+                                // necessarily the start) requires.  If > 1, a compute_padding()
+                                // function must be provided for the instruction
+
+//----------OPERANDS-----------------------------------------------------------
+// Operand definitions must precede instruction definitions for correct parsing
+// in the ADLC because operands constitute user defined types which are used in
+// instruction definitions.
+
+//----------Simple Operands----------------------------------------------------
+// Immediate Operands
+// Integer Immediate
+operand immI() %{
+  match(ConI);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for test vs zero
+operand immI0() %{
+  predicate(n->get_int() == 0);
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for increment
+operand immI1() %{
+  predicate(n->get_int() == 1);
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for decrement
+operand immI_M1() %{
+  predicate(n->get_int() == -1);
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Valid scale values for addressing modes
+operand immI2() %{
+  predicate(0 <= n->get_int() && (n->get_int() <= 3));
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI8() %{
+  predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
+  match(ConI);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI16() %{
+  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
+  match(ConI);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for long shifts
+operand immI_32() %{
+  predicate( n->get_int() == 32 );
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI_1_31() %{
+  predicate( n->get_int() >= 1 && n->get_int() <= 31 );
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI_32_63() %{
+  predicate( n->get_int() >= 32 && n->get_int() <= 63 );
+  match(ConI);
+  op_cost(0);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Pointer Immediate
+operand immP() %{
+  match(ConP);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// NULL Pointer Immediate
+operand immP0() %{
+  predicate( n->get_ptr() == 0 );
+  match(ConP);
+  op_cost(0);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate
+operand immL() %{
+  match(ConL);
+
+  op_cost(20);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate zero
+operand immL0() %{
+  predicate( n->get_long() == 0L );
+  match(ConL);
+  op_cost(0);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long immediate from 0 to 127.
+// Used for a shorter form of long mul by 10.
+operand immL_127() %{
+  predicate((0 <= n->get_long()) && (n->get_long() <= 127));
+  match(ConL);
+  op_cost(0);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate: low 32-bit mask
+operand immL_32bits() %{
+  predicate(n->get_long() == 0xFFFFFFFFL);
+  match(ConL);
+  op_cost(0);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate: low 32-bit mask
+operand immL32() %{
+  predicate(n->get_long() == (int)(n->get_long()));
+  match(ConL);
+  op_cost(20);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+//Double Immediate zero
+operand immD0() %{
+  // Do additional (and counter-intuitive) test against NaN to work around VC++
+  // bug that generates code such that NaNs compare equal to 0.0
+  predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
+  match(ConD);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Double Immediate
+operand immD1() %{
+  predicate( UseSSE<=1 && n->getd() == 1.0 );
+  match(ConD);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Double Immediate
+operand immD() %{
+  predicate(UseSSE<=1);
+  match(ConD);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immXD() %{
+  predicate(UseSSE>=2);
+  match(ConD);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Double Immediate zero
+operand immXD0() %{
+  // Do additional (and counter-intuitive) test against NaN to work around VC++
+  // bug that generates code such that NaNs compare equal to 0.0 AND do not
+  // compare equal to -0.0.
+  predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
+  match(ConD);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Float Immediate zero
+operand immF0() %{
+  predicate( UseSSE == 0 && n->getf() == 0.0 );
+  match(ConF);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Float Immediate
+operand immF() %{
+  predicate( UseSSE == 0 );
+  match(ConF);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Float Immediate
+operand immXF() %{
+  predicate(UseSSE >= 1);
+  match(ConF);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Float Immediate zero.  Zero and not -0.0
+operand immXF0() %{
+  predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
+  match(ConF);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Immediates for special shifts (sign extend)
+
+// Constants for increment
+operand immI_16() %{
+  predicate( n->get_int() == 16 );
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI_24() %{
+  predicate( n->get_int() == 24 );
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for byte-wide masking
+operand immI_255() %{
+  predicate( n->get_int() == 255 );
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Register Operands
+// Integer Register
+operand eRegI() %{
+  constraint(ALLOC_IN_RC(e_reg));
+  match(RegI);
+  match(xRegI);
+  match(eAXRegI);
+  match(eBXRegI);
+  match(eCXRegI);
+  match(eDXRegI);
+  match(eDIRegI);
+  match(eSIRegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Subset of Integer Register
+operand xRegI(eRegI reg) %{
+  constraint(ALLOC_IN_RC(x_reg));
+  match(reg);
+  match(eAXRegI);
+  match(eBXRegI);
+  match(eCXRegI);
+  match(eDXRegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Special Registers
+operand eAXRegI(xRegI reg) %{
+  constraint(ALLOC_IN_RC(eax_reg));
+  match(reg);
+  match(eRegI);
+
+  format %{ "EAX" %}
+  interface(REG_INTER);
+%}
+
+// Special Registers
+operand eBXRegI(xRegI reg) %{
+  constraint(ALLOC_IN_RC(ebx_reg));
+  match(reg);
+  match(eRegI);
+
+  format %{ "EBX" %}
+  interface(REG_INTER);
+%}
+
+operand eCXRegI(xRegI reg) %{
+  constraint(ALLOC_IN_RC(ecx_reg));
+  match(reg);
+  match(eRegI);
+
+  format %{ "ECX" %}
+  interface(REG_INTER);
+%}
+
+operand eDXRegI(xRegI reg) %{
+  constraint(ALLOC_IN_RC(edx_reg));
+  match(reg);
+  match(eRegI);
+
+  format %{ "EDX" %}
+  interface(REG_INTER);
+%}
+
+operand eDIRegI(xRegI reg) %{
+  constraint(ALLOC_IN_RC(edi_reg));
+  match(reg);
+  match(eRegI);
+
+  format %{ "EDI" %}
+  interface(REG_INTER);
+%}
+
+operand naxRegI() %{
+  constraint(ALLOC_IN_RC(nax_reg));
+  match(RegI);
+  match(eCXRegI);
+  match(eDXRegI);
+  match(eSIRegI);
+  match(eDIRegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand nadxRegI() %{
+  constraint(ALLOC_IN_RC(nadx_reg));
+  match(RegI);
+  match(eBXRegI);
+  match(eCXRegI);
+  match(eSIRegI);
+  match(eDIRegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand ncxRegI() %{
+  constraint(ALLOC_IN_RC(ncx_reg));
+  match(RegI);
+  match(eAXRegI);
+  match(eDXRegI);
+  match(eSIRegI);
+  match(eDIRegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
+// //
+operand eSIRegI(xRegI reg) %{
+   constraint(ALLOC_IN_RC(esi_reg));
+   match(reg);
+   match(eRegI);
+
+   format %{ "ESI" %}
+   interface(REG_INTER);
+%}
+
+// Pointer Register
+operand anyRegP() %{
+  constraint(ALLOC_IN_RC(any_reg));
+  match(RegP);
+  match(eAXRegP);
+  match(eBXRegP);
+  match(eCXRegP);
+  match(eDIRegP);
+  match(eRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand eRegP() %{
+  constraint(ALLOC_IN_RC(e_reg));
+  match(RegP);
+  match(eAXRegP);
+  match(eBXRegP);
+  match(eCXRegP);
+  match(eDIRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// On windows95, EBP is not safe to use for implicit null tests.
+operand eRegP_no_EBP() %{
+  constraint(ALLOC_IN_RC(e_reg_no_rbp));
+  match(RegP);
+  match(eAXRegP);
+  match(eBXRegP);
+  match(eCXRegP);
+  match(eDIRegP);
+
+  op_cost(100);
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand naxRegP() %{
+  constraint(ALLOC_IN_RC(nax_reg));
+  match(RegP);
+  match(eBXRegP);
+  match(eDXRegP);
+  match(eCXRegP);
+  match(eSIRegP);
+  match(eDIRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand nabxRegP() %{
+  constraint(ALLOC_IN_RC(nabx_reg));
+  match(RegP);
+  match(eCXRegP);
+  match(eDXRegP);
+  match(eSIRegP);
+  match(eDIRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand pRegP() %{
+  constraint(ALLOC_IN_RC(p_reg));
+  match(RegP);
+  match(eBXRegP);
+  match(eDXRegP);
+  match(eSIRegP);
+  match(eDIRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Special Registers
+// Return a pointer value
+operand eAXRegP(eRegP reg) %{
+  constraint(ALLOC_IN_RC(eax_reg));
+  match(reg);
+  format %{ "EAX" %}
+  interface(REG_INTER);
+%}
+
+// Used in AtomicAdd
+operand eBXRegP(eRegP reg) %{
+  constraint(ALLOC_IN_RC(ebx_reg));
+  match(reg);
+  format %{ "EBX" %}
+  interface(REG_INTER);
+%}
+
+// Tail-call (interprocedural jump) to interpreter
+operand eCXRegP(eRegP reg) %{
+  constraint(ALLOC_IN_RC(ecx_reg));
+  match(reg);
+  format %{ "ECX" %}
+  interface(REG_INTER);
+%}
+
+operand eSIRegP(eRegP reg) %{
+  constraint(ALLOC_IN_RC(esi_reg));
+  match(reg);
+  format %{ "ESI" %}
+  interface(REG_INTER);
+%}
+
+// Used in rep stosw
+operand eDIRegP(eRegP reg) %{
+  constraint(ALLOC_IN_RC(edi_reg));
+  match(reg);
+  format %{ "EDI" %}
+  interface(REG_INTER);
+%}
+
+operand eBPRegP() %{
+  constraint(ALLOC_IN_RC(ebp_reg));
+  match(RegP);
+  format %{ "EBP" %}
+  interface(REG_INTER);
+%}
+
+operand eRegL() %{
+  constraint(ALLOC_IN_RC(long_reg));
+  match(RegL);
+  match(eADXRegL);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand eADXRegL( eRegL reg ) %{
+  constraint(ALLOC_IN_RC(eadx_reg));
+  match(reg);
+
+  format %{ "EDX:EAX" %}
+  interface(REG_INTER);
+%}
+
+operand eBCXRegL( eRegL reg ) %{
+  constraint(ALLOC_IN_RC(ebcx_reg));
+  match(reg);
+
+  format %{ "EBX:ECX" %}
+  interface(REG_INTER);
+%}
+
+// Special case for integer high multiply
+operand eADXRegL_low_only() %{
+  constraint(ALLOC_IN_RC(eadx_reg));
+  match(RegL);
+
+  format %{ "EAX" %}
+  interface(REG_INTER);
+%}
+
+// Flags register, used as output of compare instructions
+operand eFlagsReg() %{
+  constraint(ALLOC_IN_RC(int_flags));
+  match(RegFlags);
+
+  format %{ "EFLAGS" %}
+  interface(REG_INTER);
+%}
+
+// Flags register, used as output of FLOATING POINT compare instructions
+operand eFlagsRegU() %{
+  constraint(ALLOC_IN_RC(int_flags));
+  match(RegFlags);
+
+  format %{ "EFLAGS_U" %}
+  interface(REG_INTER);
+%}
+
+// Condition Code Register used by long compare
+operand flagsReg_long_LTGE() %{
+  constraint(ALLOC_IN_RC(int_flags));
+  match(RegFlags);
+  format %{ "FLAGS_LTGE" %}
+  interface(REG_INTER);
+%}
+operand flagsReg_long_EQNE() %{
+  constraint(ALLOC_IN_RC(int_flags));
+  match(RegFlags);
+  format %{ "FLAGS_EQNE" %}
+  interface(REG_INTER);
+%}
+operand flagsReg_long_LEGT() %{
+  constraint(ALLOC_IN_RC(int_flags));
+  match(RegFlags);
+  format %{ "FLAGS_LEGT" %}
+  interface(REG_INTER);
+%}
+
+// Float register operands
+operand regD() %{
+  predicate( UseSSE < 2 );
+  constraint(ALLOC_IN_RC(dbl_reg));
+  match(RegD);
+  match(regDPR1);
+  match(regDPR2);
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand regDPR1(regD reg) %{
+  predicate( UseSSE < 2 );
+  constraint(ALLOC_IN_RC(dbl_reg0));
+  match(reg);
+  format %{ "FPR1" %}
+  interface(REG_INTER);
+%}
+
+operand regDPR2(regD reg) %{
+  predicate( UseSSE < 2 );
+  constraint(ALLOC_IN_RC(dbl_reg1));
+  match(reg);
+  format %{ "FPR2" %}
+  interface(REG_INTER);
+%}
+
+operand regnotDPR1(regD reg) %{
+  predicate( UseSSE < 2 );
+  constraint(ALLOC_IN_RC(dbl_notreg0));
+  match(reg);
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// XMM Double register operands
+operand regXD() %{
+  predicate( UseSSE>=2 );
+  constraint(ALLOC_IN_RC(xdb_reg));
+  match(RegD);
+  match(regXD6);
+  match(regXD7);
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// XMM6 double register operands
+operand regXD6(regXD reg) %{
+  predicate( UseSSE>=2 );
+  constraint(ALLOC_IN_RC(xdb_reg6));
+  match(reg);
+  format %{ "XMM6" %}
+  interface(REG_INTER);
+%}
+
+// XMM7 double register operands
+operand regXD7(regXD reg) %{
+  predicate( UseSSE>=2 );
+  constraint(ALLOC_IN_RC(xdb_reg7));
+  match(reg);
+  format %{ "XMM7" %}
+  interface(REG_INTER);
+%}
+
+// Float register operands
+operand regF() %{
+  predicate( UseSSE < 2 );
+  constraint(ALLOC_IN_RC(flt_reg));
+  match(RegF);
+  match(regFPR1);
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Float register operands
+operand regFPR1(regF reg) %{
+  predicate( UseSSE < 2 );
+  constraint(ALLOC_IN_RC(flt_reg0));
+  match(reg);
+  format %{ "FPR1" %}
+  interface(REG_INTER);
+%}
+
+// XMM register operands
+operand regX() %{
+  predicate( UseSSE>=1 );
+  constraint(ALLOC_IN_RC(xmm_reg));
+  match(RegF);
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+
+//----------Memory Operands----------------------------------------------------
+// Direct Memory Operand
+operand direct(immP addr) %{
+  match(addr);
+
+  format %{ "[$addr]" %}
+  interface(MEMORY_INTER) %{
+    base(0xFFFFFFFF);
+    index(0x4);
+    scale(0x0);
+    disp($addr);
+  %}
+%}
+
+// Indirect Memory Operand
+operand indirect(eRegP reg) %{
+  constraint(ALLOC_IN_RC(e_reg));
+  match(reg);
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Plus Short Offset Operand
+operand indOffset8(eRegP reg, immI8 off) %{
+  match(AddP reg off);
+
+  format %{ "[$reg + $off]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Long Offset Operand
+operand indOffset32(eRegP reg, immI off) %{
+  match(AddP reg off);
+
+  format %{ "[$reg + $off]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Long Offset Operand
+operand indOffset32X(eRegI reg, immP off) %{
+  match(AddP off reg);
+
+  format %{ "[$reg + $off]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Index Register Plus Offset Operand
+operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
+  match(AddP (AddP reg ireg) off);
+
+  op_cost(10);
+  format %{"[$reg + $off + $ireg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($ireg);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Index Register Plus Offset Operand
+operand indIndex(eRegP reg, eRegI ireg) %{
+  match(AddP reg ireg);
+
+  op_cost(10);
+  format %{"[$reg + $ireg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($ireg);
+    scale(0x0);
+    disp(0x0);
+  %}
+%}
+
+// // -------------------------------------------------------------------------
+// // 486 architecture doesn't support "scale * index + offset" with out a base
+// // -------------------------------------------------------------------------
+// // Scaled Memory Operands
+// // Indirect Memory Times Scale Plus Offset Operand
+// operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
+//   match(AddP off (LShiftI ireg scale));
+//
+//   op_cost(10);
+//   format %{"[$off + $ireg << $scale]" %}
+//   interface(MEMORY_INTER) %{
+//     base(0x4);
+//     index($ireg);
+//     scale($scale);
+//     disp($off);
+//   %}
+// %}
+
+// Indirect Memory Times Scale Plus Index Register
+operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
+  match(AddP reg (LShiftI ireg scale));
+
+  op_cost(10);
+  format %{"[$reg + $ireg << $scale]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($ireg);
+    scale($scale);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
+operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
+  match(AddP (AddP reg (LShiftI ireg scale)) off);
+
+  op_cost(10);
+  format %{"[$reg + $off + $ireg << $scale]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($ireg);
+    scale($scale);
+    disp($off);
+  %}
+%}
+
+//----------Load Long Memory Operands------------------------------------------
+// The load-long idiom will use it's address expression again after loading
+// the first word of the long.  If the load-long destination overlaps with
+// registers used in the addressing expression, the 2nd half will be loaded
+// from a clobbered address.  Fix this by requiring that load-long use
+// address registers that do not overlap with the load-long target.
+
+// load-long support
+operand load_long_RegP() %{
+  constraint(ALLOC_IN_RC(esi_reg));
+  match(RegP);
+  match(eSIRegP);
+  op_cost(100);
+  format %{  %}
+  interface(REG_INTER);
+%}
+
+// Indirect Memory Operand Long
+operand load_long_indirect(load_long_RegP reg) %{
+  constraint(ALLOC_IN_RC(esi_reg));
+  match(reg);
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Plus Long Offset Operand
+operand load_long_indOffset32(load_long_RegP reg, immI off) %{
+  match(AddP reg off);
+
+  format %{ "[$reg + $off]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+opclass load_long_memory(load_long_indirect, load_long_indOffset32);
+
+
+//----------Special Memory Operands--------------------------------------------
+// Stack Slot Operand - This operand is used for loading and storing temporary
+//                      values on the stack where a match requires a value to
+//                      flow through memory.
+operand stackSlotP(sRegP reg) %{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // ESP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+operand stackSlotI(sRegI reg) %{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // ESP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+operand stackSlotF(sRegF reg) %{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // ESP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+operand stackSlotD(sRegD reg) %{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // ESP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+operand stackSlotL(sRegL reg) %{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // ESP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+//----------Memory Operands - Win95 Implicit Null Variants----------------
+// Indirect Memory Operand
+operand indirect_win95_safe(eRegP_no_EBP reg)
+%{
+  constraint(ALLOC_IN_RC(e_reg));
+  match(reg);
+
+  op_cost(100);
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Plus Short Offset Operand
+operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
+%{
+  match(AddP reg off);
+
+  op_cost(100);
+  format %{ "[$reg + $off]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Long Offset Operand
+operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
+%{
+  match(AddP reg off);
+
+  op_cost(100);
+  format %{ "[$reg + $off]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Index Register Plus Offset Operand
+operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
+%{
+  match(AddP (AddP reg ireg) off);
+
+  op_cost(100);
+  format %{"[$reg + $off + $ireg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($ireg);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Times Scale Plus Index Register
+operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
+%{
+  match(AddP reg (LShiftI ireg scale));
+
+  op_cost(100);
+  format %{"[$reg + $ireg << $scale]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($ireg);
+    scale($scale);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
+operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
+%{
+  match(AddP (AddP reg (LShiftI ireg scale)) off);
+
+  op_cost(100);
+  format %{"[$reg + $off + $ireg << $scale]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($ireg);
+    scale($scale);
+    disp($off);
+  %}
+%}
+
+//----------Conditional Branch Operands----------------------------------------
+// Comparison Op  - This is the operation of the comparison, and is limited to
+//                  the following set of codes:
+//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
+//
+// Other attributes of the comparison, such as unsignedness, are specified
+// by the comparison instruction that sets a condition code flags register.
+// That result is represented by a flags operand whose subtype is appropriate
+// to the unsignedness (etc.) of the comparison.
+//
+// Later, the instruction which matches both the Comparison Op (a Bool) and
+// the flags (produced by the Cmp) specifies the coding of the comparison op
+// by matching a specific subtype of Bool operand below, such as cmpOpU.
+
+// Comparision Code
+operand cmpOp() %{
+  match(Bool);
+
+  format %{ "" %}
+  interface(COND_INTER) %{
+    equal(0x4);
+    not_equal(0x5);
+    less(0xC);
+    greater_equal(0xD);
+    less_equal(0xE);
+    greater(0xF);
+  %}
+%}
+
+// Comparison Code, unsigned compare.  Used by FP also, with
+// C2 (unordered) turned into GT or LT already.  The other bits
+// C0 and C3 are turned into Carry & Zero flags.
+operand cmpOpU() %{
+  match(Bool);
+
+  format %{ "" %}
+  interface(COND_INTER) %{
+    equal(0x4);
+    not_equal(0x5);
+    less(0x2);
+    greater_equal(0x3);
+    less_equal(0x6);
+    greater(0x7);
+  %}
+%}
+
+// Comparison Code for FP conditional move
+operand cmpOp_fcmov() %{
+  match(Bool);
+
+  format %{ "" %}
+  interface(COND_INTER) %{
+    equal        (0x0C8);
+    not_equal    (0x1C8);
+    less         (0x0C0);
+    greater_equal(0x1C0);
+    less_equal   (0x0D0);
+    greater      (0x1D0);
+  %}
+%}
+
+// Comparision Code used in long compares
+operand cmpOp_commute() %{
+  match(Bool);
+
+  format %{ "" %}
+  interface(COND_INTER) %{
+    equal(0x4);
+    not_equal(0x5);
+    less(0xF);
+    greater_equal(0xE);
+    less_equal(0xD);
+    greater(0xC);
+  %}
+%}
+
+//----------OPERAND CLASSES----------------------------------------------------
+// Operand Classes are groups of operands that are used as to simplify
+// instruction definitions by not requiring the AD writer to specify seperate
+// instructions for every form of operand when the instruction accepts
+// multiple operand types with the same basic encoding and format.  The classic
+// case of this is memory operands.
+
+opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
+               indIndex, indIndexScale, indIndexScaleOffset);
+
+// Long memory operations are encoded in 2 instructions and a +4 offset.
+// This means some kind of offset is always required and you cannot use
+// an oop as the offset (done when working on static globals).
+opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
+                    indIndex, indIndexScale, indIndexScaleOffset);
+
+
+//----------PIPELINE-----------------------------------------------------------
+// Rules which define the behavior of the target architectures pipeline.
+pipeline %{
+
+//----------ATTRIBUTES---------------------------------------------------------
+attributes %{
+  variable_size_instructions;        // Fixed size instructions
+  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
+  instruction_unit_size = 1;         // An instruction is 1 bytes long
+  instruction_fetch_unit_size = 16;  // The processor fetches one line
+  instruction_fetch_units = 1;       // of 16 bytes
+
+  // List of nop instructions
+  nops( MachNop );
+%}
+
+//----------RESOURCES----------------------------------------------------------
+// Resources are the functional units available to the machine
+
+// Generic P2/P3 pipeline
+// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
+// 3 instructions decoded per cycle.
+// 2 load/store ops per cycle, 1 branch, 1 FPU,
+// 2 ALU op, only ALU0 handles mul/div instructions.
+resources( D0, D1, D2, DECODE = D0 | D1 | D2,
+           MS0, MS1, MEM = MS0 | MS1,
+           BR, FPU,
+           ALU0, ALU1, ALU = ALU0 | ALU1 );
+
+//----------PIPELINE DESCRIPTION-----------------------------------------------
+// Pipeline Description specifies the stages in the machine's pipeline
+
+// Generic P2/P3 pipeline
+pipe_desc(S0, S1, S2, S3, S4, S5);
+
+//----------PIPELINE CLASSES---------------------------------------------------
+// Pipeline Classes describe the stages in which input and output are
+// referenced by the hardware pipeline.
+
+// Naming convention: ialu or fpu
+// Then: _reg
+// Then: _reg if there is a 2nd register
+// Then: _long if it's a pair of instructions implementing a long
+// Then: _fat if it requires the big decoder
+//   Or: _mem if it requires the big decoder and a memory unit.
+
+// Integer ALU reg operation
+pipe_class ialu_reg(eRegI dst) %{
+    single_instruction;
+    dst    : S4(write);
+    dst    : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg operation
+pipe_class ialu_reg_long(eRegL dst) %{
+    instruction_count(2);
+    dst    : S4(write);
+    dst    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    ALU    : S3(2);     // both alus
+%}
+
+// Integer ALU reg operation using big decoder
+pipe_class ialu_reg_fat(eRegI dst) %{
+    single_instruction;
+    dst    : S4(write);
+    dst    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg operation using big decoder
+pipe_class ialu_reg_long_fat(eRegL dst) %{
+    instruction_count(2);
+    dst    : S4(write);
+    dst    : S3(read);
+    D0     : S0(2);     // big decoder only; twice
+    ALU    : S3(2);     // any 2 alus
+%}
+
+// Integer ALU reg-reg operation
+pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg-reg operation
+pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
+    instruction_count(2);
+    dst    : S4(write);
+    src    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    ALU    : S3(2);     // both alus
+%}
+
+// Integer ALU reg-reg operation
+pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg-reg operation
+pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
+    instruction_count(2);
+    dst    : S4(write);
+    src    : S3(read);
+    D0     : S0(2);     // big decoder only; twice
+    ALU    : S3(2);     // both alus
+%}
+
+// Integer ALU reg-mem operation
+pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
+    single_instruction;
+    dst    : S5(write);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;        // any mem
+%}
+
+// Long ALU reg-mem operation
+pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
+    instruction_count(2);
+    dst    : S5(write);
+    mem    : S3(read);
+    D0     : S0(2);     // big decoder only; twice
+    ALU    : S4(2);     // any 2 alus
+    MEM    : S3(2);     // both mems
+%}
+
+// Integer mem operation (prefetch)
+pipe_class ialu_mem(memory mem)
+%{
+    single_instruction;
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    MEM    : S3;        // any mem
+%}
+
+// Integer Store to Memory
+pipe_class ialu_mem_reg(memory mem, eRegI src) %{
+    single_instruction;
+    mem    : S3(read);
+    src    : S5(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;
+%}
+
+// Long Store to Memory
+pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
+    instruction_count(2);
+    mem    : S3(read);
+    src    : S5(read);
+    D0     : S0(2);     // big decoder only; twice
+    ALU    : S4(2);     // any 2 alus
+    MEM    : S3(2);     // Both mems
+%}
+
+// Integer Store to Memory
+pipe_class ialu_mem_imm(memory mem) %{
+    single_instruction;
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;
+%}
+
+// Integer ALU0 reg-reg operation
+pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    D0     : S0;        // Big decoder only
+    ALU0   : S3;        // only alu0
+%}
+
+// Integer ALU0 reg-mem operation
+pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
+    single_instruction;
+    dst    : S5(write);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU0   : S4;        // ALU0 only
+    MEM    : S3;        // any mem
+%}
+
+// Integer ALU reg-reg operation
+pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
+    single_instruction;
+    cr     : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Integer ALU reg-imm operation
+pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
+    single_instruction;
+    cr     : S4(write);
+    src1   : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Integer ALU reg-mem operation
+pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
+    single_instruction;
+    cr     : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;
+%}
+
+// Conditional move reg-reg
+pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
+    instruction_count(4);
+    y      : S4(read);
+    q      : S3(read);
+    p      : S3(read);
+    DECODE : S0(4);     // any decoder
+%}
+
+// Conditional move reg-reg
+pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    cr     : S3(read);
+    DECODE : S0;        // any decoder
+%}
+
+// Conditional move reg-mem
+pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    cr     : S3(read);
+    DECODE : S0;        // any decoder
+    MEM    : S3;
+%}
+
+// Conditional move reg-reg long
+pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    cr     : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+%}
+
+// Conditional move double reg-reg
+pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    cr     : S3(read);
+    DECODE : S0;        // any decoder
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg(regD dst) %{
+    instruction_count(2);
+    dst    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    FPU    : S3;
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_reg(regD dst, regD src) %{
+    instruction_count(2);
+    dst    : S4(write);
+    src    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    FPU    : S3;
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
+    instruction_count(3);
+    dst    : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    DECODE : S0(3);     // any 3 decoders
+    FPU    : S3(2);
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
+    instruction_count(4);
+    dst    : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    src3   : S3(read);
+    DECODE : S0(4);     // any 3 decoders
+    FPU    : S3(2);
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
+    instruction_count(4);
+    dst    : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    src3   : S3(read);
+    DECODE : S1(3);     // any 3 decoders
+    D0     : S0;        // Big decoder only
+    FPU    : S3(2);
+    MEM    : S3;
+%}
+
+// Float reg-mem operation
+pipe_class fpu_reg_mem(regD dst, memory mem) %{
+    instruction_count(2);
+    dst    : S5(write);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    DECODE : S1;        // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// Float reg-mem operation
+pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
+    instruction_count(3);
+    dst    : S5(write);
+    src1   : S3(read);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    DECODE : S1(2);     // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// Float mem-reg operation
+pipe_class fpu_mem_reg(memory mem, regD src) %{
+    instruction_count(2);
+    src    : S5(read);
+    mem    : S3(read);
+    DECODE : S0;        // any decoder for FPU PUSH
+    D0     : S1;        // big decoder only
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
+    instruction_count(3);
+    src1   : S3(read);
+    src2   : S3(read);
+    mem    : S3(read);
+    DECODE : S0(2);     // any decoder for FPU PUSH
+    D0     : S1;        // big decoder only
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
+    instruction_count(3);
+    src1   : S3(read);
+    src2   : S3(read);
+    mem    : S4(read);
+    DECODE : S0;        // any decoder for FPU PUSH
+    D0     : S0(2);     // big decoder only
+    FPU    : S4;
+    MEM    : S3(2);     // any mem
+%}
+
+pipe_class fpu_mem_mem(memory dst, memory src1) %{
+    instruction_count(2);
+    src1   : S3(read);
+    dst    : S4(read);
+    D0     : S0(2);     // big decoder only
+    MEM    : S3(2);     // any mem
+%}
+
+pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
+    instruction_count(3);
+    src1   : S3(read);
+    src2   : S3(read);
+    dst    : S4(read);
+    D0     : S0(3);     // big decoder only
+    FPU    : S4;
+    MEM    : S3(3);     // any mem
+%}
+
+pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
+    instruction_count(3);
+    src1   : S4(read);
+    mem    : S4(read);
+    DECODE : S0;        // any decoder for FPU PUSH
+    D0     : S0(2);     // big decoder only
+    FPU    : S4;
+    MEM    : S3(2);     // any mem
+%}
+
+// Float load constant
+pipe_class fpu_reg_con(regD dst) %{
+    instruction_count(2);
+    dst    : S5(write);
+    D0     : S0;        // big decoder only for the load
+    DECODE : S1;        // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// Float load constant
+pipe_class fpu_reg_reg_con(regD dst, regD src) %{
+    instruction_count(3);
+    dst    : S5(write);
+    src    : S3(read);
+    D0     : S0;        // big decoder only for the load
+    DECODE : S1(2);     // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// UnConditional branch
+pipe_class pipe_jmp( label labl ) %{
+    single_instruction;
+    BR   : S3;
+%}
+
+// Conditional branch
+pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
+    single_instruction;
+    cr    : S1(read);
+    BR    : S3;
+%}
+
+// Allocation idiom
+pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
+    instruction_count(1); force_serialization;
+    fixed_latency(6);
+    heap_ptr : S3(read);
+    DECODE   : S0(3);
+    D0       : S2;
+    MEM      : S3;
+    ALU      : S3(2);
+    dst      : S5(write);
+    BR       : S5;
+%}
+
+// Generic big/slow expanded idiom
+pipe_class pipe_slow(  ) %{
+    instruction_count(10); multiple_bundles; force_serialization;
+    fixed_latency(100);
+    D0  : S0(2);
+    MEM : S3(2);
+%}
+
+// The real do-nothing guy
+pipe_class empty( ) %{
+    instruction_count(0);
+%}
+
+// Define the class for the Nop node
+define %{
+   MachNop = empty;
+%}
+
+%}
+
+//----------INSTRUCTIONS-------------------------------------------------------
+//
+// match      -- States which machine-independent subtree may be replaced
+//               by this instruction.
+// ins_cost   -- The estimated cost of this instruction is used by instruction
+//               selection to identify a minimum cost tree of machine
+//               instructions that matches a tree of machine-independent
+//               instructions.
+// format     -- A string providing the disassembly for this instruction.
+//               The value of an instruction's operand may be inserted
+//               by referring to it with a '$' prefix.
+// opcode     -- Three instruction opcodes may be provided.  These are referred
+//               to within an encode class as $primary, $secondary, and $tertiary
+//               respectively.  The primary opcode is commonly used to
+//               indicate the type of machine instruction, while secondary
+//               and tertiary are often used for prefix options or addressing
+//               modes.
+// ins_encode -- A list of encode classes with parameters. The encode class
+//               name must have been defined in an 'enc_class' specification
+//               in the encode section of the architecture description.
+
+//----------BSWAP-Instruction--------------------------------------------------
+instruct bytes_reverse_int(eRegI dst) %{
+  match(Set dst (ReverseBytesI dst));
+
+  format %{ "BSWAP  $dst" %}
+  opcode(0x0F, 0xC8);
+  ins_encode( OpcP, OpcSReg(dst) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct bytes_reverse_long(eRegL dst) %{
+  match(Set dst (ReverseBytesL dst));
+
+  format %{ "BSWAP  $dst.lo\n\t"
+            "BSWAP  $dst.hi\n\t"
+            "XCHG   $dst.lo $dst.hi" %}
+
+  ins_cost(125);
+  ins_encode( bswap_long_bytes(dst) );
+  ins_pipe( ialu_reg_reg);
+%}
+
+
+//----------Load/Store/Move Instructions---------------------------------------
+//----------Load Instructions--------------------------------------------------
+// Load Byte (8bit signed)
+instruct loadB(xRegI dst, memory mem) %{
+  match(Set dst (LoadB mem));
+
+  ins_cost(125);
+  format %{ "MOVSX8 $dst,$mem" %}
+  opcode(0xBE, 0x0F);
+  ins_encode( OpcS, OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Byte (8bit UNsigned)
+instruct loadUB(xRegI dst, memory mem, immI_255 bytemask) %{
+  match(Set dst (AndI (LoadB mem) bytemask));
+
+  ins_cost(125);
+  format %{ "MOVZX8 $dst,$mem" %}
+  opcode(0xB6, 0x0F);
+  ins_encode( OpcS, OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Char (16bit unsigned)
+instruct loadC(eRegI dst, memory mem) %{
+  match(Set dst (LoadC mem));
+
+  ins_cost(125);
+  format %{ "MOVZX  $dst,$mem" %}
+  opcode(0xB7, 0x0F);
+  ins_encode( OpcS, OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Integer
+instruct loadI(eRegI dst, memory mem) %{
+  match(Set dst (LoadI mem));
+
+  ins_cost(125);
+  format %{ "MOV    $dst,$mem" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Long.  Cannot clobber address while loading, so restrict address
+// register to ESI
+instruct loadL(eRegL dst, load_long_memory mem) %{
+  predicate(!((LoadLNode*)n)->require_atomic_access());
+  match(Set dst (LoadL mem));
+
+  ins_cost(250);
+  format %{ "MOV    $dst.lo,$mem\n\t"
+            "MOV    $dst.hi,$mem+4" %}
+  opcode(0x8B, 0x8B);
+  ins_encode( OpcP, RegMem(dst,mem), OpcS, RegMem_Hi(dst,mem));
+  ins_pipe( ialu_reg_long_mem );
+%}
+
+// Volatile Load Long.  Must be atomic, so do 64-bit FILD
+// then store it down to the stack and reload on the int
+// side.
+instruct loadL_volatile(stackSlotL dst, memory mem) %{
+  predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
+  match(Set dst (LoadL mem));
+
+  ins_cost(200);
+  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
+            "FISTp  $dst" %}
+  ins_encode(enc_loadL_volatile(mem,dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
+  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
+  match(Set dst (LoadL mem));
+  effect(TEMP tmp);
+  ins_cost(180);
+  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
+            "MOVSD  $dst,$tmp" %}
+  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
+  ins_pipe( pipe_slow );
+%}
+
+instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
+  predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
+  match(Set dst (LoadL mem));
+  effect(TEMP tmp);
+  ins_cost(160);
+  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
+            "MOVD   $dst.lo,$tmp\n\t"
+            "PSRLQ  $tmp,32\n\t"
+            "MOVD   $dst.hi,$tmp" %}
+  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Range
+instruct loadRange(eRegI dst, memory mem) %{
+  match(Set dst (LoadRange mem));
+
+  ins_cost(125);
+  format %{ "MOV    $dst,$mem" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+
+// Load Pointer
+instruct loadP(eRegP dst, memory mem) %{
+  match(Set dst (LoadP mem));
+
+  ins_cost(125);
+  format %{ "MOV    $dst,$mem" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Klass Pointer
+instruct loadKlass(eRegP dst, memory mem) %{
+  match(Set dst (LoadKlass mem));
+
+  ins_cost(125);
+  format %{ "MOV    $dst,$mem" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Short (16bit signed)
+instruct loadS(eRegI dst, memory mem) %{
+  match(Set dst (LoadS mem));
+
+  ins_cost(125);
+  format %{ "MOVSX  $dst,$mem" %}
+  opcode(0xBF, 0x0F);
+  ins_encode( OpcS, OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Double
+instruct loadD(regD dst, memory mem) %{
+  predicate(UseSSE<=1);
+  match(Set dst (LoadD mem));
+
+  ins_cost(150);
+  format %{ "FLD_D  ST,$mem\n\t"
+            "FSTP   $dst" %}
+  opcode(0xDD);               /* DD /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),
+              Pop_Reg_D(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+// Load Double to XMM
+instruct loadXD(regXD dst, memory mem) %{
+  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
+  match(Set dst (LoadD mem));
+  ins_cost(145);
+  format %{ "MOVSD  $dst,$mem" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+instruct loadXD_partial(regXD dst, memory mem) %{
+  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
+  match(Set dst (LoadD mem));
+  ins_cost(145);
+  format %{ "MOVLPD $dst,$mem" %}
+  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load to XMM register (single-precision floating point)
+// MOVSS instruction
+instruct loadX(regX dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (LoadF mem));
+  ins_cost(145);
+  format %{ "MOVSS  $dst,$mem" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Float
+instruct loadF(regF dst, memory mem) %{
+  predicate(UseSSE==0);
+  match(Set dst (LoadF mem));
+
+  ins_cost(150);
+  format %{ "FLD_S  ST,$mem\n\t"
+            "FSTP   $dst" %}
+  opcode(0xD9);               /* D9 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+// Load Aligned Packed Byte to XMM register
+instruct loadA8B(regXD dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (Load8B mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Short to XMM register
+instruct loadA4S(regXD dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (Load4S mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Char to XMM register
+instruct loadA4C(regXD dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (Load4C mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Integer to XMM register
+instruct load2IU(regXD dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (Load2I mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Single to XMM
+instruct loadA2F(regXD dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (Load2F mem));
+  ins_cost(145);
+  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Effective Address
+instruct leaP8(eRegP dst, indOffset8 mem) %{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "LEA    $dst,$mem" %}
+  opcode(0x8D);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_reg_fat );
+%}
+
+instruct leaP32(eRegP dst, indOffset32 mem) %{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "LEA    $dst,$mem" %}
+  opcode(0x8D);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_reg_fat );
+%}
+
+instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "LEA    $dst,$mem" %}
+  opcode(0x8D);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_reg_fat );
+%}
+
+instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "LEA    $dst,$mem" %}
+  opcode(0x8D);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_reg_fat );
+%}
+
+instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "LEA    $dst,$mem" %}
+  opcode(0x8D);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_reg_fat );
+%}
+
+// Load Constant
+instruct loadConI(eRegI dst, immI src) %{
+  match(Set dst src);
+
+  format %{ "MOV    $dst,$src" %}
+  ins_encode( LdImmI(dst, src) );
+  ins_pipe( ialu_reg_fat );
+%}
+
+// Load Constant zero
+instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
+  match(Set dst src);
+  effect(KILL cr);
+
+  ins_cost(50);
+  format %{ "XOR    $dst,$dst" %}
+  opcode(0x33);  /* + rd */
+  ins_encode( OpcP, RegReg( dst, dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct loadConP(eRegP dst, immP src) %{
+  match(Set dst src);
+
+  format %{ "MOV    $dst,$src" %}
+  opcode(0xB8);  /* + rd */
+  ins_encode( LdImmP(dst, src) );
+  ins_pipe( ialu_reg_fat );
+%}
+
+instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
+  match(Set dst src);
+  effect(KILL cr);
+  ins_cost(200);
+  format %{ "MOV    $dst.lo,$src.lo\n\t"
+            "MOV    $dst.hi,$src.hi" %}
+  opcode(0xB8);
+  ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
+  ins_pipe( ialu_reg_long_fat );
+%}
+
+instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
+  match(Set dst src);
+  effect(KILL cr);
+  ins_cost(150);
+  format %{ "XOR    $dst.lo,$dst.lo\n\t"
+            "XOR    $dst.hi,$dst.hi" %}
+  opcode(0x33,0x33);
+  ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// The instruction usage is guarded by predicate in operand immF().
+instruct loadConF(regF dst, immF src) %{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "FLD_S  ST,$src\n\t"
+            "FSTP   $dst" %}
+  opcode(0xD9, 0x00);       /* D9 /0 */
+  ins_encode(LdImmF(src), Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_con );
+%}
+
+// The instruction usage is guarded by predicate in operand immXF().
+instruct loadConX(regX dst, immXF con) %{
+  match(Set dst con);
+  ins_cost(125);
+  format %{ "MOVSS  $dst,[$con]" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
+  ins_pipe( pipe_slow );
+%}
+
+// The instruction usage is guarded by predicate in operand immXF0().
+instruct loadConX0(regX dst, immXF0 src) %{
+  match(Set dst src);
+  ins_cost(100);
+  format %{ "XORPS  $dst,$dst\t# float 0.0" %}
+  ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
+  ins_pipe( pipe_slow );
+%}
+
+// The instruction usage is guarded by predicate in operand immD().
+instruct loadConD(regD dst, immD src) %{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "FLD_D  ST,$src\n\t"
+            "FSTP   $dst" %}
+  ins_encode(LdImmD(src), Pop_Reg_D(dst) );
+  ins_pipe( fpu_reg_con );
+%}
+
+// The instruction usage is guarded by predicate in operand immXD().
+instruct loadConXD(regXD dst, immXD con) %{
+  match(Set dst con);
+  ins_cost(125);
+  format %{ "MOVSD  $dst,[$con]" %}
+  ins_encode(load_conXD(dst, con));
+  ins_pipe( pipe_slow );
+%}
+
+// The instruction usage is guarded by predicate in operand immXD0().
+instruct loadConXD0(regXD dst, immXD0 src) %{
+  match(Set dst src);
+  ins_cost(100);
+  format %{ "XORPD  $dst,$dst\t# double 0.0" %}
+  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Stack Slot
+instruct loadSSI(eRegI dst, stackSlotI src) %{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "MOV    $dst,$src" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,src));
+  ins_pipe( ialu_reg_mem );
+%}
+
+instruct loadSSL(eRegL dst, stackSlotL src) %{
+  match(Set dst src);
+
+  ins_cost(200);
+  format %{ "MOV    $dst,$src.lo\n\t"
+            "MOV    $dst+4,$src.hi" %}
+  opcode(0x8B, 0x8B);
+  ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
+  ins_pipe( ialu_mem_long_reg );
+%}
+
+// Load Stack Slot
+instruct loadSSP(eRegP dst, stackSlotP src) %{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "MOV    $dst,$src" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,src));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Load Stack Slot
+instruct loadSSF(regF dst, stackSlotF src) %{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "FLD_S  $src\n\t"
+            "FSTP   $dst" %}
+  opcode(0xD9);               /* D9 /0, FLD m32real */
+  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+// Load Stack Slot
+instruct loadSSD(regD dst, stackSlotD src) %{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "FLD_D  $src\n\t"
+            "FSTP   $dst" %}
+  opcode(0xDD);               /* DD /0, FLD m64real */
+  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
+              Pop_Reg_D(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+// Prefetch instructions.
+// Must be safe to execute with invalid address (cannot fault).
+
+instruct prefetchr0( memory mem ) %{
+  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
+  match(PrefetchRead mem);
+  ins_cost(0);
+  size(0);
+  format %{ "PREFETCHR (non-SSE is empty encoding)" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct prefetchr( memory mem ) %{
+  predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
+  match(PrefetchRead mem);
+  ins_cost(100);
+
+  format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
+  opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchrNTA( memory mem ) %{
+  predicate(UseSSE>=1 && ReadPrefetchInstr==0);
+  match(PrefetchRead mem);
+  ins_cost(100);
+
+  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchrT0( memory mem ) %{
+  predicate(UseSSE>=1 && ReadPrefetchInstr==1);
+  match(PrefetchRead mem);
+  ins_cost(100);
+
+  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchrT2( memory mem ) %{
+  predicate(UseSSE>=1 && ReadPrefetchInstr==2);
+  match(PrefetchRead mem);
+  ins_cost(100);
+
+  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchw0( memory mem ) %{
+  predicate(UseSSE==0 && !VM_Version::supports_3dnow());
+  match(PrefetchWrite mem);
+  ins_cost(0);
+  size(0);
+  format %{ "Prefetch (non-SSE is empty encoding)" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct prefetchw( memory mem ) %{
+  predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
+  match( PrefetchWrite mem );
+  ins_cost(100);
+
+  format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
+  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchwNTA( memory mem ) %{
+  predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
+  match(PrefetchWrite mem);
+  ins_cost(100);
+
+  format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchwT0( memory mem ) %{
+  predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
+  match(PrefetchWrite mem);
+  ins_cost(100);
+
+  format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchwT2( memory mem ) %{
+  predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
+  match(PrefetchWrite mem);
+  ins_cost(100);
+
+  format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
+  ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
+  ins_pipe(ialu_mem);
+%}
+
+//----------Store Instructions-------------------------------------------------
+
+// Store Byte
+instruct storeB(memory mem, xRegI src) %{
+  match(Set mem (StoreB mem src));
+
+  ins_cost(125);
+  format %{ "MOV8   $mem,$src" %}
+  opcode(0x88);
+  ins_encode( OpcP, RegMem( src, mem ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Store Char/Short
+instruct storeC(memory mem, eRegI src) %{
+  match(Set mem (StoreC mem src));
+
+  ins_cost(125);
+  format %{ "MOV16  $mem,$src" %}
+  opcode(0x89, 0x66);
+  ins_encode( OpcS, OpcP, RegMem( src, mem ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Store Integer
+instruct storeI(memory mem, eRegI src) %{
+  match(Set mem (StoreI mem src));
+
+  ins_cost(125);
+  format %{ "MOV    $mem,$src" %}
+  opcode(0x89);
+  ins_encode( OpcP, RegMem( src, mem ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Store Long
+instruct storeL(long_memory mem, eRegL src) %{
+  predicate(!((StoreLNode*)n)->require_atomic_access());
+  match(Set mem (StoreL mem src));
+
+  ins_cost(200);
+  format %{ "MOV    $mem,$src.lo\n\t"
+            "MOV    $mem+4,$src.hi" %}
+  opcode(0x89, 0x89);
+  ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
+  ins_pipe( ialu_mem_long_reg );
+%}
+
+// Volatile Store Long.  Must be atomic, so move it into
+// the FP TOS and then do a 64-bit FIST.  Has to probe the
+// target address before the store (for null-ptr checks)
+// so the memory operand is used twice in the encoding.
+instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
+  predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
+  match(Set mem (StoreL mem src));
+  effect( KILL cr );
+  ins_cost(400);
+  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
+            "FILD   $src\n\t"
+            "FISTp  $mem\t # 64-bit atomic volatile long store" %}
+  opcode(0x3B);
+  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
+  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
+  match(Set mem (StoreL mem src));
+  effect( TEMP tmp, KILL cr );
+  ins_cost(380);
+  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
+            "MOVSD  $tmp,$src\n\t"
+            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
+  opcode(0x3B);
+  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
+  ins_pipe( pipe_slow );
+%}
+
+instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
+  predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
+  match(Set mem (StoreL mem src));
+  effect( TEMP tmp2 , TEMP tmp, KILL cr );
+  ins_cost(360);
+  format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
+            "MOVD   $tmp,$src.lo\n\t"
+            "MOVD   $tmp2,$src.hi\n\t"
+            "PUNPCKLDQ $tmp,$tmp2\n\t"
+            "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
+  opcode(0x3B);
+  ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Pointer; for storing unknown oops and raw pointers
+instruct storeP(memory mem, anyRegP src) %{
+  match(Set mem (StoreP mem src));
+
+  ins_cost(125);
+  format %{ "MOV    $mem,$src" %}
+  opcode(0x89);
+  ins_encode( OpcP, RegMem( src, mem ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Store Integer Immediate
+instruct storeImmI(memory mem, immI src) %{
+  match(Set mem (StoreI mem src));
+
+  ins_cost(150);
+  format %{ "MOV    $mem,$src" %}
+  opcode(0xC7);               /* C7 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Store Short/Char Immediate
+instruct storeImmI16(memory mem, immI16 src) %{
+  predicate(UseStoreImmI16);
+  match(Set mem (StoreC mem src));
+
+  ins_cost(150);
+  format %{ "MOV16  $mem,$src" %}
+  opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
+  ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Store Pointer Immediate; null pointers or constant oops that do not
+// need card-mark barriers.
+instruct storeImmP(memory mem, immP src) %{
+  match(Set mem (StoreP mem src));
+
+  ins_cost(150);
+  format %{ "MOV    $mem,$src" %}
+  opcode(0xC7);               /* C7 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Store Byte Immediate
+instruct storeImmB(memory mem, immI8 src) %{
+  match(Set mem (StoreB mem src));
+
+  ins_cost(150);
+  format %{ "MOV8   $mem,$src" %}
+  opcode(0xC6);               /* C6 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Store Aligned Packed Byte XMM register to memory
+instruct storeA8B(memory mem, regXD src) %{
+  predicate(UseSSE>=1);
+  match(Set mem (Store8B mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed8B" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Aligned Packed Char/Short XMM register to memory
+instruct storeA4C(memory mem, regXD src) %{
+  predicate(UseSSE>=1);
+  match(Set mem (Store4C mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed4C" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Aligned Packed Integer XMM register to memory
+instruct storeA2I(memory mem, regXD src) %{
+  predicate(UseSSE>=1);
+  match(Set mem (Store2I mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed2I" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store CMS card-mark Immediate
+instruct storeImmCM(memory mem, immI8 src) %{
+  match(Set mem (StoreCM mem src));
+
+  ins_cost(150);
+  format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
+  opcode(0xC6);               /* C6 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Store Double
+instruct storeD( memory mem, regDPR1 src) %{
+  predicate(UseSSE<=1);
+  match(Set mem (StoreD mem src));
+
+  ins_cost(100);
+  format %{ "FST_D  $mem,$src" %}
+  opcode(0xDD);       /* DD /2 */
+  ins_encode( enc_FP_store(mem,src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+// Store double does rounding on x86
+instruct storeD_rounded( memory mem, regDPR1 src) %{
+  predicate(UseSSE<=1);
+  match(Set mem (StoreD mem (RoundDouble src)));
+
+  ins_cost(100);
+  format %{ "FST_D  $mem,$src\t# round" %}
+  opcode(0xDD);       /* DD /2 */
+  ins_encode( enc_FP_store(mem,src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+// Store XMM register to memory (double-precision floating points)
+// MOVSD instruction
+instruct storeXD(memory mem, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set mem (StoreD mem src));
+  ins_cost(95);
+  format %{ "MOVSD  $mem,$src" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Store XMM register to memory (single-precision floating point)
+// MOVSS instruction
+instruct storeX(memory mem, regX src) %{
+  predicate(UseSSE>=1);
+  match(Set mem (StoreF mem src));
+  ins_cost(95);
+  format %{ "MOVSS  $mem,$src" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Aligned Packed Single Float XMM register to memory
+instruct storeA2F(memory mem, regXD src) %{
+  predicate(UseSSE>=1);
+  match(Set mem (Store2F mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed2F" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Float
+instruct storeF( memory mem, regFPR1 src) %{
+  predicate(UseSSE==0);
+  match(Set mem (StoreF mem src));
+
+  ins_cost(100);
+  format %{ "FST_S  $mem,$src" %}
+  opcode(0xD9);       /* D9 /2 */
+  ins_encode( enc_FP_store(mem,src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+// Store Float does rounding on x86
+instruct storeF_rounded( memory mem, regFPR1 src) %{
+  predicate(UseSSE==0);
+  match(Set mem (StoreF mem (RoundFloat src)));
+
+  ins_cost(100);
+  format %{ "FST_S  $mem,$src\t# round" %}
+  opcode(0xD9);       /* D9 /2 */
+  ins_encode( enc_FP_store(mem,src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+// Store Float does rounding on x86
+instruct storeF_Drounded( memory mem, regDPR1 src) %{
+  predicate(UseSSE<=1);
+  match(Set mem (StoreF mem (ConvD2F src)));
+
+  ins_cost(100);
+  format %{ "FST_S  $mem,$src\t# D-round" %}
+  opcode(0xD9);       /* D9 /2 */
+  ins_encode( enc_FP_store(mem,src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+// Store immediate Float value (it is faster than store from FPU register)
+// The instruction usage is guarded by predicate in operand immF().
+instruct storeF_imm( memory mem, immF src) %{
+  match(Set mem (StoreF mem src));
+
+  ins_cost(50);
+  format %{ "MOV    $mem,$src\t# store float" %}
+  opcode(0xC7);               /* C7 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Store immediate Float value (it is faster than store from XMM register)
+// The instruction usage is guarded by predicate in operand immXF().
+instruct storeX_imm( memory mem, immXF src) %{
+  match(Set mem (StoreF mem src));
+
+  ins_cost(50);
+  format %{ "MOV    $mem,$src\t# store float" %}
+  opcode(0xC7);               /* C7 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Store Integer to stack slot
+instruct storeSSI(stackSlotI dst, eRegI src) %{
+  match(Set dst src);
+
+  ins_cost(100);
+  format %{ "MOV    $dst,$src" %}
+  opcode(0x89);
+  ins_encode( OpcPRegSS( dst, src ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Store Integer to stack slot
+instruct storeSSP(stackSlotP dst, eRegP src) %{
+  match(Set dst src);
+
+  ins_cost(100);
+  format %{ "MOV    $dst,$src" %}
+  opcode(0x89);
+  ins_encode( OpcPRegSS( dst, src ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Store Long to stack slot
+instruct storeSSL(stackSlotL dst, eRegL src) %{
+  match(Set dst src);
+
+  ins_cost(200);
+  format %{ "MOV    $dst,$src.lo\n\t"
+            "MOV    $dst+4,$src.hi" %}
+  opcode(0x89, 0x89);
+  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
+  ins_pipe( ialu_mem_long_reg );
+%}
+
+//----------MemBar Instructions-----------------------------------------------
+// Memory barrier flavors
+
+instruct membar_acquire() %{
+  match(MemBarAcquire);
+  ins_cost(400);
+
+  size(0);
+  format %{ "MEMBAR-acquire" %}
+  ins_encode( enc_membar_acquire );
+  ins_pipe(pipe_slow);
+%}
+
+instruct membar_acquire_lock() %{
+  match(MemBarAcquire);
+  predicate(Matcher::prior_fast_lock(n));
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
+  ins_encode( );
+  ins_pipe(empty);
+%}
+
+instruct membar_release() %{
+  match(MemBarRelease);
+  ins_cost(400);
+
+  size(0);
+  format %{ "MEMBAR-release" %}
+  ins_encode( enc_membar_release );
+  ins_pipe(pipe_slow);
+%}
+
+instruct membar_release_lock() %{
+  match(MemBarRelease);
+  predicate(Matcher::post_fast_unlock(n));
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
+  ins_encode( );
+  ins_pipe(empty);
+%}
+
+instruct membar_volatile() %{
+  match(MemBarVolatile);
+  ins_cost(400);
+
+  format %{ "MEMBAR-volatile" %}
+  ins_encode( enc_membar_volatile );
+  ins_pipe(pipe_slow);
+%}
+
+instruct unnecessary_membar_volatile() %{
+  match(MemBarVolatile);
+  predicate(Matcher::post_store_load_barrier(n));
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
+  ins_encode( );
+  ins_pipe(empty);
+%}
+
+//----------Move Instructions--------------------------------------------------
+instruct castX2P(eAXRegP dst, eAXRegI src) %{
+  match(Set dst (CastX2P src));
+  format %{ "# X2P  $dst, $src" %}
+  ins_encode( /*empty encoding*/ );
+  ins_cost(0);
+  ins_pipe(empty);
+%}
+
+instruct castP2X(eRegI dst, eRegP src ) %{
+  match(Set dst (CastP2X src));
+  ins_cost(50);
+  format %{ "MOV    $dst, $src\t# CastP2X" %}
+  ins_encode( enc_Copy( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+//----------Conditional Move---------------------------------------------------
+// Conditional move
+instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cop $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+instruct cmovI_regU( eRegI dst, eRegI src, eFlagsRegU cr, cmpOpU cop ) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cop $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+// Conditional move
+instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
+  ins_cost(250);
+  format %{ "CMOV$cop $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
+  ins_pipe( pipe_cmov_mem );
+%}
+
+// Conditional move
+instruct cmovI_memu(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
+  ins_cost(250);
+  format %{ "CMOV$cop $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
+  ins_pipe( pipe_cmov_mem );
+%}
+
+// Conditional move
+instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cop $dst,$src\t# ptr" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+// Conditional move (non-P6 version)
+// Note:  a CMoveP is generated for  stubs and native wrappers
+//        regardless of whether we are on a P6, so we
+//        emulate a cmov here
+instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
+  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
+  ins_cost(300);
+  format %{ "Jn$cop   skip\n\t"
+          "MOV    $dst,$src\t# pointer\n"
+      "skip:" %}
+  opcode(0x8b);
+  ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
+  ins_pipe( pipe_cmov_reg );
+%}
+
+// Conditional move
+instruct cmovP_regU(eRegP dst, eRegP src, eFlagsRegU cr, cmpOpU cop ) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cop $dst,$src\t# ptr" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+// DISABLED: Requires the ADLC to emit a bottom_type call that
+// correctly meets the two pointer arguments; one is an incoming
+// register but the other is a memory operand.  ALSO appears to
+// be buggy with implicit null checks.
+//
+//// Conditional move
+//instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
+//  predicate(VM_Version::supports_cmov() );
+//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
+//  ins_cost(250);
+//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
+//  opcode(0x0F,0x40);
+//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
+//  ins_pipe( pipe_cmov_mem );
+//%}
+//
+//// Conditional move
+//instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
+//  predicate(VM_Version::supports_cmov() );
+//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
+//  ins_cost(250);
+//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
+//  opcode(0x0F,0x40);
+//  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
+//  ins_pipe( pipe_cmov_mem );
+//%}
+
+// Conditional move
+instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "FCMOV$cop $dst,$src\t# double" %}
+  opcode(0xDA);
+  ins_encode( enc_cmov_d(cop,src) );
+  ins_pipe( pipe_cmovD_reg );
+%}
+
+// Conditional move
+instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
+  predicate(UseSSE==0);
+  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "FCMOV$cop $dst,$src\t# float" %}
+  opcode(0xDA);
+  ins_encode( enc_cmov_d(cop,src) );
+  ins_pipe( pipe_cmovD_reg );
+%}
+
+// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
+instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "Jn$cop   skip\n\t"
+            "MOV    $dst,$src\t# double\n"
+      "skip:" %}
+  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
+  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
+  ins_pipe( pipe_cmovD_reg );
+%}
+
+// Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
+instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
+  predicate(UseSSE==0);
+  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "Jn$cop    skip\n\t"
+            "MOV    $dst,$src\t# float\n"
+      "skip:" %}
+  opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
+  ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
+  ins_pipe( pipe_cmovD_reg );
+%}
+
+// No CMOVE with SSE/SSE2
+instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
+  predicate (UseSSE>=1);
+  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "Jn$cop   skip\n\t"
+            "MOVSS  $dst,$src\t# float\n"
+      "skip:" %}
+  ins_encode %{
+    Label skip;
+    // Invert sense of branch from sense of CMOV
+    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
+    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
+    __ bind(skip);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+// No CMOVE with SSE/SSE2
+instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
+  predicate (UseSSE>=2);
+  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "Jn$cop   skip\n\t"
+            "MOVSD  $dst,$src\t# float\n"
+      "skip:" %}
+  ins_encode %{
+    Label skip;
+    // Invert sense of branch from sense of CMOV
+    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
+    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
+    __ bind(skip);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+// unsigned version
+instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
+  predicate (UseSSE>=1);
+  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "Jn$cop   skip\n\t"
+            "MOVSS  $dst,$src\t# float\n"
+      "skip:" %}
+  ins_encode %{
+    Label skip;
+    // Invert sense of branch from sense of CMOV
+    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
+    __ movflt($dst$$XMMRegister, $src$$XMMRegister);
+    __ bind(skip);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+// unsigned version
+instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
+  predicate (UseSSE>=2);
+  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "Jn$cop   skip\n\t"
+            "MOVSD  $dst,$src\t# float\n"
+      "skip:" %}
+  ins_encode %{
+    Label skip;
+    // Invert sense of branch from sense of CMOV
+    __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
+    __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
+    __ bind(skip);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
+            "CMOV$cop $dst.hi,$src.hi" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
+  predicate(VM_Version::supports_cmov() );
+  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
+            "CMOV$cop $dst.hi,$src.hi" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+//----------Arithmetic Instructions--------------------------------------------
+//----------Addition Instructions----------------------------------------------
+// Integer Addition Instructions
+instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "ADD    $dst,$src" %}
+  opcode(0x03);
+  ins_encode( OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  format %{ "ADD    $dst,$src" %}
+  opcode(0x81, 0x00); /* /0 id */
+  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
+  predicate(UseIncDec);
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  size(1);
+  format %{ "INC    $dst" %}
+  opcode(0x40); /*  */
+  ins_encode( Opc_plus( primary, dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
+  match(Set dst (AddI src0 src1));
+  ins_cost(110);
+
+  format %{ "LEA    $dst,[$src0 + $src1]" %}
+  opcode(0x8D); /* 0x8D /r */
+  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
+  match(Set dst (AddP src0 src1));
+  ins_cost(110);
+
+  format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
+  opcode(0x8D); /* 0x8D /r */
+  ins_encode( OpcP, RegLea( dst, src0, src1 ) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
+  predicate(UseIncDec);
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  size(1);
+  format %{ "DEC    $dst" %}
+  opcode(0x48); /*  */
+  ins_encode( Opc_plus( primary, dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (AddP dst src));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "ADD    $dst,$src" %}
+  opcode(0x03);
+  ins_encode( OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
+  match(Set dst (AddP dst src));
+  effect(KILL cr);
+
+  format %{ "ADD    $dst,$src" %}
+  opcode(0x81,0x00); /* Opcode 81 /0 id */
+  // ins_encode( RegImm( dst, src) );
+  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
+  match(Set dst (AddI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "ADD    $dst,$src" %}
+  opcode(0x03);
+  ins_encode( OpcP, RegMem( dst, src) );
+  ins_pipe( ialu_reg_mem );
+%}
+
+instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "ADD    $dst,$src" %}
+  opcode(0x01);  /* Opcode 01 /r */
+  ins_encode( OpcP, RegMem( src, dst ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Add Memory with Immediate
+instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "ADD    $dst,$src" %}
+  opcode(0x81);               /* Opcode 81 /0 id */
+  ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
+  ins_pipe( ialu_mem_imm );
+%}
+
+instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "INC    $dst" %}
+  opcode(0xFF);               /* Opcode FF /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,dst));
+  ins_pipe( ialu_mem_imm );
+%}
+
+instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "DEC    $dst" %}
+  opcode(0xFF);               /* Opcode FF /1 */
+  ins_encode( OpcP, RMopc_Mem(0x01,dst));
+  ins_pipe( ialu_mem_imm );
+%}
+
+
+instruct checkCastPP( eRegP dst ) %{
+  match(Set dst (CheckCastPP dst));
+
+  size(0);
+  format %{ "#checkcastPP of $dst" %}
+  ins_encode( /*empty encoding*/ );
+  ins_pipe( empty );
+%}
+
+instruct castPP( eRegP dst ) %{
+  match(Set dst (CastPP dst));
+  format %{ "#castPP of $dst" %}
+  ins_encode( /*empty encoding*/ );
+  ins_pipe( empty );
+%}
+
+instruct castII( eRegI dst ) %{
+  match(Set dst (CastII dst));
+  format %{ "#castII of $dst" %}
+  ins_encode( /*empty encoding*/ );
+  ins_cost(0);
+  ins_pipe( empty );
+%}
+
+
+// Load-locked - same as a regular pointer load when used with compare-swap
+instruct loadPLocked(eRegP dst, memory mem) %{
+  match(Set dst (LoadPLocked mem));
+
+  ins_cost(125);
+  format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,mem));
+  ins_pipe( ialu_reg_mem );
+%}
+
+// LoadLong-locked - same as a volatile long load when used with compare-swap
+instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
+  predicate(UseSSE<=1);
+  match(Set dst (LoadLLocked mem));
+
+  ins_cost(200);
+  format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
+            "FISTp  $dst" %}
+  ins_encode(enc_loadL_volatile(mem,dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
+  predicate(UseSSE>=2);
+  match(Set dst (LoadLLocked mem));
+  effect(TEMP tmp);
+  ins_cost(180);
+  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
+            "MOVSD  $dst,$tmp" %}
+  ins_encode(enc_loadLX_volatile(mem, dst, tmp));
+  ins_pipe( pipe_slow );
+%}
+
+instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
+  predicate(UseSSE>=2);
+  match(Set dst (LoadLLocked mem));
+  effect(TEMP tmp);
+  ins_cost(160);
+  format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
+            "MOVD   $dst.lo,$tmp\n\t"
+            "PSRLQ  $tmp,32\n\t"
+            "MOVD   $dst.hi,$tmp" %}
+  ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
+  ins_pipe( pipe_slow );
+%}
+
+// Conditional-store of the updated heap-top.
+// Used during allocation of the shared heap.
+// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
+instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
+  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
+  // EAX is killed if there is contention, but then it's also unused.
+  // In the common case of no contention, EAX holds the new oop address.
+  format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
+  ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
+  ins_pipe( pipe_cmpxchg );
+%}
+
+// Conditional-store of a long value
+// Returns a boolean value (0/1) on success.  Implemented with a CMPXCHG8 on Intel.
+// mem_ptr can actually be in either ESI or EDI
+instruct storeLConditional( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
+  match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
+  effect(KILL cr);
+  // EDX:EAX is killed if there is contention, but then it's also unused.
+  // In the common case of no contention, EDX:EAX holds the new oop address.
+  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
+            "MOV    $res,0\n\t"
+            "JNE,s  fail\n\t"
+            "MOV    $res,1\n"
+          "fail:" %}
+  ins_encode( enc_cmpxchg8(mem_ptr),
+              enc_flags_ne_to_boolean(res) );
+  ins_pipe( pipe_cmpxchg );
+%}
+
+// Conditional-store of a long value
+// ZF flag is set on success, reset otherwise. Implemented with a CMPXCHG8 on Intel.
+// mem_ptr can actually be in either ESI or EDI
+instruct storeLConditional_flags( eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr, immI0 zero ) %{
+  match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
+  // EDX:EAX is killed if there is contention, but then it's also unused.
+  // In the common case of no contention, EDX:EAX holds the new oop address.
+  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t" %}
+  ins_encode( enc_cmpxchg8(mem_ptr) );
+  ins_pipe( pipe_cmpxchg );
+%}
+
+// No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
+
+instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
+  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
+  effect(KILL cr, KILL oldval);
+  format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
+            "MOV    $res,0\n\t"
+            "JNE,s  fail\n\t"
+            "MOV    $res,1\n"
+          "fail:" %}
+  ins_encode( enc_cmpxchg8(mem_ptr),
+              enc_flags_ne_to_boolean(res) );
+  ins_pipe( pipe_cmpxchg );
+%}
+
+instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
+  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
+  effect(KILL cr, KILL oldval);
+  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
+            "MOV    $res,0\n\t"
+            "JNE,s  fail\n\t"
+            "MOV    $res,1\n"
+          "fail:" %}
+  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
+  ins_pipe( pipe_cmpxchg );
+%}
+
+instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
+  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
+  effect(KILL cr, KILL oldval);
+  format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
+            "MOV    $res,0\n\t"
+            "JNE,s  fail\n\t"
+            "MOV    $res,1\n"
+          "fail:" %}
+  ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
+  ins_pipe( pipe_cmpxchg );
+%}
+
+//----------Subtraction Instructions-------------------------------------------
+// Integer Subtraction Instructions
+instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (SubI dst src));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SUB    $dst,$src" %}
+  opcode(0x2B);
+  ins_encode( OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
+  match(Set dst (SubI dst src));
+  effect(KILL cr);
+
+  format %{ "SUB    $dst,$src" %}
+  opcode(0x81,0x05);  /* Opcode 81 /5 */
+  // ins_encode( RegImm( dst, src) );
+  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
+  match(Set dst (SubI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "SUB    $dst,$src" %}
+  opcode(0x2B);
+  ins_encode( OpcP, RegMem( dst, src) );
+  ins_pipe( ialu_reg_mem );
+%}
+
+instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "SUB    $dst,$src" %}
+  opcode(0x29);  /* Opcode 29 /r */
+  ins_encode( OpcP, RegMem( src, dst ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Subtract from a pointer
+instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
+  match(Set dst (AddP dst (SubI zero src)));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SUB    $dst,$src" %}
+  opcode(0x2B);
+  ins_encode( OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
+  match(Set dst (SubI zero dst));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "NEG    $dst" %}
+  opcode(0xF7,0x03);  // Opcode F7 /3
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+
+//----------Multiplication/Division Instructions-------------------------------
+// Integer Multiplication Instructions
+// Multiply Register
+instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (MulI dst src));
+  effect(KILL cr);
+
+  size(3);
+  ins_cost(300);
+  format %{ "IMUL   $dst,$src" %}
+  opcode(0xAF, 0x0F);
+  ins_encode( OpcS, OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg_alu0 );
+%}
+
+// Multiply 32-bit Immediate
+instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
+  match(Set dst (MulI src imm));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "IMUL   $dst,$src,$imm" %}
+  opcode(0x69);  /* 69 /r id */
+  ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
+  ins_pipe( ialu_reg_reg_alu0 );
+%}
+
+instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
+  match(Set dst src);
+  effect(KILL cr);
+
+  // Note that this is artificially increased to make it more expensive than loadConL
+  ins_cost(250);
+  format %{ "MOV    EAX,$src\t// low word only" %}
+  opcode(0xB8);
+  ins_encode( LdImmL_Lo(dst, src) );
+  ins_pipe( ialu_reg_fat );
+%}
+
+// Multiply by 32-bit Immediate, taking the shifted high order results
+//  (special case for shift by 32)
+instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
+  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
+  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
+             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
+             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
+  effect(USE src1, KILL cr);
+
+  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
+  ins_cost(0*100 + 1*400 - 150);
+  format %{ "IMUL   EDX:EAX,$src1" %}
+  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
+  ins_pipe( pipe_slow );
+%}
+
+// Multiply by 32-bit Immediate, taking the shifted high order results
+instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
+  match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
+  predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
+             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
+             _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
+  effect(USE src1, KILL cr);
+
+  // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
+  ins_cost(1*100 + 1*400 - 150);
+  format %{ "IMUL   EDX:EAX,$src1\n\t"
+            "SAR    EDX,$cnt-32" %}
+  ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
+  ins_pipe( pipe_slow );
+%}
+
+// Multiply Memory 32-bit Immediate
+instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
+  match(Set dst (MulI (LoadI src) imm));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "IMUL   $dst,$src,$imm" %}
+  opcode(0x69);  /* 69 /r id */
+  ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
+  ins_pipe( ialu_reg_mem_alu0 );
+%}
+
+// Multiply Memory
+instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
+  match(Set dst (MulI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(350);
+  format %{ "IMUL   $dst,$src" %}
+  opcode(0xAF, 0x0F);
+  ins_encode( OpcS, OpcP, RegMem( dst, src) );
+  ins_pipe( ialu_reg_mem_alu0 );
+%}
+
+// Multiply Register Int to Long
+instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
+  // Basic Idea: long = (long)int * (long)int
+  match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
+  effect(DEF dst, USE src, USE src1, KILL flags);
+
+  ins_cost(300);
+  format %{ "IMUL   $dst,$src1" %}
+
+  ins_encode( long_int_multiply( dst, src1 ) );
+  ins_pipe( ialu_reg_reg_alu0 );
+%}
+
+instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
+  // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
+  match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
+  effect(KILL flags);
+
+  ins_cost(300);
+  format %{ "MUL    $dst,$src1" %}
+
+  ins_encode( long_uint_multiply(dst, src1) );
+  ins_pipe( ialu_reg_reg_alu0 );
+%}
+
+// Multiply Register Long
+instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
+  match(Set dst (MulL dst src));
+  effect(KILL cr, TEMP tmp);
+  ins_cost(4*100+3*400);
+// Basic idea: lo(result) = lo(x_lo * y_lo)
+//             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
+  format %{ "MOV    $tmp,$src.lo\n\t"
+            "IMUL   $tmp,EDX\n\t"
+            "MOV    EDX,$src.hi\n\t"
+            "IMUL   EDX,EAX\n\t"
+            "ADD    $tmp,EDX\n\t"
+            "MUL    EDX:EAX,$src.lo\n\t"
+            "ADD    EDX,$tmp" %}
+  ins_encode( long_multiply( dst, src, tmp ) );
+  ins_pipe( pipe_slow );
+%}
+
+// Multiply Register Long by small constant
+instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
+  match(Set dst (MulL dst src));
+  effect(KILL cr, TEMP tmp);
+  ins_cost(2*100+2*400);
+  size(12);
+// Basic idea: lo(result) = lo(src * EAX)
+//             hi(result) = hi(src * EAX) + lo(src * EDX)
+  format %{ "IMUL   $tmp,EDX,$src\n\t"
+            "MOV    EDX,$src\n\t"
+            "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
+            "ADD    EDX,$tmp" %}
+  ins_encode( long_multiply_con( dst, src, tmp ) );
+  ins_pipe( pipe_slow );
+%}
+
+// Integer DIV with Register
+instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
+  match(Set rax (DivI rax div));
+  effect(KILL rdx, KILL cr);
+  size(26);
+  ins_cost(30*100+10*100);
+  format %{ "CMP    EAX,0x80000000\n\t"
+            "JNE,s  normal\n\t"
+            "XOR    EDX,EDX\n\t"
+            "CMP    ECX,-1\n\t"
+            "JE,s   done\n"
+    "normal: CDQ\n\t"
+            "IDIV   $div\n\t"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode( cdq_enc, OpcP, RegOpc(div) );
+  ins_pipe( ialu_reg_reg_alu0 );
+%}
+
+// Divide Register Long
+instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
+  match(Set dst (DivL src1 src2));
+  effect( KILL cr, KILL cx, KILL bx );
+  ins_cost(10000);
+  format %{ "PUSH   $src1.hi\n\t"
+            "PUSH   $src1.lo\n\t"
+            "PUSH   $src2.hi\n\t"
+            "PUSH   $src2.lo\n\t"
+            "CALL   SharedRuntime::ldiv\n\t"
+            "ADD    ESP,16" %}
+  ins_encode( long_div(src1,src2) );
+  ins_pipe( pipe_slow );
+%}
+
+// Integer DIVMOD with Register, both quotient and mod results
+instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
+  match(DivModI rax div);
+  effect(KILL cr);
+  size(26);
+  ins_cost(30*100+10*100);
+  format %{ "CMP    EAX,0x80000000\n\t"
+            "JNE,s  normal\n\t"
+            "XOR    EDX,EDX\n\t"
+            "CMP    ECX,-1\n\t"
+            "JE,s   done\n"
+    "normal: CDQ\n\t"
+            "IDIV   $div\n\t"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode( cdq_enc, OpcP, RegOpc(div) );
+  ins_pipe( pipe_slow );
+%}
+
+// Integer MOD with Register
+instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
+  match(Set rdx (ModI rax div));
+  effect(KILL rax, KILL cr);
+
+  size(26);
+  ins_cost(300);
+  format %{ "CDQ\n\t"
+            "IDIV   $div" %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode( cdq_enc, OpcP, RegOpc(div) );
+  ins_pipe( ialu_reg_reg_alu0 );
+%}
+
+// Remainder Register Long
+instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
+  match(Set dst (ModL src1 src2));
+  effect( KILL cr, KILL cx, KILL bx );
+  ins_cost(10000);
+  format %{ "PUSH   $src1.hi\n\t"
+            "PUSH   $src1.lo\n\t"
+            "PUSH   $src2.hi\n\t"
+            "PUSH   $src2.lo\n\t"
+            "CALL   SharedRuntime::lrem\n\t"
+            "ADD    ESP,16" %}
+  ins_encode( long_mod(src1,src2) );
+  ins_pipe( pipe_slow );
+%}
+
+// Integer Shift Instructions
+// Shift Left by one
+instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
+  match(Set dst (LShiftI dst shift));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SHL    $dst,$shift" %}
+  opcode(0xD1, 0x4);  /* D1 /4 */
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+// Shift Left by 8-bit immediate
+instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
+  match(Set dst (LShiftI dst shift));
+  effect(KILL cr);
+
+  size(3);
+  format %{ "SHL    $dst,$shift" %}
+  opcode(0xC1, 0x4);  /* C1 /4 ib */
+  ins_encode( RegOpcImm( dst, shift) );
+  ins_pipe( ialu_reg );
+%}
+
+// Shift Left by variable
+instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
+  match(Set dst (LShiftI dst shift));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SHL    $dst,$shift" %}
+  opcode(0xD3, 0x4);  /* D3 /4 */
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+// Arithmetic shift right by one
+instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
+  match(Set dst (RShiftI dst shift));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SAR    $dst,$shift" %}
+  opcode(0xD1, 0x7);  /* D1 /7 */
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+// Arithmetic shift right by one
+instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+  format %{ "SAR    $dst,$shift" %}
+  opcode(0xD1, 0x7);  /* D1 /7 */
+  ins_encode( OpcP, RMopc_Mem(secondary,dst) );
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Arithmetic Shift Right by 8-bit immediate
+instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
+  match(Set dst (RShiftI dst shift));
+  effect(KILL cr);
+
+  size(3);
+  format %{ "SAR    $dst,$shift" %}
+  opcode(0xC1, 0x7);  /* C1 /7 ib */
+  ins_encode( RegOpcImm( dst, shift ) );
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Arithmetic Shift Right by 8-bit immediate
+instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "SAR    $dst,$shift" %}
+  opcode(0xC1, 0x7);  /* C1 /7 ib */
+  ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Arithmetic Shift Right by variable
+instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
+  match(Set dst (RShiftI dst shift));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SAR    $dst,$shift" %}
+  opcode(0xD3, 0x7);  /* D3 /7 */
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+// Logical shift right by one
+instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
+  match(Set dst (URShiftI dst shift));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SHR    $dst,$shift" %}
+  opcode(0xD1, 0x5);  /* D1 /5 */
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+// Logical Shift Right by 8-bit immediate
+instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
+  match(Set dst (URShiftI dst shift));
+  effect(KILL cr);
+
+  size(3);
+  format %{ "SHR    $dst,$shift" %}
+  opcode(0xC1, 0x5);  /* C1 /5 ib */
+  ins_encode( RegOpcImm( dst, shift) );
+  ins_pipe( ialu_reg );
+%}
+
+// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
+// This idiom is used by the compiler for the i2b bytecode.
+instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{
+  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
+  effect(KILL cr);
+
+  size(3);
+  format %{ "MOVSX  $dst,$src :8" %}
+  opcode(0xBE, 0x0F);
+  ins_encode( OpcS, OpcP, RegReg( dst, src));
+  ins_pipe( ialu_reg_reg );
+%}
+
+// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
+// This idiom is used by the compiler the i2s bytecode.
+instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{
+  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
+  effect(KILL cr);
+
+  size(3);
+  format %{ "MOVSX  $dst,$src :16" %}
+  opcode(0xBF, 0x0F);
+  ins_encode( OpcS, OpcP, RegReg( dst, src));
+  ins_pipe( ialu_reg_reg );
+%}
+
+
+// Logical Shift Right by variable
+instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
+  match(Set dst (URShiftI dst shift));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "SHR    $dst,$shift" %}
+  opcode(0xD3, 0x5);  /* D3 /5 */
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+
+//----------Logical Instructions-----------------------------------------------
+//----------Integer Logical Instructions---------------------------------------
+// And Instructions
+// And Register with Register
+instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (AndI dst src));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "AND    $dst,$src" %}
+  opcode(0x23);
+  ins_encode( OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+// And Register with Immediate
+instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
+  match(Set dst (AndI dst src));
+  effect(KILL cr);
+
+  format %{ "AND    $dst,$src" %}
+  opcode(0x81,0x04);  /* Opcode 81 /4 */
+  // ins_encode( RegImm( dst, src) );
+  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
+  ins_pipe( ialu_reg );
+%}
+
+// And Register with Memory
+instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
+  match(Set dst (AndI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "AND    $dst,$src" %}
+  opcode(0x23);
+  ins_encode( OpcP, RegMem( dst, src) );
+  ins_pipe( ialu_reg_mem );
+%}
+
+// And Memory with Register
+instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "AND    $dst,$src" %}
+  opcode(0x21);  /* Opcode 21 /r */
+  ins_encode( OpcP, RegMem( src, dst ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// And Memory with Immediate
+instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "AND    $dst,$src" %}
+  opcode(0x81, 0x4);  /* Opcode 81 /4 id */
+  // ins_encode( MemImm( dst, src) );
+  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
+  ins_pipe( ialu_mem_imm );
+%}
+
+// Or Instructions
+// Or Register with Register
+instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (OrI dst src));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "OR     $dst,$src" %}
+  opcode(0x0B);
+  ins_encode( OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+// Or Register with Immediate
+instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
+  match(Set dst (OrI dst src));
+  effect(KILL cr);
+
+  format %{ "OR     $dst,$src" %}
+  opcode(0x81,0x01);  /* Opcode 81 /1 id */
+  // ins_encode( RegImm( dst, src) );
+  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
+  ins_pipe( ialu_reg );
+%}
+
+// Or Register with Memory
+instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
+  match(Set dst (OrI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "OR     $dst,$src" %}
+  opcode(0x0B);
+  ins_encode( OpcP, RegMem( dst, src) );
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Or Memory with Register
+instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "OR     $dst,$src" %}
+  opcode(0x09);  /* Opcode 09 /r */
+  ins_encode( OpcP, RegMem( src, dst ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Or Memory with Immediate
+instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "OR     $dst,$src" %}
+  opcode(0x81,0x1);  /* Opcode 81 /1 id */
+  // ins_encode( MemImm( dst, src) );
+  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
+  ins_pipe( ialu_mem_imm );
+%}
+
+// ROL/ROR
+// ROL expand
+instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "ROL    $dst, $shift" %}
+  opcode(0xD1, 0x0); /* Opcode D1 /0 */
+  ins_encode( OpcP, RegOpc( dst ));
+  ins_pipe( ialu_reg );
+%}
+
+instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "ROL    $dst, $shift" %}
+  opcode(0xC1, 0x0); /*Opcode /C1  /0  */
+  ins_encode( RegOpcImm(dst, shift) );
+  ins_pipe(ialu_reg);
+%}
+
+instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "ROL    $dst, $shift" %}
+  opcode(0xD3, 0x0);    /* Opcode D3 /0 */
+  ins_encode(OpcP, RegOpc(dst));
+  ins_pipe( ialu_reg_reg );
+%}
+// end of ROL expand
+
+// ROL 32bit by one once
+instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
+  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
+
+  expand %{
+    rolI_eReg_imm1(dst, lshift, cr);
+  %}
+%}
+
+// ROL 32bit var by imm8 once
+instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
+  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
+  match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
+
+  expand %{
+    rolI_eReg_imm8(dst, lshift, cr);
+  %}
+%}
+
+// ROL 32bit var by var once
+instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
+  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
+
+  expand %{
+    rolI_eReg_CL(dst, shift, cr);
+  %}
+%}
+
+// ROL 32bit var by var once
+instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
+  match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
+
+  expand %{
+    rolI_eReg_CL(dst, shift, cr);
+  %}
+%}
+
+// ROR expand
+instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "ROR    $dst, $shift" %}
+  opcode(0xD1,0x1);  /* Opcode D1 /1 */
+  ins_encode( OpcP, RegOpc( dst ) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
+  effect (USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "ROR    $dst, $shift" %}
+  opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
+  ins_encode( RegOpcImm(dst, shift) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "ROR    $dst, $shift" %}
+  opcode(0xD3, 0x1);    /* Opcode D3 /1 */
+  ins_encode(OpcP, RegOpc(dst));
+  ins_pipe( ialu_reg_reg );
+%}
+// end of ROR expand
+
+// ROR right once
+instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
+  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
+
+  expand %{
+    rorI_eReg_imm1(dst, rshift, cr);
+  %}
+%}
+
+// ROR 32bit by immI8 once
+instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
+  predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
+  match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
+
+  expand %{
+    rorI_eReg_imm8(dst, rshift, cr);
+  %}
+%}
+
+// ROR 32bit var by var once
+instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
+  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
+
+  expand %{
+    rorI_eReg_CL(dst, shift, cr);
+  %}
+%}
+
+// ROR 32bit var by var once
+instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
+  match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
+
+  expand %{
+    rorI_eReg_CL(dst, shift, cr);
+  %}
+%}
+
+// Xor Instructions
+// Xor Register with Register
+instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (XorI dst src));
+  effect(KILL cr);
+
+  size(2);
+  format %{ "XOR    $dst,$src" %}
+  opcode(0x33);
+  ins_encode( OpcP, RegReg( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+// Xor Register with Immediate
+instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
+  match(Set dst (XorI dst src));
+  effect(KILL cr);
+
+  format %{ "XOR    $dst,$src" %}
+  opcode(0x81,0x06);  /* Opcode 81 /6 id */
+  // ins_encode( RegImm( dst, src) );
+  ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
+  ins_pipe( ialu_reg );
+%}
+
+// Xor Register with Memory
+instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
+  match(Set dst (XorI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "XOR    $dst,$src" %}
+  opcode(0x33);
+  ins_encode( OpcP, RegMem(dst, src) );
+  ins_pipe( ialu_reg_mem );
+%}
+
+// Xor Memory with Register
+instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "XOR    $dst,$src" %}
+  opcode(0x31);  /* Opcode 31 /r */
+  ins_encode( OpcP, RegMem( src, dst ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+// Xor Memory with Immediate
+instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
+  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "XOR    $dst,$src" %}
+  opcode(0x81,0x6);  /* Opcode 81 /6 id */
+  ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
+  ins_pipe( ialu_mem_imm );
+%}
+
+//----------Convert Int to Boolean---------------------------------------------
+
+instruct movI_nocopy(eRegI dst, eRegI src) %{
+  effect( DEF dst, USE src );
+  format %{ "MOV    $dst,$src" %}
+  ins_encode( enc_Copy( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
+  effect( USE_DEF dst, USE src, KILL cr );
+
+  size(4);
+  format %{ "NEG    $dst\n\t"
+            "ADC    $dst,$src" %}
+  ins_encode( neg_reg(dst),
+              OpcRegReg(0x13,dst,src) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
+  match(Set dst (Conv2B src));
+
+  expand %{
+    movI_nocopy(dst,src);
+    ci2b(dst,src,cr);
+  %}
+%}
+
+instruct movP_nocopy(eRegI dst, eRegP src) %{
+  effect( DEF dst, USE src );
+  format %{ "MOV    $dst,$src" %}
+  ins_encode( enc_Copy( dst, src) );
+  ins_pipe( ialu_reg_reg );
+%}
+
+instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
+  effect( USE_DEF dst, USE src, KILL cr );
+  format %{ "NEG    $dst\n\t"
+            "ADC    $dst,$src" %}
+  ins_encode( neg_reg(dst),
+              OpcRegReg(0x13,dst,src) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
+  match(Set dst (Conv2B src));
+
+  expand %{
+    movP_nocopy(dst,src);
+    cp2b(dst,src,cr);
+  %}
+%}
+
+instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
+  match(Set dst (CmpLTMask p q));
+  effect( KILL cr );
+  ins_cost(400);
+
+  // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
+  format %{ "XOR    $dst,$dst\n\t"
+            "CMP    $p,$q\n\t"
+            "SETlt  $dst\n\t"
+            "NEG    $dst" %}
+  ins_encode( OpcRegReg(0x33,dst,dst),
+              OpcRegReg(0x3B,p,q),
+              setLT_reg(dst), neg_reg(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
+  match(Set dst (CmpLTMask dst zero));
+  effect( DEF dst, KILL cr );
+  ins_cost(100);
+
+  format %{ "SAR    $dst,31" %}
+  opcode(0xC1, 0x7);  /* C1 /7 ib */
+  ins_encode( RegOpcImm( dst, 0x1F ) );
+  ins_pipe( ialu_reg );
+%}
+
+
+instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
+  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
+  effect( KILL tmp, KILL cr );
+  ins_cost(400);
+  // annoyingly, $tmp has no edges so you cant ask for it in
+  // any format or encoding
+  format %{ "SUB    $p,$q\n\t"
+            "SBB    ECX,ECX\n\t"
+            "AND    ECX,$y\n\t"
+            "ADD    $p,ECX" %}
+  ins_encode( enc_cmpLTP(p,q,y,tmp) );
+  ins_pipe( pipe_cmplt );
+%}
+
+/* If I enable this, I encourage spilling in the inner loop of compress.
+instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
+  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
+  effect( USE_KILL tmp, KILL cr );
+  ins_cost(400);
+
+  format %{ "SUB    $p,$q\n\t"
+            "SBB    ECX,ECX\n\t"
+            "AND    ECX,$y\n\t"
+            "ADD    $p,ECX" %}
+  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
+%}
+*/
+
+//----------Long Instructions------------------------------------------------
+// Add Long Register with Register
+instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
+  match(Set dst (AddL dst src));
+  effect(KILL cr);
+  ins_cost(200);
+  format %{ "ADD    $dst.lo,$src.lo\n\t"
+            "ADC    $dst.hi,$src.hi" %}
+  opcode(0x03, 0x13);
+  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Add Long Register with Immediate
+instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
+  match(Set dst (AddL dst src));
+  effect(KILL cr);
+  format %{ "ADD    $dst.lo,$src.lo\n\t"
+            "ADC    $dst.hi,$src.hi" %}
+  opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
+  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Add Long Register with Memory
+instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
+  match(Set dst (AddL dst (LoadL mem)));
+  effect(KILL cr);
+  ins_cost(125);
+  format %{ "ADD    $dst.lo,$mem\n\t"
+            "ADC    $dst.hi,$mem+4" %}
+  opcode(0x03, 0x13);
+  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
+  ins_pipe( ialu_reg_long_mem );
+%}
+
+// Subtract Long Register with Register.
+instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
+  match(Set dst (SubL dst src));
+  effect(KILL cr);
+  ins_cost(200);
+  format %{ "SUB    $dst.lo,$src.lo\n\t"
+            "SBB    $dst.hi,$src.hi" %}
+  opcode(0x2B, 0x1B);
+  ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Subtract Long Register with Immediate
+instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
+  match(Set dst (SubL dst src));
+  effect(KILL cr);
+  format %{ "SUB    $dst.lo,$src.lo\n\t"
+            "SBB    $dst.hi,$src.hi" %}
+  opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
+  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Subtract Long Register with Memory
+instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
+  match(Set dst (SubL dst (LoadL mem)));
+  effect(KILL cr);
+  ins_cost(125);
+  format %{ "SUB    $dst.lo,$mem\n\t"
+            "SBB    $dst.hi,$mem+4" %}
+  opcode(0x2B, 0x1B);
+  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
+  ins_pipe( ialu_reg_long_mem );
+%}
+
+instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
+  match(Set dst (SubL zero dst));
+  effect(KILL cr);
+  ins_cost(300);
+  format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
+  ins_encode( neg_long(dst) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// And Long Register with Register
+instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
+  match(Set dst (AndL dst src));
+  effect(KILL cr);
+  format %{ "AND    $dst.lo,$src.lo\n\t"
+            "AND    $dst.hi,$src.hi" %}
+  opcode(0x23,0x23);
+  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// And Long Register with Immediate
+instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
+  match(Set dst (AndL dst src));
+  effect(KILL cr);
+  format %{ "AND    $dst.lo,$src.lo\n\t"
+            "AND    $dst.hi,$src.hi" %}
+  opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
+  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// And Long Register with Memory
+instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
+  match(Set dst (AndL dst (LoadL mem)));
+  effect(KILL cr);
+  ins_cost(125);
+  format %{ "AND    $dst.lo,$mem\n\t"
+            "AND    $dst.hi,$mem+4" %}
+  opcode(0x23, 0x23);
+  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
+  ins_pipe( ialu_reg_long_mem );
+%}
+
+// Or Long Register with Register
+instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
+  match(Set dst (OrL dst src));
+  effect(KILL cr);
+  format %{ "OR     $dst.lo,$src.lo\n\t"
+            "OR     $dst.hi,$src.hi" %}
+  opcode(0x0B,0x0B);
+  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Or Long Register with Immediate
+instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
+  match(Set dst (OrL dst src));
+  effect(KILL cr);
+  format %{ "OR     $dst.lo,$src.lo\n\t"
+            "OR     $dst.hi,$src.hi" %}
+  opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
+  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Or Long Register with Memory
+instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
+  match(Set dst (OrL dst (LoadL mem)));
+  effect(KILL cr);
+  ins_cost(125);
+  format %{ "OR     $dst.lo,$mem\n\t"
+            "OR     $dst.hi,$mem+4" %}
+  opcode(0x0B,0x0B);
+  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
+  ins_pipe( ialu_reg_long_mem );
+%}
+
+// Xor Long Register with Register
+instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
+  match(Set dst (XorL dst src));
+  effect(KILL cr);
+  format %{ "XOR    $dst.lo,$src.lo\n\t"
+            "XOR    $dst.hi,$src.hi" %}
+  opcode(0x33,0x33);
+  ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Xor Long Register with Immediate
+instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
+  match(Set dst (XorL dst src));
+  effect(KILL cr);
+  format %{ "XOR    $dst.lo,$src.lo\n\t"
+            "XOR    $dst.hi,$src.hi" %}
+  opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
+  ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Xor Long Register with Memory
+instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
+  match(Set dst (XorL dst (LoadL mem)));
+  effect(KILL cr);
+  ins_cost(125);
+  format %{ "XOR    $dst.lo,$mem\n\t"
+            "XOR    $dst.hi,$mem+4" %}
+  opcode(0x33,0x33);
+  ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
+  ins_pipe( ialu_reg_long_mem );
+%}
+
+// Shift Left Long by 1-31
+instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
+  match(Set dst (LShiftL dst cnt));
+  effect(KILL cr);
+  ins_cost(200);
+  format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
+            "SHL    $dst.lo,$cnt" %}
+  opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
+  ins_encode( move_long_small_shift(dst,cnt) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Shift Left Long by 32-63
+instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
+  match(Set dst (LShiftL dst cnt));
+  effect(KILL cr);
+  ins_cost(300);
+  format %{ "MOV    $dst.hi,$dst.lo\n"
+          "\tSHL    $dst.hi,$cnt-32\n"
+          "\tXOR    $dst.lo,$dst.lo" %}
+  opcode(0xC1, 0x4);  /* C1 /4 ib */
+  ins_encode( move_long_big_shift_clr(dst,cnt) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Shift Left Long by variable
+instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
+  match(Set dst (LShiftL dst shift));
+  effect(KILL cr);
+  ins_cost(500+200);
+  size(17);
+  format %{ "TEST   $shift,32\n\t"
+            "JEQ,s  small\n\t"
+            "MOV    $dst.hi,$dst.lo\n\t"
+            "XOR    $dst.lo,$dst.lo\n"
+    "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
+            "SHL    $dst.lo,$shift" %}
+  ins_encode( shift_left_long( dst, shift ) );
+  ins_pipe( pipe_slow );
+%}
+
+// Shift Right Long by 1-31
+instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
+  match(Set dst (URShiftL dst cnt));
+  effect(KILL cr);
+  ins_cost(200);
+  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
+            "SHR    $dst.hi,$cnt" %}
+  opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
+  ins_encode( move_long_small_shift(dst,cnt) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Shift Right Long by 32-63
+instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
+  match(Set dst (URShiftL dst cnt));
+  effect(KILL cr);
+  ins_cost(300);
+  format %{ "MOV    $dst.lo,$dst.hi\n"
+          "\tSHR    $dst.lo,$cnt-32\n"
+          "\tXOR    $dst.hi,$dst.hi" %}
+  opcode(0xC1, 0x5);  /* C1 /5 ib */
+  ins_encode( move_long_big_shift_clr(dst,cnt) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Shift Right Long by variable
+instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
+  match(Set dst (URShiftL dst shift));
+  effect(KILL cr);
+  ins_cost(600);
+  size(17);
+  format %{ "TEST   $shift,32\n\t"
+            "JEQ,s  small\n\t"
+            "MOV    $dst.lo,$dst.hi\n\t"
+            "XOR    $dst.hi,$dst.hi\n"
+    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
+            "SHR    $dst.hi,$shift" %}
+  ins_encode( shift_right_long( dst, shift ) );
+  ins_pipe( pipe_slow );
+%}
+
+// Shift Right Long by 1-31
+instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
+  match(Set dst (RShiftL dst cnt));
+  effect(KILL cr);
+  ins_cost(200);
+  format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
+            "SAR    $dst.hi,$cnt" %}
+  opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
+  ins_encode( move_long_small_shift(dst,cnt) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Shift Right Long by 32-63
+instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
+  match(Set dst (RShiftL dst cnt));
+  effect(KILL cr);
+  ins_cost(300);
+  format %{ "MOV    $dst.lo,$dst.hi\n"
+          "\tSAR    $dst.lo,$cnt-32\n"
+          "\tSAR    $dst.hi,31" %}
+  opcode(0xC1, 0x7);  /* C1 /7 ib */
+  ins_encode( move_long_big_shift_sign(dst,cnt) );
+  ins_pipe( ialu_reg_long );
+%}
+
+// Shift Right arithmetic Long by variable
+instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
+  match(Set dst (RShiftL dst shift));
+  effect(KILL cr);
+  ins_cost(600);
+  size(18);
+  format %{ "TEST   $shift,32\n\t"
+            "JEQ,s  small\n\t"
+            "MOV    $dst.lo,$dst.hi\n\t"
+            "SAR    $dst.hi,31\n"
+    "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
+            "SAR    $dst.hi,$shift" %}
+  ins_encode( shift_right_arith_long( dst, shift ) );
+  ins_pipe( pipe_slow );
+%}
+
+
+//----------Double Instructions------------------------------------------------
+// Double Math
+
+// Compare & branch
+
+// P6 version of float compare, sets condition codes in EFLAGS
+instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
+  predicate(VM_Version::supports_cmov() && UseSSE <=1);
+  match(Set cr (CmpD src1 src2));
+  effect(KILL rax);
+  ins_cost(150);
+  format %{ "FLD    $src1\n\t"
+            "FUCOMIP ST,$src2  // P6 instruction\n\t"
+            "JNP    exit\n\t"
+            "MOV    ah,1       // saw a NaN, set CF\n\t"
+            "SAHF\n"
+     "exit:\tNOP               // avoid branch to branch" %}
+  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
+  ins_encode( Push_Reg_D(src1),
+              OpcP, RegOpc(src2),
+              cmpF_P6_fixup );
+  ins_pipe( pipe_slow );
+%}
+
+// Compare & branch
+instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
+  predicate(UseSSE<=1);
+  match(Set cr (CmpD src1 src2));
+  effect(KILL rax);
+  ins_cost(200);
+  format %{ "FLD    $src1\n\t"
+            "FCOMp  $src2\n\t"
+            "FNSTSW AX\n\t"
+            "TEST   AX,0x400\n\t"
+            "JZ,s   flags\n\t"
+            "MOV    AH,1\t# unordered treat as LT\n"
+    "flags:\tSAHF" %}
+  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
+  ins_encode( Push_Reg_D(src1),
+              OpcP, RegOpc(src2),
+              fpu_flags);
+  ins_pipe( pipe_slow );
+%}
+
+// Compare vs zero into -1,0,1
+instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
+  predicate(UseSSE<=1);
+  match(Set dst (CmpD3 src1 zero));
+  effect(KILL cr, KILL rax);
+  ins_cost(280);
+  format %{ "FTSTD  $dst,$src1" %}
+  opcode(0xE4, 0xD9);
+  ins_encode( Push_Reg_D(src1),
+              OpcS, OpcP, PopFPU,
+              CmpF_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Compare into -1,0,1
+instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
+  predicate(UseSSE<=1);
+  match(Set dst (CmpD3 src1 src2));
+  effect(KILL cr, KILL rax);
+  ins_cost(300);
+  format %{ "FCMPD  $dst,$src1,$src2" %}
+  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
+  ins_encode( Push_Reg_D(src1),
+              OpcP, RegOpc(src2),
+              CmpF_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// float compare and set condition codes in EFLAGS by XMM regs
+instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
+  predicate(UseSSE>=2);
+  match(Set cr (CmpD dst src));
+  effect(KILL rax);
+  ins_cost(125);
+  format %{ "COMISD $dst,$src\n"
+          "\tJNP    exit\n"
+          "\tMOV    ah,1       // saw a NaN, set CF\n"
+          "\tSAHF\n"
+     "exit:\tNOP               // avoid branch to branch" %}
+  opcode(0x66, 0x0F, 0x2F);
+  ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
+  ins_pipe( pipe_slow );
+%}
+
+// float compare and set condition codes in EFLAGS by XMM regs
+instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
+  predicate(UseSSE>=2);
+  match(Set cr (CmpD dst (LoadD src)));
+  effect(KILL rax);
+  ins_cost(145);
+  format %{ "COMISD $dst,$src\n"
+          "\tJNP    exit\n"
+          "\tMOV    ah,1       // saw a NaN, set CF\n"
+          "\tSAHF\n"
+     "exit:\tNOP               // avoid branch to branch" %}
+  opcode(0x66, 0x0F, 0x2F);
+  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
+  ins_pipe( pipe_slow );
+%}
+
+// Compare into -1,0,1 in XMM
+instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
+  predicate(UseSSE>=2);
+  match(Set dst (CmpD3 src1 src2));
+  effect(KILL cr);
+  ins_cost(255);
+  format %{ "XOR    $dst,$dst\n"
+          "\tCOMISD $src1,$src2\n"
+          "\tJP,s   nan\n"
+          "\tJEQ,s  exit\n"
+          "\tJA,s   inc\n"
+      "nan:\tDEC    $dst\n"
+          "\tJMP,s  exit\n"
+      "inc:\tINC    $dst\n"
+      "exit:"
+                %}
+  opcode(0x66, 0x0F, 0x2F);
+  ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
+             CmpX_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Compare into -1,0,1 in XMM and memory
+instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
+  predicate(UseSSE>=2);
+  match(Set dst (CmpD3 src1 (LoadD mem)));
+  effect(KILL cr);
+  ins_cost(275);
+  format %{ "COMISD $src1,$mem\n"
+          "\tMOV    $dst,0\t\t# do not blow flags\n"
+          "\tJP,s   nan\n"
+          "\tJEQ,s  exit\n"
+          "\tJA,s   inc\n"
+      "nan:\tDEC    $dst\n"
+          "\tJMP,s  exit\n"
+      "inc:\tINC    $dst\n"
+      "exit:"
+                %}
+  opcode(0x66, 0x0F, 0x2F);
+  ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
+             LdImmI(dst,0x0), CmpX_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+
+instruct subD_reg(regD dst, regD src) %{
+  predicate (UseSSE <=1);
+  match(Set dst (SubD dst src));
+
+  format %{ "FLD    $src\n\t"
+            "DSUBp  $dst,ST" %}
+  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
+  ins_cost(150);
+  ins_encode( Push_Reg_D(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
+  predicate (UseSSE <=1);
+  match(Set dst (RoundDouble (SubD src1 src2)));
+  ins_cost(250);
+
+  format %{ "FLD    $src2\n\t"
+            "DSUB   ST,$src1\n\t"
+            "FSTP_D $dst\t# D-round" %}
+  opcode(0xD8, 0x5);
+  ins_encode( Push_Reg_D(src2),
+              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
+  ins_pipe( fpu_mem_reg_reg );
+%}
+
+
+instruct subD_reg_mem(regD dst, memory src) %{
+  predicate (UseSSE <=1);
+  match(Set dst (SubD dst (LoadD src)));
+  ins_cost(150);
+
+  format %{ "FLD    $src\n\t"
+            "DSUBp  $dst,ST" %}
+  opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct absD_reg(regDPR1 dst, regDPR1 src) %{
+  predicate (UseSSE<=1);
+  match(Set dst (AbsD src));
+  ins_cost(100);
+  format %{ "FABS" %}
+  opcode(0xE1, 0xD9);
+  ins_encode( OpcS, OpcP );
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct absXD_reg( regXD dst ) %{
+  predicate(UseSSE>=2);
+  match(Set dst (AbsD dst));
+  format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
+  ins_encode( AbsXD_encoding(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct negD_reg(regDPR1 dst, regDPR1 src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (NegD src));
+  ins_cost(100);
+  format %{ "FCHS" %}
+  opcode(0xE0, 0xD9);
+  ins_encode( OpcS, OpcP );
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct negXD_reg( regXD dst ) %{
+  predicate(UseSSE>=2);
+  match(Set dst (NegD dst));
+  format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
+  ins_encode %{
+     __ xorpd($dst$$XMMRegister,
+              ExternalAddress((address)double_signflip_pool));
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct addD_reg(regD dst, regD src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (AddD dst src));
+  format %{ "FLD    $src\n\t"
+            "DADD   $dst,ST" %}
+  size(4);
+  ins_cost(150);
+  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
+  ins_encode( Push_Reg_D(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+
+instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
+  predicate(UseSSE<=1);
+  match(Set dst (RoundDouble (AddD src1 src2)));
+  ins_cost(250);
+
+  format %{ "FLD    $src2\n\t"
+            "DADD   ST,$src1\n\t"
+            "FSTP_D $dst\t# D-round" %}
+  opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
+  ins_encode( Push_Reg_D(src2),
+              OpcP, RegOpc(src1), Pop_Mem_D(dst) );
+  ins_pipe( fpu_mem_reg_reg );
+%}
+
+
+instruct addD_reg_mem(regD dst, memory src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (AddD dst (LoadD src)));
+  ins_cost(150);
+
+  format %{ "FLD    $src\n\t"
+            "DADDp  $dst,ST" %}
+  opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+// add-to-memory
+instruct addD_mem_reg(memory dst, regD src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
+  ins_cost(150);
+
+  format %{ "FLD_D  $dst\n\t"
+            "DADD   ST,$src\n\t"
+            "FST_D  $dst" %}
+  opcode(0xDD, 0x0);
+  ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
+              Opcode(0xD8), RegOpc(src),
+              set_instruction_start,
+              Opcode(0xDD), RMopc_Mem(0x03,dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct addD_reg_imm1(regD dst, immD1 src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (AddD dst src));
+  ins_cost(125);
+  format %{ "FLD1\n\t"
+            "DADDp  $dst,ST" %}
+  opcode(0xDE, 0x00);
+  ins_encode( LdImmD(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg );
+%}
+
+instruct addD_reg_imm(regD dst, immD src) %{
+  predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
+  match(Set dst (AddD dst src));
+  ins_cost(200);
+  format %{ "FLD_D  [$src]\n\t"
+            "DADDp  $dst,ST" %}
+  opcode(0xDE, 0x00);       /* DE /0 */
+  ins_encode( LdImmD(src),
+              OpcP, RegOpc(dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
+  predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
+  match(Set dst (RoundDouble (AddD src con)));
+  ins_cost(200);
+  format %{ "FLD_D  [$con]\n\t"
+            "DADD   ST,$src\n\t"
+            "FSTP_D $dst\t# D-round" %}
+  opcode(0xD8, 0x00);       /* D8 /0 */
+  ins_encode( LdImmD(con),
+              OpcP, RegOpc(src), Pop_Mem_D(dst));
+  ins_pipe( fpu_mem_reg_con );
+%}
+
+// Add two double precision floating point values in xmm
+instruct addXD_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (AddD dst src));
+  format %{ "ADDSD  $dst,$src" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct addXD_imm(regXD dst, immXD con) %{
+  predicate(UseSSE>=2);
+  match(Set dst (AddD dst con));
+  format %{ "ADDSD  $dst,[$con]" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct addXD_mem(regXD dst, memory mem) %{
+  predicate(UseSSE>=2);
+  match(Set dst (AddD dst (LoadD mem)));
+  format %{ "ADDSD  $dst,$mem" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Sub two double precision floating point values in xmm
+instruct subXD_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (SubD dst src));
+  format %{ "SUBSD  $dst,$src" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct subXD_imm(regXD dst, immXD con) %{
+  predicate(UseSSE>=2);
+  match(Set dst (SubD dst con));
+  format %{ "SUBSD  $dst,[$con]" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct subXD_mem(regXD dst, memory mem) %{
+  predicate(UseSSE>=2);
+  match(Set dst (SubD dst (LoadD mem)));
+  format %{ "SUBSD  $dst,$mem" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Mul two double precision floating point values in xmm
+instruct mulXD_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MulD dst src));
+  format %{ "MULSD  $dst,$src" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct mulXD_imm(regXD dst, immXD con) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MulD dst con));
+  format %{ "MULSD  $dst,[$con]" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct mulXD_mem(regXD dst, memory mem) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MulD dst (LoadD mem)));
+  format %{ "MULSD  $dst,$mem" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Div two double precision floating point values in xmm
+instruct divXD_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (DivD dst src));
+  format %{ "DIVSD  $dst,$src" %}
+  opcode(0xF2, 0x0F, 0x5E);
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct divXD_imm(regXD dst, immXD con) %{
+  predicate(UseSSE>=2);
+  match(Set dst (DivD dst con));
+  format %{ "DIVSD  $dst,[$con]" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
+  ins_pipe( pipe_slow );
+%}
+
+instruct divXD_mem(regXD dst, memory mem) %{
+  predicate(UseSSE>=2);
+  match(Set dst (DivD dst (LoadD mem)));
+  format %{ "DIVSD  $dst,$mem" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+
+instruct mulD_reg(regD dst, regD src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (MulD dst src));
+  format %{ "FLD    $src\n\t"
+            "DMULp  $dst,ST" %}
+  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
+  ins_cost(150);
+  ins_encode( Push_Reg_D(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Strict FP instruction biases argument before multiply then
+// biases result to avoid double rounding of subnormals.
+//
+// scale arg1 by multiplying arg1 by 2^(-15360)
+// load arg2
+// multiply scaled arg1 by arg2
+// rescale product by 2^(15360)
+//
+instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
+  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
+  match(Set dst (MulD dst src));
+  ins_cost(1);   // Select this instruction for all strict FP double multiplies
+
+  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
+            "DMULp  $dst,ST\n\t"
+            "FLD    $src\n\t"
+            "DMULp  $dst,ST\n\t"
+            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
+            "DMULp  $dst,ST\n\t" %}
+  opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
+  ins_encode( strictfp_bias1(dst),
+              Push_Reg_D(src),
+              OpcP, RegOpc(dst),
+              strictfp_bias2(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct mulD_reg_imm(regD dst, immD src) %{
+  predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
+  match(Set dst (MulD dst src));
+  ins_cost(200);
+  format %{ "FLD_D  [$src]\n\t"
+            "DMULp  $dst,ST" %}
+  opcode(0xDE, 0x1); /* DE /1 */
+  ins_encode( LdImmD(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+
+instruct mulD_reg_mem(regD dst, memory src) %{
+  predicate( UseSSE<=1 );
+  match(Set dst (MulD dst (LoadD src)));
+  ins_cost(200);
+  format %{ "FLD_D  $src\n\t"
+            "DMULp  $dst,ST" %}
+  opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+//
+// Cisc-alternate to reg-reg multiply
+instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
+  predicate( UseSSE<=1 );
+  match(Set dst (MulD src (LoadD mem)));
+  ins_cost(250);
+  format %{ "FLD_D  $mem\n\t"
+            "DMUL   ST,$src\n\t"
+            "FSTP_D $dst" %}
+  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
+              OpcReg_F(src),
+              Pop_Reg_D(dst) );
+  ins_pipe( fpu_reg_reg_mem );
+%}
+
+
+// MACRO3 -- addD a mulD
+// This instruction is a '2-address' instruction in that the result goes
+// back to src2.  This eliminates a move from the macro; possibly the
+// register allocator will have to add it back (and maybe not).
+instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
+  predicate( UseSSE<=1 );
+  match(Set src2 (AddD (MulD src0 src1) src2));
+  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
+            "DMUL   ST,$src1\n\t"
+            "DADDp  $src2,ST" %}
+  ins_cost(250);
+  opcode(0xDD); /* LoadD DD /0 */
+  ins_encode( Push_Reg_F(src0),
+              FMul_ST_reg(src1),
+              FAddP_reg_ST(src2) );
+  ins_pipe( fpu_reg_reg_reg );
+%}
+
+
+// MACRO3 -- subD a mulD
+instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
+  predicate( UseSSE<=1 );
+  match(Set src2 (SubD (MulD src0 src1) src2));
+  format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
+            "DMUL   ST,$src1\n\t"
+            "DSUBRp $src2,ST" %}
+  ins_cost(250);
+  ins_encode( Push_Reg_F(src0),
+              FMul_ST_reg(src1),
+              Opcode(0xDE), Opc_plus(0xE0,src2));
+  ins_pipe( fpu_reg_reg_reg );
+%}
+
+
+instruct divD_reg(regD dst, regD src) %{
+  predicate( UseSSE<=1 );
+  match(Set dst (DivD dst src));
+
+  format %{ "FLD    $src\n\t"
+            "FDIVp  $dst,ST" %}
+  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
+  ins_cost(150);
+  ins_encode( Push_Reg_D(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Strict FP instruction biases argument before division then
+// biases result, to avoid double rounding of subnormals.
+//
+// scale dividend by multiplying dividend by 2^(-15360)
+// load divisor
+// divide scaled dividend by divisor
+// rescale quotient by 2^(15360)
+//
+instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
+  predicate (UseSSE<=1);
+  match(Set dst (DivD dst src));
+  predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
+  ins_cost(01);
+
+  format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
+            "DMULp  $dst,ST\n\t"
+            "FLD    $src\n\t"
+            "FDIVp  $dst,ST\n\t"
+            "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
+            "DMULp  $dst,ST\n\t" %}
+  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
+  ins_encode( strictfp_bias1(dst),
+              Push_Reg_D(src),
+              OpcP, RegOpc(dst),
+              strictfp_bias2(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
+  predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
+  match(Set dst (RoundDouble (DivD src1 src2)));
+
+  format %{ "FLD    $src1\n\t"
+            "FDIV   ST,$src2\n\t"
+            "FSTP_D $dst\t# D-round" %}
+  opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
+  ins_encode( Push_Reg_D(src1),
+              OpcP, RegOpc(src2), Pop_Mem_D(dst) );
+  ins_pipe( fpu_mem_reg_reg );
+%}
+
+
+instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
+  predicate(UseSSE<=1);
+  match(Set dst (ModD dst src));
+  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
+
+  format %{ "DMOD   $dst,$src" %}
+  ins_cost(250);
+  ins_encode(Push_Reg_Mod_D(dst, src),
+              emitModD(),
+              Push_Result_Mod_D(src),
+              Pop_Reg_D(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
+  predicate(UseSSE>=2);
+  match(Set dst (ModD src0 src1));
+  effect(KILL rax, KILL cr);
+
+  format %{ "SUB    ESP,8\t # DMOD\n"
+          "\tMOVSD  [ESP+0],$src1\n"
+          "\tFLD_D  [ESP+0]\n"
+          "\tMOVSD  [ESP+0],$src0\n"
+          "\tFLD_D  [ESP+0]\n"
+     "loop:\tFPREM\n"
+          "\tFWAIT\n"
+          "\tFNSTSW AX\n"
+          "\tSAHF\n"
+          "\tJP     loop\n"
+          "\tFSTP_D [ESP+0]\n"
+          "\tMOVSD  $dst,[ESP+0]\n"
+          "\tADD    ESP,8\n"
+          "\tFSTP   ST0\t # Restore FPU Stack"
+    %}
+  ins_cost(250);
+  ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
+  ins_pipe( pipe_slow );
+%}
+
+instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
+  predicate (UseSSE<=1);
+  match(Set dst (SinD src));
+  ins_cost(1800);
+  format %{ "DSIN   $dst" %}
+  opcode(0xD9, 0xFE);
+  ins_encode( OpcP, OpcS );
+  ins_pipe( pipe_slow );
+%}
+
+instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
+  predicate (UseSSE>=2);
+  match(Set dst (SinD dst));
+  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
+  ins_cost(1800);
+  format %{ "DSIN   $dst" %}
+  opcode(0xD9, 0xFE);
+  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
+  predicate (UseSSE<=1);
+  match(Set dst (CosD src));
+  ins_cost(1800);
+  format %{ "DCOS   $dst" %}
+  opcode(0xD9, 0xFF);
+  ins_encode( OpcP, OpcS );
+  ins_pipe( pipe_slow );
+%}
+
+instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
+  predicate (UseSSE>=2);
+  match(Set dst (CosD dst));
+  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
+  ins_cost(1800);
+  format %{ "DCOS   $dst" %}
+  opcode(0xD9, 0xFF);
+  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
+  predicate (UseSSE<=1);
+  match(Set dst(TanD src));
+  format %{ "DTAN   $dst" %}
+  ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
+              Opcode(0xDD), Opcode(0xD8));   // fstp st
+  ins_pipe( pipe_slow );
+%}
+
+instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
+  predicate (UseSSE>=2);
+  match(Set dst(TanD dst));
+  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
+  format %{ "DTAN   $dst" %}
+  ins_encode( Push_SrcXD(dst),
+              Opcode(0xD9), Opcode(0xF2),    // fptan
+              Opcode(0xDD), Opcode(0xD8),   // fstp st
+              Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct atanD_reg(regD dst, regD src) %{
+  predicate (UseSSE<=1);
+  match(Set dst(AtanD dst src));
+  format %{ "DATA   $dst,$src" %}
+  opcode(0xD9, 0xF3);
+  ins_encode( Push_Reg_D(src),
+              OpcP, OpcS, RegOpc(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
+  predicate (UseSSE>=2);
+  match(Set dst(AtanD dst src));
+  effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
+  format %{ "DATA   $dst,$src" %}
+  opcode(0xD9, 0xF3);
+  ins_encode( Push_SrcXD(src),
+              OpcP, OpcS, Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct sqrtD_reg(regD dst, regD src) %{
+  predicate (UseSSE<=1);
+  match(Set dst (SqrtD src));
+  format %{ "DSQRT  $dst,$src" %}
+  opcode(0xFA, 0xD9);
+  ins_encode( Push_Reg_D(src),
+              OpcS, OpcP, Pop_Reg_D(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
+  predicate (UseSSE<=1);
+  match(Set Y (PowD X Y));  // Raise X to the Yth power
+  effect(KILL rax, KILL rbx, KILL rcx);
+  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
+            "FLD_D  $X\n\t"
+            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
+
+            "FDUP   \t\t\t# Q Q\n\t"
+            "FRNDINT\t\t\t# int(Q) Q\n\t"
+            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
+            "FISTP  dword [ESP]\n\t"
+            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
+            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
+            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
+            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
+            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
+            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
+            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
+            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
+            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
+            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
+            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
+            "MOV    [ESP+0],0\n\t"
+            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
+
+            "ADD    ESP,8"
+             %}
+  ins_encode( push_stack_temp_qword,
+              Push_Reg_D(X),
+              Opcode(0xD9), Opcode(0xF1),   // fyl2x
+              pow_exp_core_encoding,
+              pop_stack_temp_qword);
+  ins_pipe( pipe_slow );
+%}
+
+instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
+  predicate (UseSSE>=2);
+  match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
+  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
+  format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
+            "MOVSD  [ESP],$src1\n\t"
+            "FLD    FPR1,$src1\n\t"
+            "MOVSD  [ESP],$src0\n\t"
+            "FLD    FPR1,$src0\n\t"
+            "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
+
+            "FDUP   \t\t\t# Q Q\n\t"
+            "FRNDINT\t\t\t# int(Q) Q\n\t"
+            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
+            "FISTP  dword [ESP]\n\t"
+            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
+            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
+            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
+            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
+            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
+            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
+            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
+            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
+            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
+            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
+            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
+            "MOV    [ESP+0],0\n\t"
+            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
+
+            "FST_D  [ESP]\n\t"
+            "MOVSD  $dst,[ESP]\n\t"
+            "ADD    ESP,8"
+             %}
+  ins_encode( push_stack_temp_qword,
+              push_xmm_to_fpr1(src1),
+              push_xmm_to_fpr1(src0),
+              Opcode(0xD9), Opcode(0xF1),   // fyl2x
+              pow_exp_core_encoding,
+              Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+
+instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
+  predicate (UseSSE<=1);
+  match(Set dpr1 (ExpD dpr1));
+  effect(KILL rax, KILL rbx, KILL rcx);
+  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
+            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
+            "FMULP  \t\t\t# Q=X*log2(e)\n\t"
+
+            "FDUP   \t\t\t# Q Q\n\t"
+            "FRNDINT\t\t\t# int(Q) Q\n\t"
+            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
+            "FISTP  dword [ESP]\n\t"
+            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
+            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
+            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
+            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
+            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
+            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
+            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
+            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
+            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
+            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
+            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
+            "MOV    [ESP+0],0\n\t"
+            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
+
+            "ADD    ESP,8"
+             %}
+  ins_encode( push_stack_temp_qword,
+              Opcode(0xD9), Opcode(0xEA),   // fldl2e
+              Opcode(0xDE), Opcode(0xC9),   // fmulp
+              pow_exp_core_encoding,
+              pop_stack_temp_qword);
+  ins_pipe( pipe_slow );
+%}
+
+instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
+  predicate (UseSSE>=2);
+  match(Set dst (ExpD src));
+  effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
+  format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
+            "MOVSD  [ESP],$src\n\t"
+            "FLDL2E \t\t\t# Ld log2(e) X\n\t"
+            "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
+
+            "FDUP   \t\t\t# Q Q\n\t"
+            "FRNDINT\t\t\t# int(Q) Q\n\t"
+            "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
+            "FISTP  dword [ESP]\n\t"
+            "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
+            "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
+            "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
+            "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
+            "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
+            "ADD    EAX,1023\t\t# Double exponent bias\n\t"
+            "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
+            "SHL    EAX,20\t\t# Shift exponent into place\n\t"
+            "TEST   EBX,ECX\t\t# Check for overflow\n\t"
+            "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
+            "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
+            "MOV    [ESP+0],0\n\t"
+            "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
+
+            "FST_D  [ESP]\n\t"
+            "MOVSD  $dst,[ESP]\n\t"
+            "ADD    ESP,8"
+             %}
+  ins_encode( Push_SrcXD(src),
+              Opcode(0xD9), Opcode(0xEA),   // fldl2e
+              Opcode(0xDE), Opcode(0xC9),   // fmulp
+              pow_exp_core_encoding,
+              Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+
+
+instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
+  predicate (UseSSE<=1);
+  // The source Double operand on FPU stack
+  match(Set dst (Log10D src));
+  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
+  // fxch         ; swap ST(0) with ST(1)
+  // fyl2x        ; compute log_10(2) * log_2(x)
+  format %{ "FLDLG2 \t\t\t#Log10\n\t"
+            "FXCH   \n\t"
+            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
+         %}
+  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
+              Opcode(0xD9), Opcode(0xC9),   // fxch
+              Opcode(0xD9), Opcode(0xF1));  // fyl2x
+
+  ins_pipe( pipe_slow );
+%}
+
+instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
+  predicate (UseSSE>=2);
+  effect(KILL cr);
+  match(Set dst (Log10D src));
+  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
+  // fyl2x        ; compute log_10(2) * log_2(x)
+  format %{ "FLDLG2 \t\t\t#Log10\n\t"
+            "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
+         %}
+  ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
+              Push_SrcXD(src),
+              Opcode(0xD9), Opcode(0xF1),   // fyl2x
+              Push_ResultXD(dst));
+
+  ins_pipe( pipe_slow );
+%}
+
+instruct logD_reg(regDPR1 dst, regDPR1 src) %{
+  predicate (UseSSE<=1);
+  // The source Double operand on FPU stack
+  match(Set dst (LogD src));
+  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
+  // fxch         ; swap ST(0) with ST(1)
+  // fyl2x        ; compute log_e(2) * log_2(x)
+  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
+            "FXCH   \n\t"
+            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
+         %}
+  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
+              Opcode(0xD9), Opcode(0xC9),   // fxch
+              Opcode(0xD9), Opcode(0xF1));  // fyl2x
+
+  ins_pipe( pipe_slow );
+%}
+
+instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
+  predicate (UseSSE>=2);
+  effect(KILL cr);
+  // The source and result Double operands in XMM registers
+  match(Set dst (LogD src));
+  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
+  // fyl2x        ; compute log_e(2) * log_2(x)
+  format %{ "FLDLN2 \t\t\t#Log_e\n\t"
+            "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
+         %}
+  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
+              Push_SrcXD(src),
+              Opcode(0xD9), Opcode(0xF1),   // fyl2x
+              Push_ResultXD(dst));
+  ins_pipe( pipe_slow );
+%}
+
+//-------------Float Instructions-------------------------------
+// Float Math
+
+// Code for float compare:
+//     fcompp();
+//     fwait(); fnstsw_ax();
+//     sahf();
+//     movl(dst, unordered_result);
+//     jcc(Assembler::parity, exit);
+//     movl(dst, less_result);
+//     jcc(Assembler::below, exit);
+//     movl(dst, equal_result);
+//     jcc(Assembler::equal, exit);
+//     movl(dst, greater_result);
+//   exit:
+
+// P6 version of float compare, sets condition codes in EFLAGS
+instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
+  predicate(VM_Version::supports_cmov() && UseSSE == 0);
+  match(Set cr (CmpF src1 src2));
+  effect(KILL rax);
+  ins_cost(150);
+  format %{ "FLD    $src1\n\t"
+            "FUCOMIP ST,$src2  // P6 instruction\n\t"
+            "JNP    exit\n\t"
+            "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
+            "SAHF\n"
+     "exit:\tNOP               // avoid branch to branch" %}
+  opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
+  ins_encode( Push_Reg_D(src1),
+              OpcP, RegOpc(src2),
+              cmpF_P6_fixup );
+  ins_pipe( pipe_slow );
+%}
+
+
+// Compare & branch
+instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
+  predicate(UseSSE == 0);
+  match(Set cr (CmpF src1 src2));
+  effect(KILL rax);
+  ins_cost(200);
+  format %{ "FLD    $src1\n\t"
+            "FCOMp  $src2\n\t"
+            "FNSTSW AX\n\t"
+            "TEST   AX,0x400\n\t"
+            "JZ,s   flags\n\t"
+            "MOV    AH,1\t# unordered treat as LT\n"
+    "flags:\tSAHF" %}
+  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
+  ins_encode( Push_Reg_D(src1),
+              OpcP, RegOpc(src2),
+              fpu_flags);
+  ins_pipe( pipe_slow );
+%}
+
+// Compare vs zero into -1,0,1
+instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
+  predicate(UseSSE == 0);
+  match(Set dst (CmpF3 src1 zero));
+  effect(KILL cr, KILL rax);
+  ins_cost(280);
+  format %{ "FTSTF  $dst,$src1" %}
+  opcode(0xE4, 0xD9);
+  ins_encode( Push_Reg_D(src1),
+              OpcS, OpcP, PopFPU,
+              CmpF_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Compare into -1,0,1
+instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
+  predicate(UseSSE == 0);
+  match(Set dst (CmpF3 src1 src2));
+  effect(KILL cr, KILL rax);
+  ins_cost(300);
+  format %{ "FCMPF  $dst,$src1,$src2" %}
+  opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
+  ins_encode( Push_Reg_D(src1),
+              OpcP, RegOpc(src2),
+              CmpF_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// float compare and set condition codes in EFLAGS by XMM regs
+instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
+  predicate(UseSSE>=1);
+  match(Set cr (CmpF dst src));
+  effect(KILL rax);
+  ins_cost(145);
+  format %{ "COMISS $dst,$src\n"
+          "\tJNP    exit\n"
+          "\tMOV    ah,1       // saw a NaN, set CF\n"
+          "\tSAHF\n"
+     "exit:\tNOP               // avoid branch to branch" %}
+  opcode(0x0F, 0x2F);
+  ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
+  ins_pipe( pipe_slow );
+%}
+
+// float compare and set condition codes in EFLAGS by XMM regs
+instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
+  predicate(UseSSE>=1);
+  match(Set cr (CmpF dst (LoadF src)));
+  effect(KILL rax);
+  ins_cost(165);
+  format %{ "COMISS $dst,$src\n"
+          "\tJNP    exit\n"
+          "\tMOV    ah,1       // saw a NaN, set CF\n"
+          "\tSAHF\n"
+     "exit:\tNOP               // avoid branch to branch" %}
+  opcode(0x0F, 0x2F);
+  ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
+  ins_pipe( pipe_slow );
+%}
+
+// Compare into -1,0,1 in XMM
+instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
+  predicate(UseSSE>=1);
+  match(Set dst (CmpF3 src1 src2));
+  effect(KILL cr);
+  ins_cost(255);
+  format %{ "XOR    $dst,$dst\n"
+          "\tCOMISS $src1,$src2\n"
+          "\tJP,s   nan\n"
+          "\tJEQ,s  exit\n"
+          "\tJA,s   inc\n"
+      "nan:\tDEC    $dst\n"
+          "\tJMP,s  exit\n"
+      "inc:\tINC    $dst\n"
+      "exit:"
+                %}
+  opcode(0x0F, 0x2F);
+  ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Compare into -1,0,1 in XMM and memory
+instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
+  predicate(UseSSE>=1);
+  match(Set dst (CmpF3 src1 (LoadF mem)));
+  effect(KILL cr);
+  ins_cost(275);
+  format %{ "COMISS $src1,$mem\n"
+          "\tMOV    $dst,0\t\t# do not blow flags\n"
+          "\tJP,s   nan\n"
+          "\tJEQ,s  exit\n"
+          "\tJA,s   inc\n"
+      "nan:\tDEC    $dst\n"
+          "\tJMP,s  exit\n"
+      "inc:\tINC    $dst\n"
+      "exit:"
+                %}
+  opcode(0x0F, 0x2F);
+  ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Spill to obtain 24-bit precision
+instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (SubF src1 src2));
+
+  format %{ "FSUB   $dst,$src1 - $src2" %}
+  opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
+  ins_encode( Push_Reg_F(src1),
+              OpcReg_F(src2),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_reg_reg );
+%}
+//
+// This instruction does not round to 24-bits
+instruct subF_reg(regF dst, regF src) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (SubF dst src));
+
+  format %{ "FSUB   $dst,$src" %}
+  opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
+  ins_encode( Push_Reg_F(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Spill to obtain 24-bit precision
+instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF src1 src2));
+
+  format %{ "FADD   $dst,$src1,$src2" %}
+  opcode(0xD8, 0x0); /* D8 C0+i */
+  ins_encode( Push_Reg_F(src2),
+              OpcReg_F(src1),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_reg_reg );
+%}
+//
+// This instruction does not round to 24-bits
+instruct addF_reg(regF dst, regF src) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF dst src));
+
+  format %{ "FLD    $src\n\t"
+            "FADDp  $dst,ST" %}
+  opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
+  ins_encode( Push_Reg_F(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Add two single precision floating point values in xmm
+instruct addX_reg(regX dst, regX src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (AddF dst src));
+  format %{ "ADDSS  $dst,$src" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct addX_imm(regX dst, immXF con) %{
+  predicate(UseSSE>=1);
+  match(Set dst (AddF dst con));
+  format %{ "ADDSS  $dst,[$con]" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct addX_mem(regX dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (AddF dst (LoadF mem)));
+  format %{ "ADDSS  $dst,$mem" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Subtract two single precision floating point values in xmm
+instruct subX_reg(regX dst, regX src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (SubF dst src));
+  format %{ "SUBSS  $dst,$src" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct subX_imm(regX dst, immXF con) %{
+  predicate(UseSSE>=1);
+  match(Set dst (SubF dst con));
+  format %{ "SUBSS  $dst,[$con]" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct subX_mem(regX dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (SubF dst (LoadF mem)));
+  format %{ "SUBSS  $dst,$mem" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Multiply two single precision floating point values in xmm
+instruct mulX_reg(regX dst, regX src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (MulF dst src));
+  format %{ "MULSS  $dst,$src" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct mulX_imm(regX dst, immXF con) %{
+  predicate(UseSSE>=1);
+  match(Set dst (MulF dst con));
+  format %{ "MULSS  $dst,[$con]" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct mulX_mem(regX dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (MulF dst (LoadF mem)));
+  format %{ "MULSS  $dst,$mem" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Divide two single precision floating point values in xmm
+instruct divX_reg(regX dst, regX src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (DivF dst src));
+  format %{ "DIVSS  $dst,$src" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct divX_imm(regX dst, immXF con) %{
+  predicate(UseSSE>=1);
+  match(Set dst (DivF dst con));
+  format %{ "DIVSS  $dst,[$con]" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct divX_mem(regX dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (DivF dst (LoadF mem)));
+  format %{ "DIVSS  $dst,$mem" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Get the square root of a single precision floating point values in xmm
+instruct sqrtX_reg(regX dst, regX src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
+  format %{ "SQRTSS $dst,$src" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct sqrtX_mem(regX dst, memory mem) %{
+  predicate(UseSSE>=1);
+  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
+  format %{ "SQRTSS $dst,$mem" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Get the square root of a double precision floating point values in xmm
+instruct sqrtXD_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (SqrtD src));
+  format %{ "SQRTSD $dst,$src" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct sqrtXD_mem(regXD dst, memory mem) %{
+  predicate(UseSSE>=2);
+  match(Set dst (SqrtD (LoadD mem)));
+  format %{ "SQRTSD $dst,$mem" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+instruct absF_reg(regFPR1 dst, regFPR1 src) %{
+  predicate(UseSSE==0);
+  match(Set dst (AbsF src));
+  ins_cost(100);
+  format %{ "FABS" %}
+  opcode(0xE1, 0xD9);
+  ins_encode( OpcS, OpcP );
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct absX_reg(regX dst ) %{
+  predicate(UseSSE>=1);
+  match(Set dst (AbsF dst));
+  format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
+  ins_encode( AbsXF_encoding(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct negF_reg(regFPR1 dst, regFPR1 src) %{
+  predicate(UseSSE==0);
+  match(Set dst (NegF src));
+  ins_cost(100);
+  format %{ "FCHS" %}
+  opcode(0xE0, 0xD9);
+  ins_encode( OpcS, OpcP );
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct negX_reg( regX dst ) %{
+  predicate(UseSSE>=1);
+  match(Set dst (NegF dst));
+  format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
+  ins_encode( NegXF_encoding(dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Cisc-alternate to addF_reg
+// Spill to obtain 24-bit precision
+instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF src1 (LoadF src2)));
+
+  format %{ "FLD    $src2\n\t"
+            "FADD   ST,$src1\n\t"
+            "FSTP_S $dst" %}
+  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
+              OpcReg_F(src1),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_reg_mem );
+%}
+//
+// Cisc-alternate to addF_reg
+// This instruction does not round to 24-bits
+instruct addF_reg_mem(regF dst, memory src) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF dst (LoadF src)));
+
+  format %{ "FADD   $dst,$src" %}
+  opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+// // Following two instructions for _222_mpegaudio
+// Spill to obtain 24-bit precision
+instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF src1 src2));
+
+  format %{ "FADD   $dst,$src1,$src2" %}
+  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
+              OpcReg_F(src2),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_reg_mem );
+%}
+
+// Cisc-spill variant
+// Spill to obtain 24-bit precision
+instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF src1 (LoadF src2)));
+
+  format %{ "FADD   $dst,$src1,$src2 cisc" %}
+  opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
+              set_instruction_start,
+              OpcP, RMopc_Mem(secondary,src1),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_mem_mem );
+%}
+
+// Spill to obtain 24-bit precision
+instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF src1 src2));
+
+  format %{ "FADD   $dst,$src1,$src2" %}
+  opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
+              set_instruction_start,
+              OpcP, RMopc_Mem(secondary,src1),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_mem_mem );
+%}
+
+
+// Spill to obtain 24-bit precision
+instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF src1 src2));
+  format %{ "FLD    $src1\n\t"
+            "FADD   $src2\n\t"
+            "FSTP_S $dst"  %}
+  opcode(0xD8, 0x00);       /* D8 /0 */
+  ins_encode( Push_Reg_F(src1),
+              Opc_MemImm_F(src2),
+              Pop_Mem_F(dst));
+  ins_pipe( fpu_mem_reg_con );
+%}
+//
+// This instruction does not round to 24-bits
+instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF src1 src2));
+  format %{ "FLD    $src1\n\t"
+            "FADD   $src2\n\t"
+            "FSTP_S $dst"  %}
+  opcode(0xD8, 0x00);       /* D8 /0 */
+  ins_encode( Push_Reg_F(src1),
+              Opc_MemImm_F(src2),
+              Pop_Reg_F(dst));
+  ins_pipe( fpu_reg_reg_con );
+%}
+
+// Spill to obtain 24-bit precision
+instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF src1 src2));
+
+  format %{ "FLD    $src1\n\t"
+            "FMUL   $src2\n\t"
+            "FSTP_S $dst"  %}
+  opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
+  ins_encode( Push_Reg_F(src1),
+              OpcReg_F(src2),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_reg_reg );
+%}
+//
+// This instruction does not round to 24-bits
+instruct mulF_reg(regF dst, regF src1, regF src2) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF src1 src2));
+
+  format %{ "FLD    $src1\n\t"
+            "FMUL   $src2\n\t"
+            "FSTP_S $dst"  %}
+  opcode(0xD8, 0x1); /* D8 C8+i */
+  ins_encode( Push_Reg_F(src2),
+              OpcReg_F(src1),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_reg_reg );
+%}
+
+
+// Spill to obtain 24-bit precision
+// Cisc-alternate to reg-reg multiply
+instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF src1 (LoadF src2)));
+
+  format %{ "FLD_S  $src2\n\t"
+            "FMUL   $src1\n\t"
+            "FSTP_S $dst"  %}
+  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
+              OpcReg_F(src1),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_reg_mem );
+%}
+//
+// This instruction does not round to 24-bits
+// Cisc-alternate to reg-reg multiply
+instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF src1 (LoadF src2)));
+
+  format %{ "FMUL   $dst,$src1,$src2" %}
+  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
+              OpcReg_F(src1),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_reg_mem );
+%}
+
+// Spill to obtain 24-bit precision
+instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF src1 src2));
+
+  format %{ "FMUL   $dst,$src1,$src2" %}
+  opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
+              set_instruction_start,
+              OpcP, RMopc_Mem(secondary,src1),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_mem_mem );
+%}
+
+// Spill to obtain 24-bit precision
+instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF src1 src2));
+
+  format %{ "FMULc $dst,$src1,$src2" %}
+  opcode(0xD8, 0x1);  /* D8 /1*/
+  ins_encode( Push_Reg_F(src1),
+              Opc_MemImm_F(src2),
+              Pop_Mem_F(dst));
+  ins_pipe( fpu_mem_reg_con );
+%}
+//
+// This instruction does not round to 24-bits
+instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF src1 src2));
+
+  format %{ "FMULc $dst. $src1, $src2" %}
+  opcode(0xD8, 0x1);  /* D8 /1*/
+  ins_encode( Push_Reg_F(src1),
+              Opc_MemImm_F(src2),
+              Pop_Reg_F(dst));
+  ins_pipe( fpu_reg_reg_con );
+%}
+
+
+//
+// MACRO1 -- subsume unshared load into mulF
+// This instruction does not round to 24-bits
+instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (MulF (LoadF mem1) src));
+
+  format %{ "FLD    $mem1    ===MACRO1===\n\t"
+            "FMUL   ST,$src\n\t"
+            "FSTP   $dst" %}
+  opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
+  ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
+              OpcReg_F(src),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_reg_mem );
+%}
+//
+// MACRO2 -- addF a mulF which subsumed an unshared load
+// This instruction does not round to 24-bits
+instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
+  ins_cost(95);
+
+  format %{ "FLD    $mem1     ===MACRO2===\n\t"
+            "FMUL   ST,$src1  subsume mulF left load\n\t"
+            "FADD   ST,$src2\n\t"
+            "FSTP   $dst" %}
+  opcode(0xD9); /* LoadF D9 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem1),
+              FMul_ST_reg(src1),
+              FAdd_ST_reg(src2),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_mem_reg_reg );
+%}
+
+// MACRO3 -- addF a mulF
+// This instruction does not round to 24-bits.  It is a '2-address'
+// instruction in that the result goes back to src2.  This eliminates
+// a move from the macro; possibly the register allocator will have
+// to add it back (and maybe not).
+instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set src2 (AddF (MulF src0 src1) src2));
+
+  format %{ "FLD    $src0     ===MACRO3===\n\t"
+            "FMUL   ST,$src1\n\t"
+            "FADDP  $src2,ST" %}
+  opcode(0xD9); /* LoadF D9 /0 */
+  ins_encode( Push_Reg_F(src0),
+              FMul_ST_reg(src1),
+              FAddP_reg_ST(src2) );
+  ins_pipe( fpu_reg_reg_reg );
+%}
+
+// MACRO4 -- divF subF
+// This instruction does not round to 24-bits
+instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (DivF (SubF src2 src1) src3));
+
+  format %{ "FLD    $src2   ===MACRO4===\n\t"
+            "FSUB   ST,$src1\n\t"
+            "FDIV   ST,$src3\n\t"
+            "FSTP  $dst" %}
+  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
+  ins_encode( Push_Reg_F(src2),
+              subF_divF_encode(src1,src3),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_reg_reg_reg );
+%}
+
+// Spill to obtain 24-bit precision
+instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
+  predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (DivF src1 src2));
+
+  format %{ "FDIV   $dst,$src1,$src2" %}
+  opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
+  ins_encode( Push_Reg_F(src1),
+              OpcReg_F(src2),
+              Pop_Mem_F(dst) );
+  ins_pipe( fpu_mem_reg_reg );
+%}
+//
+// This instruction does not round to 24-bits
+instruct divF_reg(regF dst, regF src) %{
+  predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (DivF dst src));
+
+  format %{ "FDIV   $dst,$src" %}
+  opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
+  ins_encode( Push_Reg_F(src),
+              OpcP, RegOpc(dst) );
+  ins_pipe( fpu_reg_reg );
+%}
+
+
+// Spill to obtain 24-bit precision
+instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
+  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (ModF src1 src2));
+  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
+
+  format %{ "FMOD   $dst,$src1,$src2" %}
+  ins_encode( Push_Reg_Mod_D(src1, src2),
+              emitModD(),
+              Push_Result_Mod_D(src2),
+              Pop_Mem_F(dst));
+  ins_pipe( pipe_slow );
+%}
+//
+// This instruction does not round to 24-bits
+instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
+  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (ModF dst src));
+  effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
+
+  format %{ "FMOD   $dst,$src" %}
+  ins_encode(Push_Reg_Mod_D(dst, src),
+              emitModD(),
+              Push_Result_Mod_D(src),
+              Pop_Reg_F(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
+  predicate(UseSSE>=1);
+  match(Set dst (ModF src0 src1));
+  effect(KILL rax, KILL cr);
+  format %{ "SUB    ESP,4\t # FMOD\n"
+          "\tMOVSS  [ESP+0],$src1\n"
+          "\tFLD_S  [ESP+0]\n"
+          "\tMOVSS  [ESP+0],$src0\n"
+          "\tFLD_S  [ESP+0]\n"
+     "loop:\tFPREM\n"
+          "\tFWAIT\n"
+          "\tFNSTSW AX\n"
+          "\tSAHF\n"
+          "\tJP     loop\n"
+          "\tFSTP_S [ESP+0]\n"
+          "\tMOVSS  $dst,[ESP+0]\n"
+          "\tADD    ESP,4\n"
+          "\tFSTP   ST0\t # Restore FPU Stack"
+    %}
+  ins_cost(250);
+  ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
+  ins_pipe( pipe_slow );
+%}
+
+
+//----------Arithmetic Conversion Instructions---------------------------------
+// The conversions operations are all Alpha sorted.  Please keep it that way!
+
+instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
+  predicate(UseSSE==0);
+  match(Set dst (RoundFloat src));
+  ins_cost(125);
+  format %{ "FST_S  $dst,$src\t# F-round" %}
+  ins_encode( Pop_Mem_Reg_F(dst, src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (RoundDouble src));
+  ins_cost(125);
+  format %{ "FST_D  $dst,$src\t# D-round" %}
+  ins_encode( Pop_Mem_Reg_D(dst, src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+// Force rounding to 24-bit precision and 6-bit exponent
+instruct convD2F_reg(stackSlotF dst, regD src) %{
+  predicate(UseSSE==0);
+  match(Set dst (ConvD2F src));
+  format %{ "FST_S  $dst,$src\t# F-round" %}
+  expand %{
+    roundFloat_mem_reg(dst,src);
+  %}
+%}
+
+// Force rounding to 24-bit precision and 6-bit exponent
+instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
+  predicate(UseSSE==1);
+  match(Set dst (ConvD2F src));
+  effect( KILL cr );
+  format %{ "SUB    ESP,4\n\t"
+            "FST_S  [ESP],$src\t# F-round\n\t"
+            "MOVSS  $dst,[ESP]\n\t"
+            "ADD ESP,4" %}
+  ins_encode( D2X_encoding(dst, src) );
+  ins_pipe( pipe_slow );
+%}
+
+// Force rounding double precision to single precision
+instruct convXD2X_reg(regX dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (ConvD2F src));
+  format %{ "CVTSD2SS $dst,$src\t# F-round" %}
+  opcode(0xF2, 0x0F, 0x5A);
+  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convF2D_reg_reg(regD dst, regF src) %{
+  predicate(UseSSE==0);
+  match(Set dst (ConvF2D src));
+  format %{ "FST_S  $dst,$src\t# D-round" %}
+  ins_encode( Pop_Reg_Reg_D(dst, src));
+  ins_pipe( fpu_reg_reg );
+%}
+
+instruct convF2D_reg(stackSlotD dst, regF src) %{
+  predicate(UseSSE==1);
+  match(Set dst (ConvF2D src));
+  format %{ "FST_D  $dst,$src\t# D-round" %}
+  expand %{
+    roundDouble_mem_reg(dst,src);
+  %}
+%}
+
+instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
+  predicate(UseSSE==1);
+  match(Set dst (ConvF2D src));
+  effect( KILL cr );
+  format %{ "SUB    ESP,4\n\t"
+            "MOVSS  [ESP] $src\n\t"
+            "FLD_S  [ESP]\n\t"
+            "ADD    ESP,4\n\t"
+            "FSTP   $dst\t# D-round" %}
+  ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convX2XD_reg(regXD dst, regX src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (ConvF2D src));
+  format %{ "CVTSS2SD $dst,$src\t# D-round" %}
+  opcode(0xF3, 0x0F, 0x5A);
+  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
+instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
+  predicate(UseSSE<=1);
+  match(Set dst (ConvD2I src));
+  effect( KILL tmp, KILL cr );
+  format %{ "FLD    $src\t# Convert double to int \n\t"
+            "FLDCW  trunc mode\n\t"
+            "SUB    ESP,4\n\t"
+            "FISTp  [ESP + #0]\n\t"
+            "FLDCW  std/24-bit mode\n\t"
+            "POP    EAX\n\t"
+            "CMP    EAX,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "FLD_D  $src\n\t"
+            "CALL   d2i_wrapper\n"
+      "fast:" %}
+  ins_encode( Push_Reg_D(src), D2I_encoding(src) );
+  ins_pipe( pipe_slow );
+%}
+
+// Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
+instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
+  predicate(UseSSE>=2);
+  match(Set dst (ConvD2I src));
+  effect( KILL tmp, KILL cr );
+  format %{ "CVTTSD2SI $dst, $src\n\t"
+            "CMP    $dst,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "SUB    ESP, 8\n\t"
+            "MOVSD  [ESP], $src\n\t"
+            "FLD_D  [ESP]\n\t"
+            "ADD    ESP, 8\n\t"
+            "CALL   d2i_wrapper\n"
+      "fast:" %}
+  opcode(0x1); // double-precision conversion
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
+  predicate(UseSSE<=1);
+  match(Set dst (ConvD2L src));
+  effect( KILL cr );
+  format %{ "FLD    $src\t# Convert double to long\n\t"
+            "FLDCW  trunc mode\n\t"
+            "SUB    ESP,8\n\t"
+            "FISTp  [ESP + #0]\n\t"
+            "FLDCW  std/24-bit mode\n\t"
+            "POP    EAX\n\t"
+            "POP    EDX\n\t"
+            "CMP    EDX,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "TEST   EAX,EAX\n\t"
+            "JNE,s  fast\n\t"
+            "FLD    $src\n\t"
+            "CALL   d2l_wrapper\n"
+      "fast:" %}
+  ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
+  ins_pipe( pipe_slow );
+%}
+
+// XMM lacks a float/double->long conversion, so use the old FPU stack.
+instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
+  predicate (UseSSE>=2);
+  match(Set dst (ConvD2L src));
+  effect( KILL cr );
+  format %{ "SUB    ESP,8\t# Convert double to long\n\t"
+            "MOVSD  [ESP],$src\n\t"
+            "FLD_D  [ESP]\n\t"
+            "FLDCW  trunc mode\n\t"
+            "FISTp  [ESP + #0]\n\t"
+            "FLDCW  std/24-bit mode\n\t"
+            "POP    EAX\n\t"
+            "POP    EDX\n\t"
+            "CMP    EDX,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "TEST   EAX,EAX\n\t"
+            "JNE,s  fast\n\t"
+            "SUB    ESP,8\n\t"
+            "MOVSD  [ESP],$src\n\t"
+            "FLD_D  [ESP]\n\t"
+            "CALL   d2l_wrapper\n"
+      "fast:" %}
+  ins_encode( XD2L_encoding(src) );
+  ins_pipe( pipe_slow );
+%}
+
+// Convert a double to an int.  Java semantics require we do complex
+// manglations in the corner cases.  So we set the rounding mode to
+// 'zero', store the darned double down as an int, and reset the
+// rounding mode to 'nearest'.  The hardware stores a flag value down
+// if we would overflow or converted a NAN; we check for this and
+// and go the slow path if needed.
+instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
+  predicate(UseSSE==0);
+  match(Set dst (ConvF2I src));
+  effect( KILL tmp, KILL cr );
+  format %{ "FLD    $src\t# Convert float to int \n\t"
+            "FLDCW  trunc mode\n\t"
+            "SUB    ESP,4\n\t"
+            "FISTp  [ESP + #0]\n\t"
+            "FLDCW  std/24-bit mode\n\t"
+            "POP    EAX\n\t"
+            "CMP    EAX,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "FLD    $src\n\t"
+            "CALL   d2i_wrapper\n"
+      "fast:" %}
+  // D2I_encoding works for F2I
+  ins_encode( Push_Reg_F(src), D2I_encoding(src) );
+  ins_pipe( pipe_slow );
+%}
+
+// Convert a float in xmm to an int reg.
+instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
+  predicate(UseSSE>=1);
+  match(Set dst (ConvF2I src));
+  effect( KILL tmp, KILL cr );
+  format %{ "CVTTSS2SI $dst, $src\n\t"
+            "CMP    $dst,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "SUB    ESP, 4\n\t"
+            "MOVSS  [ESP], $src\n\t"
+            "FLD    [ESP]\n\t"
+            "ADD    ESP, 4\n\t"
+            "CALL   d2i_wrapper\n"
+      "fast:" %}
+  opcode(0x0); // single-precision conversion
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
+  predicate(UseSSE==0);
+  match(Set dst (ConvF2L src));
+  effect( KILL cr );
+  format %{ "FLD    $src\t# Convert float to long\n\t"
+            "FLDCW  trunc mode\n\t"
+            "SUB    ESP,8\n\t"
+            "FISTp  [ESP + #0]\n\t"
+            "FLDCW  std/24-bit mode\n\t"
+            "POP    EAX\n\t"
+            "POP    EDX\n\t"
+            "CMP    EDX,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "TEST   EAX,EAX\n\t"
+            "JNE,s  fast\n\t"
+            "FLD    $src\n\t"
+            "CALL   d2l_wrapper\n"
+      "fast:" %}
+  // D2L_encoding works for F2L
+  ins_encode( Push_Reg_F(src), D2L_encoding(src) );
+  ins_pipe( pipe_slow );
+%}
+
+// XMM lacks a float/double->long conversion, so use the old FPU stack.
+instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
+  predicate (UseSSE>=1);
+  match(Set dst (ConvF2L src));
+  effect( KILL cr );
+  format %{ "SUB    ESP,8\t# Convert float to long\n\t"
+            "MOVSS  [ESP],$src\n\t"
+            "FLD_S  [ESP]\n\t"
+            "FLDCW  trunc mode\n\t"
+            "FISTp  [ESP + #0]\n\t"
+            "FLDCW  std/24-bit mode\n\t"
+            "POP    EAX\n\t"
+            "POP    EDX\n\t"
+            "CMP    EDX,0x80000000\n\t"
+            "JNE,s  fast\n\t"
+            "TEST   EAX,EAX\n\t"
+            "JNE,s  fast\n\t"
+            "SUB    ESP,4\t# Convert float to long\n\t"
+            "MOVSS  [ESP],$src\n\t"
+            "FLD_S  [ESP]\n\t"
+            "ADD    ESP,4\n\t"
+            "CALL   d2l_wrapper\n"
+      "fast:" %}
+  ins_encode( X2L_encoding(src) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct convI2D_reg(regD dst, stackSlotI src) %{
+  predicate( UseSSE<=1 );
+  match(Set dst (ConvI2D src));
+  format %{ "FILD   $src\n\t"
+            "FSTP   $dst" %}
+  opcode(0xDB, 0x0);  /* DB /0 */
+  ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct convI2XD_reg(regXD dst, eRegI src) %{
+  predicate( UseSSE>=2 );
+  match(Set dst (ConvI2D src));
+  format %{ "CVTSI2SD $dst,$src" %}
+  opcode(0xF2, 0x0F, 0x2A);
+  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convI2XD_mem(regXD dst, memory mem) %{
+  predicate( UseSSE>=2 );
+  match(Set dst (ConvI2D (LoadI mem)));
+  format %{ "CVTSI2SD $dst,$mem" %}
+  opcode(0xF2, 0x0F, 0x2A);
+  ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convI2D_mem(regD dst, memory mem) %{
+  predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (ConvI2D (LoadI mem)));
+  format %{ "FILD   $mem\n\t"
+            "FSTP   $dst" %}
+  opcode(0xDB);      /* DB /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),
+              Pop_Reg_D(dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+// Convert a byte to a float; no rounding step needed.
+instruct conv24I2F_reg(regF dst, stackSlotI src) %{
+  predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
+  match(Set dst (ConvI2F src));
+  format %{ "FILD   $src\n\t"
+            "FSTP   $dst" %}
+
+  opcode(0xDB, 0x0);  /* DB /0 */
+  ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+// In 24-bit mode, force exponent rounding by storing back out
+instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
+  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (ConvI2F src));
+  ins_cost(200);
+  format %{ "FILD   $src\n\t"
+            "FSTP_S $dst" %}
+  opcode(0xDB, 0x0);  /* DB /0 */
+  ins_encode( Push_Mem_I(src),
+              Pop_Mem_F(dst));
+  ins_pipe( fpu_mem_mem );
+%}
+
+// In 24-bit mode, force exponent rounding by storing back out
+instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
+  predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
+  match(Set dst (ConvI2F (LoadI mem)));
+  ins_cost(200);
+  format %{ "FILD   $mem\n\t"
+            "FSTP_S $dst" %}
+  opcode(0xDB);  /* DB /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),
+              Pop_Mem_F(dst));
+  ins_pipe( fpu_mem_mem );
+%}
+
+// This instruction does not round to 24-bits
+instruct convI2F_reg(regF dst, stackSlotI src) %{
+  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (ConvI2F src));
+  format %{ "FILD   $src\n\t"
+            "FSTP   $dst" %}
+  opcode(0xDB, 0x0);  /* DB /0 */
+  ins_encode( Push_Mem_I(src),
+              Pop_Reg_F(dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+// This instruction does not round to 24-bits
+instruct convI2F_mem(regF dst, memory mem) %{
+  predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
+  match(Set dst (ConvI2F (LoadI mem)));
+  format %{ "FILD   $mem\n\t"
+            "FSTP   $dst" %}
+  opcode(0xDB);      /* DB /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,mem),
+              Pop_Reg_F(dst));
+  ins_pipe( fpu_reg_mem );
+%}
+
+// Convert an int to a float in xmm; no rounding step needed.
+instruct convI2X_reg(regX dst, eRegI src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (ConvI2F src));
+  format %{ "CVTSI2SS $dst, $src" %}
+
+  opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
+  ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
+  match(Set dst (ConvI2L src));
+  effect(KILL cr);
+  format %{ "MOV    $dst.lo,$src\n\t"
+            "MOV    $dst.hi,$src\n\t"
+            "SAR    $dst.hi,31" %}
+  ins_encode(convert_int_long(dst,src));
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Zero-extend convert int to long
+instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
+  match(Set dst (AndL (ConvI2L src) mask) );
+  effect( KILL flags );
+  format %{ "MOV    $dst.lo,$src\n\t"
+            "XOR    $dst.hi,$dst.hi" %}
+  opcode(0x33); // XOR
+  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Zero-extend long
+instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
+  match(Set dst (AndL src mask) );
+  effect( KILL flags );
+  format %{ "MOV    $dst.lo,$src.lo\n\t"
+            "XOR    $dst.hi,$dst.hi\n\t" %}
+  opcode(0x33); // XOR
+  ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
+  predicate (UseSSE<=1);
+  match(Set dst (ConvL2D src));
+  effect( KILL cr );
+  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
+            "PUSH   $src.lo\n\t"
+            "FILD   ST,[ESP + #0]\n\t"
+            "ADD    ESP,8\n\t"
+            "FSTP_D $dst\t# D-round" %}
+  opcode(0xDF, 0x5);  /* DF /5 */
+  ins_encode(convert_long_double(src), Pop_Mem_D(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
+  predicate (UseSSE>=2);
+  match(Set dst (ConvL2D src));
+  effect( KILL cr );
+  format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
+            "PUSH   $src.lo\n\t"
+            "FILD_D [ESP]\n\t"
+            "FSTP_D [ESP]\n\t"
+            "MOVSD  $dst,[ESP]\n\t"
+            "ADD    ESP,8" %}
+  opcode(0xDF, 0x5);  /* DF /5 */
+  ins_encode(convert_long_double2(src), Push_ResultXD(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
+  predicate (UseSSE>=1);
+  match(Set dst (ConvL2F src));
+  effect( KILL cr );
+  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
+            "PUSH   $src.lo\n\t"
+            "FILD_D [ESP]\n\t"
+            "FSTP_S [ESP]\n\t"
+            "MOVSS  $dst,[ESP]\n\t"
+            "ADD    ESP,8" %}
+  opcode(0xDF, 0x5);  /* DF /5 */
+  ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
+  match(Set dst (ConvL2F src));
+  effect( KILL cr );
+  format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
+            "PUSH   $src.lo\n\t"
+            "FILD   ST,[ESP + #0]\n\t"
+            "ADD    ESP,8\n\t"
+            "FSTP_S $dst\t# F-round" %}
+  opcode(0xDF, 0x5);  /* DF /5 */
+  ins_encode(convert_long_double(src), Pop_Mem_F(dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct convL2I_reg( eRegI dst, eRegL src ) %{
+  match(Set dst (ConvL2I src));
+  effect( DEF dst, USE src );
+  format %{ "MOV    $dst,$src.lo" %}
+  ins_encode(enc_CopyL_Lo(dst,src));
+  ins_pipe( ialu_reg_reg );
+%}
+
+
+instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
+  match(Set dst (MoveF2I src));
+  effect( DEF dst, USE src );
+  ins_cost(100);
+  format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
+  opcode(0x8B);
+  ins_encode( OpcP, RegMem(dst,src));
+  ins_pipe( ialu_reg_mem );
+%}
+
+instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
+  predicate(UseSSE==0);
+  match(Set dst (MoveF2I src));
+  effect( DEF dst, USE src );
+
+  ins_cost(125);
+  format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
+  ins_encode( Pop_Mem_Reg_F(dst, src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (MoveF2I src));
+  effect( DEF dst, USE src );
+
+  ins_cost(95);
+  format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MoveF2I src));
+  effect( DEF dst, USE src );
+  ins_cost(85);
+  format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
+  ins_encode( MovX2I_reg(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
+  match(Set dst (MoveI2F src));
+  effect( DEF dst, USE src );
+
+  ins_cost(100);
+  format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
+  opcode(0x89);
+  ins_encode( OpcPRegSS( dst, src ) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+
+instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
+  predicate(UseSSE==0);
+  match(Set dst (MoveI2F src));
+  effect(DEF dst, USE src);
+
+  ins_cost(125);
+  format %{ "FLD_S  $src\n\t"
+            "FSTP   $dst\t# MoveI2F_stack_reg" %}
+  opcode(0xD9);               /* D9 /0, FLD m32real */
+  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
+              Pop_Reg_F(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
+  predicate(UseSSE>=1);
+  match(Set dst (MoveI2F src));
+  effect( DEF dst, USE src );
+
+  ins_cost(95);
+  format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
+  ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MoveI2F src));
+  effect( DEF dst, USE src );
+
+  ins_cost(85);
+  format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
+  ins_encode( MovI2X_reg(dst, src) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
+  match(Set dst (MoveD2L src));
+  effect(DEF dst, USE src);
+
+  ins_cost(250);
+  format %{ "MOV    $dst.lo,$src\n\t"
+            "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
+  opcode(0x8B, 0x8B);
+  ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
+  ins_pipe( ialu_mem_long_reg );
+%}
+
+instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (MoveD2L src));
+  effect(DEF dst, USE src);
+
+  ins_cost(125);
+  format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
+  ins_encode( Pop_Mem_Reg_D(dst, src) );
+  ins_pipe( fpu_mem_reg );
+%}
+
+instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MoveD2L src));
+  effect(DEF dst, USE src);
+  ins_cost(95);
+
+  format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MoveD2L src));
+  effect(DEF dst, USE src, TEMP tmp);
+  ins_cost(85);
+  format %{ "MOVD   $dst.lo,$src\n\t"
+            "PSHUFLW $tmp,$src,0x4E\n\t"
+            "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
+  ins_encode( MovXD2L_reg(dst, src, tmp) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+
+  ins_cost(200);
+  format %{ "MOV    $dst,$src.lo\n\t"
+            "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
+  opcode(0x89, 0x89);
+  ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
+  ins_pipe( ialu_mem_long_reg );
+%}
+
+
+instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
+  predicate(UseSSE<=1);
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+  ins_cost(125);
+
+  format %{ "FLD_D  $src\n\t"
+            "FSTP   $dst\t# MoveL2D_stack_reg" %}
+  opcode(0xDD);               /* DD /0, FLD m64real */
+  ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
+              Pop_Reg_D(dst) );
+  ins_pipe( fpu_reg_mem );
+%}
+
+
+instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
+  predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+
+  ins_cost(95);
+  format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
+  ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
+  predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+
+  ins_cost(95);
+  format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
+  ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
+  predicate(UseSSE>=2);
+  match(Set dst (MoveL2D src));
+  effect(TEMP dst, USE src, TEMP tmp);
+  ins_cost(85);
+  format %{ "MOVD   $dst,$src.lo\n\t"
+            "MOVD   $tmp,$src.hi\n\t"
+            "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
+  ins_encode( MovL2XD_reg(dst, src, tmp) );
+  ins_pipe( pipe_slow );
+%}
+
+// Replicate scalar to packed byte (1 byte) values in xmm
+instruct Repl8B_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate8B src));
+  format %{ "MOVDQA  $dst,$src\n\t"
+            "PUNPCKLBW $dst,$dst\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
+  ins_encode( pshufd_8x8(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Replicate scalar to packed byte (1 byte) values in xmm
+instruct Repl8B_eRegI(regXD dst, eRegI src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate8B src));
+  format %{ "MOVD    $dst,$src\n\t"
+            "PUNPCKLBW $dst,$dst\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
+  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Replicate scalar zero to packed byte (1 byte) values in xmm
+instruct Repl8B_immI0(regXD dst, immI0 zero) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate8B zero));
+  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed shore (2 byte) values in xmm
+instruct Repl4S_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate4S src));
+  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
+  ins_encode( pshufd_4x16(dst, src));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed shore (2 byte) values in xmm
+instruct Repl4S_eRegI(regXD dst, eRegI src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate4S src));
+  format %{ "MOVD    $dst,$src\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
+  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar zero to packed short (2 byte) values in xmm
+instruct Repl4S_immI0(regXD dst, immI0 zero) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate4S zero));
+  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed char (2 byte) values in xmm
+instruct Repl4C_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate4C src));
+  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
+  ins_encode( pshufd_4x16(dst, src));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed char (2 byte) values in xmm
+instruct Repl4C_eRegI(regXD dst, eRegI src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate4C src));
+  format %{ "MOVD    $dst,$src\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
+  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar zero to packed char (2 byte) values in xmm
+instruct Repl4C_immI0(regXD dst, immI0 zero) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate4C zero));
+  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed integer (4 byte) values in xmm
+instruct Repl2I_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate2I src));
+  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
+  ins_encode( pshufd(dst, src, 0x00));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed integer (4 byte) values in xmm
+instruct Repl2I_eRegI(regXD dst, eRegI src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate2I src));
+  format %{ "MOVD   $dst,$src\n\t"
+            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
+  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar zero to packed integer (2 byte) values in xmm
+instruct Repl2I_immI0(regXD dst, immI0 zero) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate2I zero));
+  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed single precision floating point values in xmm
+instruct Repl2F_reg(regXD dst, regXD src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate2F src));
+  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
+  ins_encode( pshufd(dst, src, 0xe0));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed single precision floating point values in xmm
+instruct Repl2F_regX(regXD dst, regX src) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate2F src));
+  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
+  ins_encode( pshufd(dst, src, 0xe0));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed single precision floating point values in xmm
+instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
+  predicate(UseSSE>=2);
+  match(Set dst (Replicate2F zero));
+  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+
+
+// =======================================================================
+// fast clearing of an array
+
+instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
+  match(Set dummy (ClearArray cnt base));
+  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
+  format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
+            "XOR    EAX,EAX\n\t"
+            "REP STOS\t# store EAX into [EDI++] while ECX--" %}
+  opcode(0,0x4);
+  ins_encode( Opcode(0xD1), RegOpc(ECX),
+              OpcRegReg(0x33,EAX,EAX),
+              Opcode(0xF3), Opcode(0xAB) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
+  match(Set result (StrComp str1 str2));
+  effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
+  //ins_cost(300);
+
+  format %{ "String Compare $str1,$str2 -> $result    // KILL EAX, EBX" %}
+  ins_encode( enc_String_Compare() );
+  ins_pipe( pipe_slow );
+%}
+
+//----------Control Flow Instructions------------------------------------------
+// Signed compare Instructions
+instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
+  match(Set cr (CmpI op1 op2));
+  effect( DEF cr, USE op1, USE op2 );
+  format %{ "CMP    $op1,$op2" %}
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode( OpcP, RegReg( op1, op2) );
+  ins_pipe( ialu_cr_reg_reg );
+%}
+
+instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
+  match(Set cr (CmpI op1 op2));
+  effect( DEF cr, USE op1 );
+  format %{ "CMP    $op1,$op2" %}
+  opcode(0x81,0x07);  /* Opcode 81 /7 */
+  // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
+  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+// Cisc-spilled version of cmpI_eReg
+instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
+  match(Set cr (CmpI op1 (LoadI op2)));
+
+  format %{ "CMP    $op1,$op2" %}
+  ins_cost(500);
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode( OpcP, RegMem( op1, op2) );
+  ins_pipe( ialu_cr_reg_mem );
+%}
+
+instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
+  match(Set cr (CmpI src zero));
+  effect( DEF cr, USE src );
+
+  format %{ "TEST   $src,$src" %}
+  opcode(0x85);
+  ins_encode( OpcP, RegReg( src, src ) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
+  match(Set cr (CmpI (AndI src con) zero));
+
+  format %{ "TEST   $src,$con" %}
+  opcode(0xF7,0x00);
+  ins_encode( OpcP, RegOpc(src), Con32(con) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
+  match(Set cr (CmpI (AndI src mem) zero));
+
+  format %{ "TEST   $src,$mem" %}
+  opcode(0x85);
+  ins_encode( OpcP, RegMem( src, mem ) );
+  ins_pipe( ialu_cr_reg_mem );
+%}
+
+// Unsigned compare Instructions; really, same as signed except they
+// produce an eFlagsRegU instead of eFlagsReg.
+instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
+  match(Set cr (CmpU op1 op2));
+
+  format %{ "CMPu   $op1,$op2" %}
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode( OpcP, RegReg( op1, op2) );
+  ins_pipe( ialu_cr_reg_reg );
+%}
+
+instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
+  match(Set cr (CmpU op1 op2));
+
+  format %{ "CMPu   $op1,$op2" %}
+  opcode(0x81,0x07);  /* Opcode 81 /7 */
+  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+// // Cisc-spilled version of cmpU_eReg
+instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
+  match(Set cr (CmpU op1 (LoadI op2)));
+
+  format %{ "CMPu   $op1,$op2" %}
+  ins_cost(500);
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode( OpcP, RegMem( op1, op2) );
+  ins_pipe( ialu_cr_reg_mem );
+%}
+
+// // Cisc-spilled version of cmpU_eReg
+//instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
+//  match(Set cr (CmpU (LoadI op1) op2));
+//
+//  format %{ "CMPu   $op1,$op2" %}
+//  ins_cost(500);
+//  opcode(0x39);  /* Opcode 39 /r */
+//  ins_encode( OpcP, RegMem( op1, op2) );
+//%}
+
+instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
+  match(Set cr (CmpU src zero));
+
+  format %{ "TESTu  $src,$src" %}
+  opcode(0x85);
+  ins_encode( OpcP, RegReg( src, src ) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+// Unsigned pointer compare Instructions
+instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
+  match(Set cr (CmpP op1 op2));
+
+  format %{ "CMPu   $op1,$op2" %}
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode( OpcP, RegReg( op1, op2) );
+  ins_pipe( ialu_cr_reg_reg );
+%}
+
+instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
+  match(Set cr (CmpP op1 op2));
+
+  format %{ "CMPu   $op1,$op2" %}
+  opcode(0x81,0x07);  /* Opcode 81 /7 */
+  ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+// // Cisc-spilled version of cmpP_eReg
+instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
+  match(Set cr (CmpP op1 (LoadP op2)));
+
+  format %{ "CMPu   $op1,$op2" %}
+  ins_cost(500);
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode( OpcP, RegMem( op1, op2) );
+  ins_pipe( ialu_cr_reg_mem );
+%}
+
+// // Cisc-spilled version of cmpP_eReg
+//instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
+//  match(Set cr (CmpP (LoadP op1) op2));
+//
+//  format %{ "CMPu   $op1,$op2" %}
+//  ins_cost(500);
+//  opcode(0x39);  /* Opcode 39 /r */
+//  ins_encode( OpcP, RegMem( op1, op2) );
+//%}
+
+// Compare raw pointer (used in out-of-heap check).
+// Only works because non-oop pointers must be raw pointers
+// and raw pointers have no anti-dependencies.
+instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
+  predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
+  match(Set cr (CmpP op1 (LoadP op2)));
+
+  format %{ "CMPu   $op1,$op2" %}
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode( OpcP, RegMem( op1, op2) );
+  ins_pipe( ialu_cr_reg_mem );
+%}
+
+//
+// This will generate a signed flags result. This should be ok
+// since any compare to a zero should be eq/neq.
+instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
+  match(Set cr (CmpP src zero));
+
+  format %{ "TEST   $src,$src" %}
+  opcode(0x85);
+  ins_encode( OpcP, RegReg( src, src ) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+// Cisc-spilled version of testP_reg
+// This will generate a signed flags result. This should be ok
+// since any compare to a zero should be eq/neq.
+instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
+  match(Set cr (CmpP (LoadP op) zero));
+
+  format %{ "TEST   $op,0xFFFFFFFF" %}
+  ins_cost(500);
+  opcode(0xF7);               /* Opcode F7 /0 */
+  ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
+  ins_pipe( ialu_cr_reg_imm );
+%}
+
+// Yanked all unsigned pointer compare operations.
+// Pointer compares are done with CmpP which is already unsigned.
+
+//----------Max and Min--------------------------------------------------------
+// Min Instructions
+////
+//   *** Min and Max using the conditional move are slower than the
+//   *** branch version on a Pentium III.
+// // Conditional move for min
+//instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
+//  effect( USE_DEF op2, USE op1, USE cr );
+//  format %{ "CMOVlt $op2,$op1\t! min" %}
+//  opcode(0x4C,0x0F);
+//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
+//  ins_pipe( pipe_cmov_reg );
+//%}
+//
+//// Min Register with Register (P6 version)
+//instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
+//  predicate(VM_Version::supports_cmov() );
+//  match(Set op2 (MinI op1 op2));
+//  ins_cost(200);
+//  expand %{
+//    eFlagsReg cr;
+//    compI_eReg(cr,op1,op2);
+//    cmovI_reg_lt(op2,op1,cr);
+//  %}
+//%}
+
+// Min Register with Register (generic version)
+instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
+  match(Set dst (MinI dst src));
+  effect(KILL flags);
+  ins_cost(300);
+
+  format %{ "MIN    $dst,$src" %}
+  opcode(0xCC);
+  ins_encode( min_enc(dst,src) );
+  ins_pipe( pipe_slow );
+%}
+
+// Max Register with Register
+//   *** Min and Max using the conditional move are slower than the
+//   *** branch version on a Pentium III.
+// // Conditional move for max
+//instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
+//  effect( USE_DEF op2, USE op1, USE cr );
+//  format %{ "CMOVgt $op2,$op1\t! max" %}
+//  opcode(0x4F,0x0F);
+//  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
+//  ins_pipe( pipe_cmov_reg );
+//%}
+//
+// // Max Register with Register (P6 version)
+//instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
+//  predicate(VM_Version::supports_cmov() );
+//  match(Set op2 (MaxI op1 op2));
+//  ins_cost(200);
+//  expand %{
+//    eFlagsReg cr;
+//    compI_eReg(cr,op1,op2);
+//    cmovI_reg_gt(op2,op1,cr);
+//  %}
+//%}
+
+// Max Register with Register (generic version)
+instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
+  match(Set dst (MaxI dst src));
+  effect(KILL flags);
+  ins_cost(300);
+
+  format %{ "MAX    $dst,$src" %}
+  opcode(0xCC);
+  ins_encode( max_enc(dst,src) );
+  ins_pipe( pipe_slow );
+%}
+
+// ============================================================================
+// Branch Instructions
+// Jump Table
+instruct jumpXtnd(eRegI switch_val) %{
+  match(Jump switch_val);
+  ins_cost(350);
+
+  format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
+
+  ins_encode %{
+    address table_base  = __ address_table_constant(_index2label);
+
+    // Jump to Address(table_base + switch_reg)
+    InternalAddress table(table_base);
+    Address index(noreg, $switch_val$$Register, Address::times_1);
+    __ jump(ArrayAddress(table, index));
+  %}
+  ins_pc_relative(1);
+  ins_pipe(pipe_jmp);
+%}
+
+// Jump Direct - Label defines a relative address from JMP+1
+instruct jmpDir(label labl) %{
+  match(Goto);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "JMP    $labl" %}
+  size(5);
+  opcode(0xE9);
+  ins_encode( OpcP, Lbl( labl ) );
+  ins_pipe( pipe_jmp );
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
+  match(If cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop    $labl" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode( Jcc( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
+  match(CountedLoopEnd cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop    $labl\t# Loop end" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode( Jcc( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
+  match(CountedLoopEnd cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop,u  $labl\t# Loop end" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode( Jcc( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - using unsigned comparison
+instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
+  match(If cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop,u  $labl" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode( Jcc( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+%}
+
+// ============================================================================
+// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
+// array for an instance of the superklass.  Set a hidden internal cache on a
+// hit (cache is checked with exposed code in gen_subtype_check()).  Return
+// NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
+instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
+  match(Set result (PartialSubtypeCheck sub super));
+  effect( KILL rcx, KILL cr );
+
+  ins_cost(1100);  // slightly larger than the next version
+  format %{ "CMPL   EAX,ESI\n\t"
+            "JEQ,s  hit\n\t"
+            "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
+            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
+            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
+            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
+            "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
+            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
+     "hit:\n\t"
+            "XOR    $result,$result\t\t Hit: EDI zero\n\t"
+     "miss:\t" %}
+
+  opcode(0x1); // Force a XOR of EDI
+  ins_encode( enc_PartialSubtypeCheck() );
+  ins_pipe( pipe_slow );
+%}
+
+instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
+  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
+  effect( KILL rcx, KILL result );
+
+  ins_cost(1000);
+  format %{ "CMPL   EAX,ESI\n\t"
+            "JEQ,s  miss\t# Actually a hit; we are done.\n\t"
+            "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
+            "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
+            "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
+            "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
+            "JNE,s  miss\t\t# Missed: flags NZ\n\t"
+            "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
+     "miss:\t" %}
+
+  opcode(0x0);  // No need to XOR EDI
+  ins_encode( enc_PartialSubtypeCheck() );
+  ins_pipe( pipe_slow );
+%}
+
+// ============================================================================
+// Branch Instructions -- short offset versions
+//
+// These instructions are used to replace jumps of a long offset (the default
+// match) with jumps of a shorter offset.  These instructions are all tagged
+// with the ins_short_branch attribute, which causes the ADLC to suppress the
+// match rules in general matching.  Instead, the ADLC generates a conversion
+// method in the MachNode which can be used to do in-place replacement of the
+// long variant with the shorter variant.  The compiler will determine if a
+// branch can be taken by the is_short_branch_offset() predicate in the machine
+// specific code section of the file.
+
+// Jump Direct - Label defines a relative address from JMP+1
+instruct jmpDir_short(label labl) %{
+  match(Goto);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "JMP,s  $labl" %}
+  size(2);
+  opcode(0xEB);
+  ins_encode( OpcP, LblShort( labl ) );
+  ins_pipe( pipe_jmp );
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
+  match(If cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop,s  $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode( JccShort( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
+  match(CountedLoopEnd cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop,s  $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode( JccShort( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
+  match(CountedLoopEnd cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop,us $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode( JccShort( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - using unsigned comparison
+instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
+  match(If cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "J$cop,us $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode( JccShort( cop, labl) );
+  ins_pipe( pipe_jcc );
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// ============================================================================
+// Long Compare
+//
+// Currently we hold longs in 2 registers.  Comparing such values efficiently
+// is tricky.  The flavor of compare used depends on whether we are testing
+// for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
+// The GE test is the negated LT test.  The LE test can be had by commuting
+// the operands (yielding a GE test) and then negating; negate again for the
+// GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
+// NE test is negated from that.
+
+// Due to a shortcoming in the ADLC, it mixes up expressions like:
+// (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
+// difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
+// are collapsed internally in the ADLC's dfa-gen code.  The match for
+// (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
+// foo match ends up with the wrong leaf.  One fix is to not match both
+// reg-reg and reg-zero forms of long-compare.  This is unfortunate because
+// both forms beat the trinary form of long-compare and both are very useful
+// on Intel which has so few registers.
+
+// Manifest a CmpL result in an integer register.  Very painful.
+// This is the test to avoid.
+instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
+  match(Set dst (CmpL3 src1 src2));
+  effect( KILL flags );
+  ins_cost(1000);
+  format %{ "XOR    $dst,$dst\n\t"
+            "CMP    $src1.hi,$src2.hi\n\t"
+            "JLT,s  m_one\n\t"
+            "JGT,s  p_one\n\t"
+            "CMP    $src1.lo,$src2.lo\n\t"
+            "JB,s   m_one\n\t"
+            "JEQ,s  done\n"
+    "p_one:\tINC    $dst\n\t"
+            "JMP,s  done\n"
+    "m_one:\tDEC    $dst\n"
+     "done:" %}
+  ins_encode %{
+    Label p_one, m_one, done;
+    __ xorl($dst$$Register, $dst$$Register);
+    __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
+    __ jccb(Assembler::less,    m_one);
+    __ jccb(Assembler::greater, p_one);
+    __ cmpl($src1$$Register, $src2$$Register);
+    __ jccb(Assembler::below,   m_one);
+    __ jccb(Assembler::equal,   done);
+    __ bind(p_one);
+    __ increment($dst$$Register);
+    __ jmpb(done);
+    __ bind(m_one);
+    __ decrement($dst$$Register);
+    __ bind(done);
+  %}
+  ins_pipe( pipe_slow );
+%}
+
+//======
+// Manifest a CmpL result in the normal flags.  Only good for LT or GE
+// compares.  Can be used for LE or GT compares by reversing arguments.
+// NOT GOOD FOR EQ/NE tests.
+instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
+  match( Set flags (CmpL src zero ));
+  ins_cost(100);
+  format %{ "TEST   $src.hi,$src.hi" %}
+  opcode(0x85);
+  ins_encode( OpcP, RegReg_Hi2( src, src ) );
+  ins_pipe( ialu_cr_reg_reg );
+%}
+
+// Manifest a CmpL result in the normal flags.  Only good for LT or GE
+// compares.  Can be used for LE or GT compares by reversing arguments.
+// NOT GOOD FOR EQ/NE tests.
+instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
+  match( Set flags (CmpL src1 src2 ));
+  effect( TEMP tmp );
+  ins_cost(300);
+  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
+            "MOV    $tmp,$src1.hi\n\t"
+            "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
+  ins_encode( long_cmp_flags2( src1, src2, tmp ) );
+  ins_pipe( ialu_cr_reg_reg );
+%}
+
+// Long compares reg < zero/req OR reg >= zero/req.
+// Just a wrapper for a normal branch, plus the predicate test.
+instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
+  match(If cmp flags);
+  effect(USE labl);
+  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
+  expand %{
+    jmpCon(cmp,flags,labl);    // JLT or JGE...
+  %}
+%}
+
+// Compare 2 longs and CMOVE longs.
+instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
+  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
+  ins_cost(400);
+  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
+            "CMOV$cmp $dst.hi,$src.hi" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
+  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
+  ins_cost(500);
+  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
+            "CMOV$cmp $dst.hi,$src.hi" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+// Compare 2 longs and CMOVE ints.
+instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
+  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
+  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
+  ins_cost(250);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
+  ins_pipe( pipe_cmov_mem );
+%}
+
+// Compare 2 longs and CMOVE ints.
+instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
+  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+// Compare 2 longs and CMOVE doubles
+instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
+  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
+  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovD_regS(cmp,flags,dst,src);
+  %}
+%}
+
+// Compare 2 longs and CMOVE doubles
+instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
+  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
+  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovXD_regS(cmp,flags,dst,src);
+  %}
+%}
+
+instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
+  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
+  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovF_regS(cmp,flags,dst,src);
+  %}
+%}
+
+instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
+  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
+  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovX_regS(cmp,flags,dst,src);
+  %}
+%}
+
+//======
+// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
+instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
+  match( Set flags (CmpL src zero ));
+  effect(TEMP tmp);
+  ins_cost(200);
+  format %{ "MOV    $tmp,$src.lo\n\t"
+            "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
+  ins_encode( long_cmp_flags0( src, tmp ) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
+instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
+  match( Set flags (CmpL src1 src2 ));
+  ins_cost(200+300);
+  format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
+            "JNE,s  skip\n\t"
+            "CMP    $src1.hi,$src2.hi\n\t"
+     "skip:\t" %}
+  ins_encode( long_cmp_flags1( src1, src2 ) );
+  ins_pipe( ialu_cr_reg_reg );
+%}
+
+// Long compare reg == zero/reg OR reg != zero/reg
+// Just a wrapper for a normal branch, plus the predicate test.
+instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
+  match(If cmp flags);
+  effect(USE labl);
+  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
+  expand %{
+    jmpCon(cmp,flags,labl);    // JEQ or JNE...
+  %}
+%}
+
+// Compare 2 longs and CMOVE longs.
+instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
+  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
+  ins_cost(400);
+  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
+            "CMOV$cmp $dst.hi,$src.hi" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
+  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
+  ins_cost(500);
+  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
+            "CMOV$cmp $dst.hi,$src.hi" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+// Compare 2 longs and CMOVE ints.
+instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
+  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
+  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
+  ins_cost(250);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
+  ins_pipe( pipe_cmov_mem );
+%}
+
+// Compare 2 longs and CMOVE ints.
+instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
+  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+// Compare 2 longs and CMOVE doubles
+instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
+  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
+  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovD_regS(cmp,flags,dst,src);
+  %}
+%}
+
+// Compare 2 longs and CMOVE doubles
+instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
+  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
+  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovXD_regS(cmp,flags,dst,src);
+  %}
+%}
+
+instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
+  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
+  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovF_regS(cmp,flags,dst,src);
+  %}
+%}
+
+instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
+  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
+  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovX_regS(cmp,flags,dst,src);
+  %}
+%}
+
+//======
+// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
+// Same as cmpL_reg_flags_LEGT except must negate src
+instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
+  match( Set flags (CmpL src zero ));
+  effect( TEMP tmp );
+  ins_cost(300);
+  format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
+            "CMP    $tmp,$src.lo\n\t"
+            "SBB    $tmp,$src.hi\n\t" %}
+  ins_encode( long_cmp_flags3(src, tmp) );
+  ins_pipe( ialu_reg_reg_long );
+%}
+
+// Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
+// Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
+// requires a commuted test to get the same result.
+instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
+  match( Set flags (CmpL src1 src2 ));
+  effect( TEMP tmp );
+  ins_cost(300);
+  format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
+            "MOV    $tmp,$src2.hi\n\t"
+            "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
+  ins_encode( long_cmp_flags2( src2, src1, tmp ) );
+  ins_pipe( ialu_cr_reg_reg );
+%}
+
+// Long compares reg < zero/req OR reg >= zero/req.
+// Just a wrapper for a normal branch, plus the predicate test
+instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
+  match(If cmp flags);
+  effect(USE labl);
+  predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
+  ins_cost(300);
+  expand %{
+    jmpCon(cmp,flags,labl);    // JGT or JLE...
+  %}
+%}
+
+// Compare 2 longs and CMOVE longs.
+instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
+  match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
+  ins_cost(400);
+  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
+            "CMOV$cmp $dst.hi,$src.hi" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
+  match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
+  ins_cost(500);
+  format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
+            "CMOV$cmp $dst.hi,$src.hi+4" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
+  ins_pipe( pipe_cmov_reg_long );
+%}
+
+// Compare 2 longs and CMOVE ints.
+instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
+  match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
+  match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
+  ins_cost(250);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
+  ins_pipe( pipe_cmov_mem );
+%}
+
+// Compare 2 longs and CMOVE ptrs.
+instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
+  predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
+  match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  format %{ "CMOV$cmp $dst,$src" %}
+  opcode(0x0F,0x40);
+  ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
+  ins_pipe( pipe_cmov_reg );
+%}
+
+// Compare 2 longs and CMOVE doubles
+instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
+  predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
+  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovD_regS(cmp,flags,dst,src);
+  %}
+%}
+
+// Compare 2 longs and CMOVE doubles
+instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
+  predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
+  match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovXD_regS(cmp,flags,dst,src);
+  %}
+%}
+
+instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
+  predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
+  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovF_regS(cmp,flags,dst,src);
+  %}
+%}
+
+
+instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
+  predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
+  match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
+  ins_cost(200);
+  expand %{
+    fcmovX_regS(cmp,flags,dst,src);
+  %}
+%}
+
+
+// ============================================================================
+// Procedure Call/Return Instructions
+// Call Java Static Instruction
+// Note: If this code changes, the corresponding ret_addr_offset() and
+//       compute_padding() functions will have to be adjusted.
+instruct CallStaticJavaDirect(method meth) %{
+  match(CallStaticJava);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "CALL,static " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode( pre_call_FPU,
+              Java_Static_Call( meth ),
+              call_epilog,
+              post_call_FPU );
+  ins_pipe( pipe_slow );
+  ins_pc_relative(1);
+  ins_alignment(4);
+%}
+
+// Call Java Dynamic Instruction
+// Note: If this code changes, the corresponding ret_addr_offset() and
+//       compute_padding() functions will have to be adjusted.
+instruct CallDynamicJavaDirect(method meth) %{
+  match(CallDynamicJava);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "MOV    EAX,(oop)-1\n\t"
+            "CALL,dynamic" %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode( pre_call_FPU,
+              Java_Dynamic_Call( meth ),
+              call_epilog,
+              post_call_FPU );
+  ins_pipe( pipe_slow );
+  ins_pc_relative(1);
+  ins_alignment(4);
+%}
+
+// Call Runtime Instruction
+instruct CallRuntimeDirect(method meth) %{
+  match(CallRuntime );
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "CALL,runtime " %}
+  opcode(0xE8); /* E8 cd */
+  // Use FFREEs to clear entries in float stack
+  ins_encode( pre_call_FPU,
+              FFree_Float_Stack_All,
+              Java_To_Runtime( meth ),
+              post_call_FPU );
+  ins_pipe( pipe_slow );
+  ins_pc_relative(1);
+%}
+
+// Call runtime without safepoint
+instruct CallLeafDirect(method meth) %{
+  match(CallLeaf);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "CALL_LEAF,runtime " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode( pre_call_FPU,
+              FFree_Float_Stack_All,
+              Java_To_Runtime( meth ),
+              Verify_FPU_For_Leaf, post_call_FPU );
+  ins_pipe( pipe_slow );
+  ins_pc_relative(1);
+%}
+
+instruct CallLeafNoFPDirect(method meth) %{
+  match(CallLeafNoFP);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "CALL_LEAF_NOFP,runtime " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode(Java_To_Runtime(meth));
+  ins_pipe( pipe_slow );
+  ins_pc_relative(1);
+%}
+
+
+// Return Instruction
+// Remove the return address & jump to it.
+instruct Ret() %{
+  match(Return);
+  format %{ "RET" %}
+  opcode(0xC3);
+  ins_encode(OpcP);
+  ins_pipe( pipe_jmp );
+%}
+
+// Tail Call; Jump from runtime stub to Java code.
+// Also known as an 'interprocedural jump'.
+// Target of jump will eventually return to caller.
+// TailJump below removes the return address.
+instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
+  match(TailCall jump_target method_oop );
+  ins_cost(300);
+  format %{ "JMP    $jump_target \t# EBX holds method oop" %}
+  opcode(0xFF, 0x4);  /* Opcode FF /4 */
+  ins_encode( OpcP, RegOpc(jump_target) );
+  ins_pipe( pipe_jmp );
+%}
+
+
+// Tail Jump; remove the return address; jump to target.
+// TailCall above leaves the return address around.
+instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
+  match( TailJump jump_target ex_oop );
+  ins_cost(300);
+  format %{ "POP    EDX\t# pop return address into dummy\n\t"
+            "JMP    $jump_target " %}
+  opcode(0xFF, 0x4);  /* Opcode FF /4 */
+  ins_encode( enc_pop_rdx,
+              OpcP, RegOpc(jump_target) );
+  ins_pipe( pipe_jmp );
+%}
+
+// Create exception oop: created by stack-crawling runtime code.
+// Created exception is now available to this handler, and is setup
+// just prior to jumping to this handler.  No code emitted.
+instruct CreateException( eAXRegP ex_oop )
+%{
+  match(Set ex_oop (CreateEx));
+
+  size(0);
+  // use the following format syntax
+  format %{ "# exception oop is in EAX; no code emitted" %}
+  ins_encode();
+  ins_pipe( empty );
+%}
+
+
+// Rethrow exception:
+// The exception oop will come in the first argument position.
+// Then JUMP (not call) to the rethrow stub code.
+instruct RethrowException()
+%{
+  match(Rethrow);
+
+  // use the following format syntax
+  format %{ "JMP    rethrow_stub" %}
+  ins_encode(enc_rethrow);
+  ins_pipe( pipe_jmp );
+%}
+
+// inlined locking and unlocking
+
+
+instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
+  match( Set cr (FastLock object box) );
+  effect( TEMP tmp, TEMP scr );
+  ins_cost(300);
+  format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
+  ins_encode( Fast_Lock(object,box,tmp,scr) );
+  ins_pipe( pipe_slow );
+  ins_pc_relative(1);
+%}
+
+instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
+  match( Set cr (FastUnlock object box) );
+  effect( TEMP tmp );
+  ins_cost(300);
+  format %{ "FASTUNLOCK $object, $box, $tmp" %}
+  ins_encode( Fast_Unlock(object,box,tmp) );
+  ins_pipe( pipe_slow );
+  ins_pc_relative(1);
+%}
+
+
+
+// ============================================================================
+// Safepoint Instruction
+instruct safePoint_poll(eFlagsReg cr) %{
+  match(SafePoint);
+  effect(KILL cr);
+
+  // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
+  // On SPARC that might be acceptable as we can generate the address with
+  // just a sethi, saving an or.  By polling at offset 0 we can end up
+  // putting additional pressure on the index-0 in the D$.  Because of
+  // alignment (just like the situation at hand) the lower indices tend
+  // to see more traffic.  It'd be better to change the polling address
+  // to offset 0 of the last $line in the polling page.
+
+  format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
+  ins_cost(125);
+  size(6) ;
+  ins_encode( Safepoint_Poll() );
+  ins_pipe( ialu_reg_mem );
+%}
+
+//----------PEEPHOLE RULES-----------------------------------------------------
+// These must follow all instruction definitions as they use the names
+// defined in the instructions definitions.
+//
+// peepmatch ( root_instr_name [preceeding_instruction]* );
+//
+// peepconstraint %{
+// (instruction_number.operand_name relational_op instruction_number.operand_name
+//  [, ...] );
+// // instruction numbers are zero-based using left to right order in peepmatch
+//
+// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
+// // provide an instruction_number.operand_name for each operand that appears
+// // in the replacement instruction's match rule
+//
+// ---------VM FLAGS---------------------------------------------------------
+//
+// All peephole optimizations can be turned off using -XX:-OptoPeephole
+//
+// Each peephole rule is given an identifying number starting with zero and
+// increasing by one in the order seen by the parser.  An individual peephole
+// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
+// on the command-line.
+//
+// ---------CURRENT LIMITATIONS----------------------------------------------
+//
+// Only match adjacent instructions in same basic block
+// Only equality constraints
+// Only constraints between operands, not (0.dest_reg == EAX_enc)
+// Only one replacement instruction
+//
+// ---------EXAMPLE----------------------------------------------------------
+//
+// // pertinent parts of existing instructions in architecture description
+// instruct movI(eRegI dst, eRegI src) %{
+//   match(Set dst (CopyI src));
+// %}
+//
+// instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
+//   match(Set dst (AddI dst src));
+//   effect(KILL cr);
+// %}
+//
+// // Change (inc mov) to lea
+// peephole %{
+//   // increment preceeded by register-register move
+//   peepmatch ( incI_eReg movI );
+//   // require that the destination register of the increment
+//   // match the destination register of the move
+//   peepconstraint ( 0.dst == 1.dst );
+//   // construct a replacement instruction that sets
+//   // the destination to ( move's source register + one )
+//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
+// %}
+//
+// Implementation no longer uses movX instructions since
+// machine-independent system no longer uses CopyX nodes.
+//
+// peephole %{
+//   peepmatch ( incI_eReg movI );
+//   peepconstraint ( 0.dst == 1.dst );
+//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
+// %}
+//
+// peephole %{
+//   peepmatch ( decI_eReg movI );
+//   peepconstraint ( 0.dst == 1.dst );
+//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
+// %}
+//
+// peephole %{
+//   peepmatch ( addI_eReg_imm movI );
+//   peepconstraint ( 0.dst == 1.dst );
+//   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
+// %}
+//
+// peephole %{
+//   peepmatch ( addP_eReg_imm movP );
+//   peepconstraint ( 0.dst == 1.dst );
+//   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
+// %}
+
+// // Change load of spilled value to only a spill
+// instruct storeI(memory mem, eRegI src) %{
+//   match(Set mem (StoreI mem src));
+// %}
+//
+// instruct loadI(eRegI dst, memory mem) %{
+//   match(Set dst (LoadI mem));
+// %}
+//
+peephole %{
+  peepmatch ( loadI storeI );
+  peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
+  peepreplace ( storeI( 1.mem 1.mem 1.src ) );
+%}
+
+//----------SMARTSPILL RULES---------------------------------------------------
+// These must follow all instruction definitions as they use the names
+// defined in the instructions definitions.