diff src/cpu/x86/vm/x86_64.ad @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3d62cb85208d
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/x86/vm/x86_64.ad	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,11435 @@
+//
+// Copyright 2003-2007 Sun Microsystems, Inc.  All Rights Reserved.
+// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+//
+// This code is free software; you can redistribute it and/or modify it
+// under the terms of the GNU General Public License version 2 only, as
+// published by the Free Software Foundation.
+//
+// This code is distributed in the hope that it will be useful, but WITHOUT
+// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+// version 2 for more details (a copy is included in the LICENSE file that
+// accompanied this code).
+//
+// You should have received a copy of the GNU General Public License version
+// 2 along with this work; if not, write to the Free Software Foundation,
+// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+//
+// Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+// CA 95054 USA or visit www.sun.com if you need additional information or
+// have any questions.
+//
+//
+
+// AMD64 Architecture Description File
+
+//----------REGISTER DEFINITION BLOCK------------------------------------------
+// This information is used by the matcher and the register allocator to
+// describe individual registers and classes of registers within the target
+// archtecture.
+
+register %{
+//----------Architecture Description Register Definitions----------------------
+// General Registers
+// "reg_def"  name ( register save type, C convention save type,
+//                   ideal register type, encoding );
+// Register Save Types:
+//
+// NS  = No-Save:       The register allocator assumes that these registers
+//                      can be used without saving upon entry to the method, &
+//                      that they do not need to be saved at call sites.
+//
+// SOC = Save-On-Call:  The register allocator assumes that these registers
+//                      can be used without saving upon entry to the method,
+//                      but that they must be saved at call sites.
+//
+// SOE = Save-On-Entry: The register allocator assumes that these registers
+//                      must be saved before using them upon entry to the
+//                      method, but they do not need to be saved at call
+//                      sites.
+//
+// AS  = Always-Save:   The register allocator assumes that these registers
+//                      must be saved before using them upon entry to the
+//                      method, & that they must be saved at call sites.
+//
+// Ideal Register Type is used to determine how to save & restore a
+// register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
+// spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
+//
+// The encoding number is the actual bit-pattern placed into the opcodes.
+
+// General Registers
+// R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
+// used as byte registers)
+
+// Previously set RBX, RSI, and RDI as save-on-entry for java code
+// Turn off SOE in java-code due to frequent use of uncommon-traps.
+// Now that allocator is better, turn on RSI and RDI as SOE registers.
+
+reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
+reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
+
+reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
+reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
+
+reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
+reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
+
+reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
+reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
+
+reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
+reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
+
+// now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
+reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
+reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
+
+#ifdef _WIN64
+
+reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
+reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
+
+reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
+reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
+
+#else
+
+reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
+reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
+
+reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
+reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
+
+#endif
+
+reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
+reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
+
+reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
+reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
+
+reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
+reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
+
+reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
+reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
+
+reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
+reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
+
+reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
+reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
+
+reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
+reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
+
+reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
+reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
+
+
+// Floating Point Registers
+
+// XMM registers.  128-bit registers or 4 words each, labeled (a)-d.
+// Word a in each register holds a Float, words ab hold a Double.  We
+// currently do not use the SIMD capabilities, so registers cd are
+// unused at the moment.
+// XMM8-XMM15 must be encoded with REX.
+// Linux ABI:   No register preserved across function calls
+//              XMM0-XMM7 might hold parameters
+// Windows ABI: XMM6-XMM15 preserved across function calls
+//              XMM0-XMM3 might hold parameters
+
+reg_def XMM0   (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg());
+reg_def XMM0_H (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg()->next());
+
+reg_def XMM1   (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg());
+reg_def XMM1_H (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg()->next());
+
+reg_def XMM2   (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg());
+reg_def XMM2_H (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg()->next());
+
+reg_def XMM3   (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg());
+reg_def XMM3_H (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg()->next());
+
+reg_def XMM4   (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg());
+reg_def XMM4_H (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg()->next());
+
+reg_def XMM5   (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg());
+reg_def XMM5_H (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg()->next());
+
+#ifdef _WIN64
+
+reg_def XMM6   (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg());
+reg_def XMM6_H (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg()->next());
+
+reg_def XMM7   (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg());
+reg_def XMM7_H (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg()->next());
+
+reg_def XMM8   (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg());
+reg_def XMM8_H (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg()->next());
+
+reg_def XMM9   (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg());
+reg_def XMM9_H (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg()->next());
+
+reg_def XMM10  (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
+reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
+
+reg_def XMM11  (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
+reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
+
+reg_def XMM12  (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
+reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
+
+reg_def XMM13  (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
+reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
+
+reg_def XMM14  (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
+reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
+
+reg_def XMM15  (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
+reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
+
+#else
+
+reg_def XMM6   (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg());
+reg_def XMM6_H (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg()->next());
+
+reg_def XMM7   (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg());
+reg_def XMM7_H (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg()->next());
+
+reg_def XMM8   (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg());
+reg_def XMM8_H (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg()->next());
+
+reg_def XMM9   (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg());
+reg_def XMM9_H (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg()->next());
+
+reg_def XMM10  (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
+reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
+
+reg_def XMM11  (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
+reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
+
+reg_def XMM12  (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
+reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
+
+reg_def XMM13  (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
+reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
+
+reg_def XMM14  (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
+reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
+
+reg_def XMM15  (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
+reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
+
+#endif // _WIN64
+
+reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
+
+// Specify priority of register selection within phases of register
+// allocation.  Highest priority is first.  A useful heuristic is to
+// give registers a low priority when they are required by machine
+// instructions, like EAX and EDX on I486, and choose no-save registers
+// before save-on-call, & save-on-call before save-on-entry.  Registers
+// which participate in fixed calling sequences should come last.
+// Registers which are used as pairs must fall on an even boundary.
+
+alloc_class chunk0(R10,         R10_H,
+                   R11,         R11_H,
+                   R8,          R8_H,
+                   R9,          R9_H,
+                   R12,         R12_H,
+                   RCX,         RCX_H,
+                   RBX,         RBX_H,
+                   RDI,         RDI_H,
+                   RDX,         RDX_H,
+                   RSI,         RSI_H,
+                   RAX,         RAX_H,
+                   RBP,         RBP_H,
+                   R13,         R13_H,
+                   R14,         R14_H,
+                   R15,         R15_H,
+                   RSP,         RSP_H);
+
+// XXX probably use 8-15 first on Linux
+alloc_class chunk1(XMM0,  XMM0_H,
+                   XMM1,  XMM1_H,
+                   XMM2,  XMM2_H,
+                   XMM3,  XMM3_H,
+                   XMM4,  XMM4_H,
+                   XMM5,  XMM5_H,
+                   XMM6,  XMM6_H,
+                   XMM7,  XMM7_H,
+                   XMM8,  XMM8_H,
+                   XMM9,  XMM9_H,
+                   XMM10, XMM10_H,
+                   XMM11, XMM11_H,
+                   XMM12, XMM12_H,
+                   XMM13, XMM13_H,
+                   XMM14, XMM14_H,
+                   XMM15, XMM15_H);
+
+alloc_class chunk2(RFLAGS);
+
+
+//----------Architecture Description Register Classes--------------------------
+// Several register classes are automatically defined based upon information in
+// this architecture description.
+// 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
+// 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
+// 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
+// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
+//
+
+// Class for all pointer registers (including RSP)
+reg_class any_reg(RAX, RAX_H,
+                  RDX, RDX_H,
+                  RBP, RBP_H,
+                  RDI, RDI_H,
+                  RSI, RSI_H,
+                  RCX, RCX_H,
+                  RBX, RBX_H,
+                  RSP, RSP_H,
+                  R8,  R8_H,
+                  R9,  R9_H,
+                  R10, R10_H,
+                  R11, R11_H,
+                  R12, R12_H,
+                  R13, R13_H,
+                  R14, R14_H,
+                  R15, R15_H);
+
+// Class for all pointer registers except RSP
+reg_class ptr_reg(RAX, RAX_H,
+                  RDX, RDX_H,
+                  RBP, RBP_H,
+                  RDI, RDI_H,
+                  RSI, RSI_H,
+                  RCX, RCX_H,
+                  RBX, RBX_H,
+                  R8,  R8_H,
+                  R9,  R9_H,
+                  R10, R10_H,
+                  R11, R11_H,
+                  R12, R12_H,
+                  R13, R13_H,
+                  R14, R14_H);
+
+// Class for all pointer registers except RAX and RSP
+reg_class ptr_no_rax_reg(RDX, RDX_H,
+                         RBP, RBP_H,
+                         RDI, RDI_H,
+                         RSI, RSI_H,
+                         RCX, RCX_H,
+                         RBX, RBX_H,
+                         R8,  R8_H,
+                         R9,  R9_H,
+                         R10, R10_H,
+                         R11, R11_H,
+                         R12, R12_H,
+                         R13, R13_H,
+                         R14, R14_H);
+
+reg_class ptr_no_rbp_reg(RDX, RDX_H,
+                         RAX, RAX_H,
+                         RDI, RDI_H,
+                         RSI, RSI_H,
+                         RCX, RCX_H,
+                         RBX, RBX_H,
+                         R8,  R8_H,
+                         R9,  R9_H,
+                         R10, R10_H,
+                         R11, R11_H,
+                         R12, R12_H,
+                         R13, R13_H,
+                         R14, R14_H);
+
+// Class for all pointer registers except RAX, RBX and RSP
+reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
+                             RBP, RBP_H,
+                             RDI, RDI_H,
+                             RSI, RSI_H,
+                             RCX, RCX_H,
+                             R8,  R8_H,
+                             R9,  R9_H,
+                             R10, R10_H,
+                             R11, R11_H,
+                             R12, R12_H,
+                             R13, R13_H,
+                             R14, R14_H);
+
+// Singleton class for RAX pointer register
+reg_class ptr_rax_reg(RAX, RAX_H);
+
+// Singleton class for RBX pointer register
+reg_class ptr_rbx_reg(RBX, RBX_H);
+
+// Singleton class for RSI pointer register
+reg_class ptr_rsi_reg(RSI, RSI_H);
+
+// Singleton class for RDI pointer register
+reg_class ptr_rdi_reg(RDI, RDI_H);
+
+// Singleton class for RBP pointer register
+reg_class ptr_rbp_reg(RBP, RBP_H);
+
+// Singleton class for stack pointer
+reg_class ptr_rsp_reg(RSP, RSP_H);
+
+// Singleton class for TLS pointer
+reg_class ptr_r15_reg(R15, R15_H);
+
+// Class for all long registers (except RSP)
+reg_class long_reg(RAX, RAX_H,
+                   RDX, RDX_H,
+                   RBP, RBP_H,
+                   RDI, RDI_H,
+                   RSI, RSI_H,
+                   RCX, RCX_H,
+                   RBX, RBX_H,
+                   R8,  R8_H,
+                   R9,  R9_H,
+                   R10, R10_H,
+                   R11, R11_H,
+                   R12, R12_H,
+                   R13, R13_H,
+                   R14, R14_H);
+
+// Class for all long registers except RAX, RDX (and RSP)
+reg_class long_no_rax_rdx_reg(RBP, RBP_H,
+                              RDI, RDI_H,
+                              RSI, RSI_H,
+                              RCX, RCX_H,
+                              RBX, RBX_H,
+                              R8,  R8_H,
+                              R9,  R9_H,
+                              R10, R10_H,
+                              R11, R11_H,
+                              R12, R12_H,
+                              R13, R13_H,
+                              R14, R14_H);
+
+// Class for all long registers except RCX (and RSP)
+reg_class long_no_rcx_reg(RBP, RBP_H,
+                          RDI, RDI_H,
+                          RSI, RSI_H,
+                          RAX, RAX_H,
+                          RDX, RDX_H,
+                          RBX, RBX_H,
+                          R8,  R8_H,
+                          R9,  R9_H,
+                          R10, R10_H,
+                          R11, R11_H,
+                          R12, R12_H,
+                          R13, R13_H,
+                          R14, R14_H);
+
+// Class for all long registers except RAX (and RSP)
+reg_class long_no_rax_reg(RBP, RBP_H,
+                          RDX, RDX_H,
+                          RDI, RDI_H,
+                          RSI, RSI_H,
+                          RCX, RCX_H,
+                          RBX, RBX_H,
+                          R8,  R8_H,
+                          R9,  R9_H,
+                          R10, R10_H,
+                          R11, R11_H,
+                          R12, R12_H,
+                          R13, R13_H,
+                          R14, R14_H);
+
+// Singleton class for RAX long register
+reg_class long_rax_reg(RAX, RAX_H);
+
+// Singleton class for RCX long register
+reg_class long_rcx_reg(RCX, RCX_H);
+
+// Singleton class for RDX long register
+reg_class long_rdx_reg(RDX, RDX_H);
+
+// Class for all int registers (except RSP)
+reg_class int_reg(RAX,
+                  RDX,
+                  RBP,
+                  RDI,
+                  RSI,
+                  RCX,
+                  RBX,
+                  R8,
+                  R9,
+                  R10,
+                  R11,
+                  R12,
+                  R13,
+                  R14);
+
+// Class for all int registers except RCX (and RSP)
+reg_class int_no_rcx_reg(RAX,
+                         RDX,
+                         RBP,
+                         RDI,
+                         RSI,
+                         RBX,
+                         R8,
+                         R9,
+                         R10,
+                         R11,
+                         R12,
+                         R13,
+                         R14);
+
+// Class for all int registers except RAX, RDX (and RSP)
+reg_class int_no_rax_rdx_reg(RBP,
+                             RDI
+                             RSI,
+                             RCX,
+                             RBX,
+                             R8,
+                             R9,
+                             R10,
+                             R11,
+                             R12,
+                             R13,
+                             R14);
+
+// Singleton class for RAX int register
+reg_class int_rax_reg(RAX);
+
+// Singleton class for RBX int register
+reg_class int_rbx_reg(RBX);
+
+// Singleton class for RCX int register
+reg_class int_rcx_reg(RCX);
+
+// Singleton class for RCX int register
+reg_class int_rdx_reg(RDX);
+
+// Singleton class for RCX int register
+reg_class int_rdi_reg(RDI);
+
+// Singleton class for instruction pointer
+// reg_class ip_reg(RIP);
+
+// Singleton class for condition codes
+reg_class int_flags(RFLAGS);
+
+// Class for all float registers
+reg_class float_reg(XMM0,
+                    XMM1,
+                    XMM2,
+                    XMM3,
+                    XMM4,
+                    XMM5,
+                    XMM6,
+                    XMM7,
+                    XMM8,
+                    XMM9,
+                    XMM10,
+                    XMM11,
+                    XMM12,
+                    XMM13,
+                    XMM14,
+                    XMM15);
+
+// Class for all double registers
+reg_class double_reg(XMM0,  XMM0_H,
+                     XMM1,  XMM1_H,
+                     XMM2,  XMM2_H,
+                     XMM3,  XMM3_H,
+                     XMM4,  XMM4_H,
+                     XMM5,  XMM5_H,
+                     XMM6,  XMM6_H,
+                     XMM7,  XMM7_H,
+                     XMM8,  XMM8_H,
+                     XMM9,  XMM9_H,
+                     XMM10, XMM10_H,
+                     XMM11, XMM11_H,
+                     XMM12, XMM12_H,
+                     XMM13, XMM13_H,
+                     XMM14, XMM14_H,
+                     XMM15, XMM15_H);
+%}
+
+
+//----------SOURCE BLOCK-------------------------------------------------------
+// This is a block of C++ code which provides values, functions, and
+// definitions necessary in the rest of the architecture description
+source %{
+#define   RELOC_IMM64    Assembler::imm64_operand
+#define   RELOC_DISP32   Assembler::disp32_operand
+
+#define __ _masm.
+
+// !!!!! Special hack to get all types of calls to specify the byte offset
+//       from the start of the call to the point where the return address
+//       will point.
+int MachCallStaticJavaNode::ret_addr_offset()
+{
+  return 5; // 5 bytes from start of call to where return address points
+}
+
+int MachCallDynamicJavaNode::ret_addr_offset()
+{
+  return 15; // 15 bytes from start of call to where return address points
+}
+
+// In os_cpu .ad file
+// int MachCallRuntimeNode::ret_addr_offset()
+
+// Indicate if the safepoint node needs the polling page as an input.
+// Since amd64 does not have absolute addressing but RIP-relative
+// addressing and the polling page is within 2G, it doesn't.
+bool SafePointNode::needs_polling_address_input()
+{
+  return false;
+}
+
+//
+// Compute padding required for nodes which need alignment
+//
+
+// The address of the call instruction needs to be 4-byte aligned to
+// ensure that it does not span a cache line so that it can be patched.
+int CallStaticJavaDirectNode::compute_padding(int current_offset) const
+{
+  current_offset += 1; // skip call opcode byte
+  return round_to(current_offset, alignment_required()) - current_offset;
+}
+
+// The address of the call instruction needs to be 4-byte aligned to
+// ensure that it does not span a cache line so that it can be patched.
+int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
+{
+  current_offset += 11; // skip movq instruction + call opcode byte
+  return round_to(current_offset, alignment_required()) - current_offset;
+}
+
+#ifndef PRODUCT
+void MachBreakpointNode::format(PhaseRegAlloc*, outputStream* st) const
+{
+  st->print("INT3");
+}
+#endif
+
+// EMIT_RM()
+void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3)
+{
+  unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
+  *(cbuf.code_end()) = c;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_CC()
+void emit_cc(CodeBuffer &cbuf, int f1, int f2)
+{
+  unsigned char c = (unsigned char) (f1 | f2);
+  *(cbuf.code_end()) = c;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_OPCODE()
+void emit_opcode(CodeBuffer &cbuf, int code)
+{
+  *(cbuf.code_end()) = (unsigned char) code;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_OPCODE() w/ relocation information
+void emit_opcode(CodeBuffer &cbuf,
+                 int code, relocInfo::relocType reloc, int offset, int format)
+{
+  cbuf.relocate(cbuf.inst_mark() + offset, reloc, format);
+  emit_opcode(cbuf, code);
+}
+
+// EMIT_D8()
+void emit_d8(CodeBuffer &cbuf, int d8)
+{
+  *(cbuf.code_end()) = (unsigned char) d8;
+  cbuf.set_code_end(cbuf.code_end() + 1);
+}
+
+// EMIT_D16()
+void emit_d16(CodeBuffer &cbuf, int d16)
+{
+  *((short *)(cbuf.code_end())) = d16;
+  cbuf.set_code_end(cbuf.code_end() + 2);
+}
+
+// EMIT_D32()
+void emit_d32(CodeBuffer &cbuf, int d32)
+{
+  *((int *)(cbuf.code_end())) = d32;
+  cbuf.set_code_end(cbuf.code_end() + 4);
+}
+
+// EMIT_D64()
+void emit_d64(CodeBuffer &cbuf, int64_t d64)
+{
+  *((int64_t*) (cbuf.code_end())) = d64;
+  cbuf.set_code_end(cbuf.code_end() + 8);
+}
+
+// emit 32 bit value and construct relocation entry from relocInfo::relocType
+void emit_d32_reloc(CodeBuffer& cbuf,
+                    int d32,
+                    relocInfo::relocType reloc,
+                    int format)
+{
+  assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
+  cbuf.relocate(cbuf.inst_mark(), reloc, format);
+
+  *((int*) (cbuf.code_end())) = d32;
+  cbuf.set_code_end(cbuf.code_end() + 4);
+}
+
+// emit 32 bit value and construct relocation entry from RelocationHolder
+void emit_d32_reloc(CodeBuffer& cbuf,
+                    int d32,
+                    RelocationHolder const& rspec,
+                    int format)
+{
+#ifdef ASSERT
+  if (rspec.reloc()->type() == relocInfo::oop_type &&
+      d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
+    assert(oop((intptr_t)d32)->is_oop() && oop((intptr_t)d32)->is_perm(), "cannot embed non-perm oops in code");
+  }
+#endif
+  cbuf.relocate(cbuf.inst_mark(), rspec, format);
+
+  *((int* )(cbuf.code_end())) = d32;
+  cbuf.set_code_end(cbuf.code_end() + 4);
+}
+
+void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
+  address next_ip = cbuf.code_end() + 4;
+  emit_d32_reloc(cbuf, (int) (addr - next_ip),
+                 external_word_Relocation::spec(addr),
+                 RELOC_DISP32);
+}
+
+
+// emit 64 bit value and construct relocation entry from relocInfo::relocType
+void emit_d64_reloc(CodeBuffer& cbuf,
+                    int64_t d64,
+                    relocInfo::relocType reloc,
+                    int format)
+{
+  cbuf.relocate(cbuf.inst_mark(), reloc, format);
+
+  *((int64_t*) (cbuf.code_end())) = d64;
+  cbuf.set_code_end(cbuf.code_end() + 8);
+}
+
+// emit 64 bit value and construct relocation entry from RelocationHolder
+void emit_d64_reloc(CodeBuffer& cbuf,
+                    int64_t d64,
+                    RelocationHolder const& rspec,
+                    int format)
+{
+#ifdef ASSERT
+  if (rspec.reloc()->type() == relocInfo::oop_type &&
+      d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
+    assert(oop(d64)->is_oop() && oop(d64)->is_perm(),
+           "cannot embed non-perm oops in code");
+  }
+#endif
+  cbuf.relocate(cbuf.inst_mark(), rspec, format);
+
+  *((int64_t*) (cbuf.code_end())) = d64;
+  cbuf.set_code_end(cbuf.code_end() + 8);
+}
+
+// Access stack slot for load or store
+void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
+{
+  emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
+  if (-0x80 <= disp && disp < 0x80) {
+    emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
+    emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
+    emit_d8(cbuf, disp);     // Displacement  // R/M byte
+  } else {
+    emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
+    emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
+    emit_d32(cbuf, disp);     // Displacement // R/M byte
+  }
+}
+
+   // rRegI ereg, memory mem) %{    // emit_reg_mem
+void encode_RegMem(CodeBuffer &cbuf,
+                   int reg,
+                   int base, int index, int scale, int disp, bool disp_is_oop)
+{
+  assert(!disp_is_oop, "cannot have disp");
+  int regenc = reg & 7;
+  int baseenc = base & 7;
+  int indexenc = index & 7;
+
+  // There is no index & no scale, use form without SIB byte
+  if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
+    // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
+    if (disp == 0 && base != RBP_enc && base != R13_enc) {
+      emit_rm(cbuf, 0x0, regenc, baseenc); // *
+    } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
+      // If 8-bit displacement, mode 0x1
+      emit_rm(cbuf, 0x1, regenc, baseenc); // *
+      emit_d8(cbuf, disp);
+    } else {
+      // If 32-bit displacement
+      if (base == -1) { // Special flag for absolute address
+        emit_rm(cbuf, 0x0, regenc, 0x5); // *
+        if (disp_is_oop) {
+          emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
+        } else {
+          emit_d32(cbuf, disp);
+        }
+      } else {
+        // Normal base + offset
+        emit_rm(cbuf, 0x2, regenc, baseenc); // *
+        if (disp_is_oop) {
+          emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
+        } else {
+          emit_d32(cbuf, disp);
+        }
+      }
+    }
+  } else {
+    // Else, encode with the SIB byte
+    // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
+    if (disp == 0 && base != RBP_enc && base != R13_enc) {
+      // If no displacement
+      emit_rm(cbuf, 0x0, regenc, 0x4); // *
+      emit_rm(cbuf, scale, indexenc, baseenc);
+    } else {
+      if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
+        // If 8-bit displacement, mode 0x1
+        emit_rm(cbuf, 0x1, regenc, 0x4); // *
+        emit_rm(cbuf, scale, indexenc, baseenc);
+        emit_d8(cbuf, disp);
+      } else {
+        // If 32-bit displacement
+        if (base == 0x04 ) {
+          emit_rm(cbuf, 0x2, regenc, 0x4);
+          emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
+        } else {
+          emit_rm(cbuf, 0x2, regenc, 0x4);
+          emit_rm(cbuf, scale, indexenc, baseenc); // *
+        }
+        if (disp_is_oop) {
+          emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
+        } else {
+          emit_d32(cbuf, disp);
+        }
+      }
+    }
+  }
+}
+
+void encode_copy(CodeBuffer &cbuf, int dstenc, int srcenc)
+{
+  if (dstenc != srcenc) {
+    if (dstenc < 8) {
+      if (srcenc >= 8) {
+        emit_opcode(cbuf, Assembler::REX_B);
+        srcenc -= 8;
+      }
+    } else {
+      if (srcenc < 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_RB);
+        srcenc -= 8;
+      }
+      dstenc -= 8;
+    }
+
+    emit_opcode(cbuf, 0x8B);
+    emit_rm(cbuf, 0x3, dstenc, srcenc);
+  }
+}
+
+void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
+  if( dst_encoding == src_encoding ) {
+    // reg-reg copy, use an empty encoding
+  } else {
+    MacroAssembler _masm(&cbuf);
+
+    __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
+  }
+}
+
+
+//=============================================================================
+#ifndef PRODUCT
+void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const
+{
+  Compile* C = ra_->C;
+
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove wordSize for return adr already pushed
+  // and another for the RBP we are going to save
+  framesize -= 2*wordSize;
+  bool need_nop = true;
+
+  // Calls to C2R adapters often do not accept exceptional returns.
+  // We require that their callers must bang for them.  But be
+  // careful, because some VM calls (such as call site linkage) can
+  // use several kilobytes of stack.  But the stack safety zone should
+  // account for that.  See bugs 4446381, 4468289, 4497237.
+  if (C->need_stack_bang(framesize)) {
+    st->print_cr("# stack bang"); st->print("\t");
+    need_nop = false;
+  }
+  st->print_cr("pushq   rbp"); st->print("\t");
+
+  if (VerifyStackAtCalls) {
+    // Majik cookie to verify stack depth
+    st->print_cr("pushq   0xffffffffbadb100d"
+                  "\t# Majik cookie for stack depth check");
+    st->print("\t");
+    framesize -= wordSize; // Remove 2 for cookie
+    need_nop = false;
+  }
+
+  if (framesize) {
+    st->print("subq    rsp, #%d\t# Create frame", framesize);
+    if (framesize < 0x80 && need_nop) {
+      st->print("\n\tnop\t# nop for patch_verified_entry");
+    }
+  }
+}
+#endif
+
+void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
+{
+  Compile* C = ra_->C;
+
+  // WARNING: Initial instruction MUST be 5 bytes or longer so that
+  // NativeJump::patch_verified_entry will be able to patch out the entry
+  // code safely. The fldcw is ok at 6 bytes, the push to verify stack
+  // depth is ok at 5 bytes, the frame allocation can be either 3 or
+  // 6 bytes. So if we don't do the fldcw or the push then we must
+  // use the 6 byte frame allocation even if we have no frame. :-(
+  // If method sets FPU control word do it now
+
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove wordSize for return adr already pushed
+  // and another for the RBP we are going to save
+  framesize -= 2*wordSize;
+  bool need_nop = true;
+
+  // Calls to C2R adapters often do not accept exceptional returns.
+  // We require that their callers must bang for them.  But be
+  // careful, because some VM calls (such as call site linkage) can
+  // use several kilobytes of stack.  But the stack safety zone should
+  // account for that.  See bugs 4446381, 4468289, 4497237.
+  if (C->need_stack_bang(framesize)) {
+    MacroAssembler masm(&cbuf);
+    masm.generate_stack_overflow_check(framesize);
+    need_nop = false;
+  }
+
+  // We always push rbp so that on return to interpreter rbp will be
+  // restored correctly and we can correct the stack.
+  emit_opcode(cbuf, 0x50 | RBP_enc);
+
+  if (VerifyStackAtCalls) {
+    // Majik cookie to verify stack depth
+    emit_opcode(cbuf, 0x68); // pushq (sign-extended) 0xbadb100d
+    emit_d32(cbuf, 0xbadb100d);
+    framesize -= wordSize; // Remove 2 for cookie
+    need_nop = false;
+  }
+
+  if (framesize) {
+    emit_opcode(cbuf, Assembler::REX_W);
+    if (framesize < 0x80) {
+      emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
+      emit_rm(cbuf, 0x3, 0x05, RSP_enc);
+      emit_d8(cbuf, framesize);
+      if (need_nop) {
+        emit_opcode(cbuf, 0x90); // nop
+      }
+    } else {
+      emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
+      emit_rm(cbuf, 0x3, 0x05, RSP_enc);
+      emit_d32(cbuf, framesize);
+    }
+  }
+
+  C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
+
+#ifdef ASSERT
+  if (VerifyStackAtCalls) {
+    Label L;
+    MacroAssembler masm(&cbuf);
+    masm.pushq(rax);
+    masm.movq(rax, rsp);
+    masm.andq(rax, StackAlignmentInBytes-1);
+    masm.cmpq(rax, StackAlignmentInBytes-wordSize);
+    masm.popq(rax);
+    masm.jcc(Assembler::equal, L);
+    masm.stop("Stack is not properly aligned!");
+    masm.bind(L);
+  }
+#endif
+}
+
+uint MachPrologNode::size(PhaseRegAlloc* ra_) const
+{
+  return MachNode::size(ra_); // too many variables; just compute it
+                              // the hard way
+}
+
+int MachPrologNode::reloc() const
+{
+  return 0; // a large enough number
+}
+
+//=============================================================================
+#ifndef PRODUCT
+void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
+{
+  Compile* C = ra_->C;
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove word for return adr already pushed
+  // and RBP
+  framesize -= 2*wordSize;
+
+  if (framesize) {
+    st->print_cr("addq\trsp, %d\t# Destroy frame", framesize);
+    st->print("\t");
+  }
+
+  st->print_cr("popq\trbp");
+  if (do_polling() && C->is_method_compilation()) {
+    st->print_cr("\ttestl\trax, [rip + #offset_to_poll_page]\t"
+                  "# Safepoint: poll for GC");
+    st->print("\t");
+  }
+}
+#endif
+
+void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
+{
+  Compile* C = ra_->C;
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove word for return adr already pushed
+  // and RBP
+  framesize -= 2*wordSize;
+
+  // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
+
+  if (framesize) {
+    emit_opcode(cbuf, Assembler::REX_W);
+    if (framesize < 0x80) {
+      emit_opcode(cbuf, 0x83); // addq rsp, #framesize
+      emit_rm(cbuf, 0x3, 0x00, RSP_enc);
+      emit_d8(cbuf, framesize);
+    } else {
+      emit_opcode(cbuf, 0x81); // addq rsp, #framesize
+      emit_rm(cbuf, 0x3, 0x00, RSP_enc);
+      emit_d32(cbuf, framesize);
+    }
+  }
+
+  // popq rbp
+  emit_opcode(cbuf, 0x58 | RBP_enc);
+
+  if (do_polling() && C->is_method_compilation()) {
+    // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    cbuf.set_inst_mark();
+    cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_return_type, 0); // XXX
+    emit_opcode(cbuf, 0x85); // testl
+    emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
+    // cbuf.inst_mark() is beginning of instruction
+    emit_d32_reloc(cbuf, os::get_polling_page());
+//                    relocInfo::poll_return_type,
+  }
+}
+
+uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
+{
+  Compile* C = ra_->C;
+  int framesize = C->frame_slots() << LogBytesPerInt;
+  assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
+  // Remove word for return adr already pushed
+  // and RBP
+  framesize -= 2*wordSize;
+
+  uint size = 0;
+
+  if (do_polling() && C->is_method_compilation()) {
+    size += 6;
+  }
+
+  // count popq rbp
+  size++;
+
+  if (framesize) {
+    if (framesize < 0x80) {
+      size += 4;
+    } else if (framesize) {
+      size += 7;
+    }
+  }
+
+  return size;
+}
+
+int MachEpilogNode::reloc() const
+{
+  return 2; // a large enough number
+}
+
+const Pipeline* MachEpilogNode::pipeline() const
+{
+  return MachNode::pipeline_class();
+}
+
+int MachEpilogNode::safepoint_offset() const
+{
+  return 0;
+}
+
+//=============================================================================
+
+enum RC {
+  rc_bad,
+  rc_int,
+  rc_float,
+  rc_stack
+};
+
+static enum RC rc_class(OptoReg::Name reg)
+{
+  if( !OptoReg::is_valid(reg)  ) return rc_bad;
+
+  if (OptoReg::is_stack(reg)) return rc_stack;
+
+  VMReg r = OptoReg::as_VMReg(reg);
+
+  if (r->is_Register()) return rc_int;
+
+  assert(r->is_XMMRegister(), "must be");
+  return rc_float;
+}
+
+uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
+                                       PhaseRegAlloc* ra_,
+                                       bool do_size,
+                                       outputStream* st) const
+{
+
+  // Get registers to move
+  OptoReg::Name src_second = ra_->get_reg_second(in(1));
+  OptoReg::Name src_first = ra_->get_reg_first(in(1));
+  OptoReg::Name dst_second = ra_->get_reg_second(this);
+  OptoReg::Name dst_first = ra_->get_reg_first(this);
+
+  enum RC src_second_rc = rc_class(src_second);
+  enum RC src_first_rc = rc_class(src_first);
+  enum RC dst_second_rc = rc_class(dst_second);
+  enum RC dst_first_rc = rc_class(dst_first);
+
+  assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
+         "must move at least 1 register" );
+
+  if (src_first == dst_first && src_second == dst_second) {
+    // Self copy, no move
+    return 0;
+  } else if (src_first_rc == rc_stack) {
+    // mem ->
+    if (dst_first_rc == rc_stack) {
+      // mem -> mem
+      assert(src_second != dst_first, "overlap");
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        int src_offset = ra_->reg2offset(src_first);
+        int dst_offset = ra_->reg2offset(dst_first);
+        if (cbuf) {
+          emit_opcode(*cbuf, 0xFF);
+          encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
+
+          emit_opcode(*cbuf, 0x8F);
+          encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
+
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
+                     "popq    [rsp + #%d]",
+                     src_offset,
+                     dst_offset);
+#endif
+        }
+        return
+          3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
+          3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        // No pushl/popl, so:
+        int src_offset = ra_->reg2offset(src_first);
+        int dst_offset = ra_->reg2offset(dst_first);
+        if (cbuf) {
+          emit_opcode(*cbuf, Assembler::REX_W);
+          emit_opcode(*cbuf, 0x89);
+          emit_opcode(*cbuf, 0x44);
+          emit_opcode(*cbuf, 0x24);
+          emit_opcode(*cbuf, 0xF8);
+
+          emit_opcode(*cbuf, 0x8B);
+          encode_RegMem(*cbuf,
+                        RAX_enc,
+                        RSP_enc, 0x4, 0, src_offset,
+                        false);
+
+          emit_opcode(*cbuf, 0x89);
+          encode_RegMem(*cbuf,
+                        RAX_enc,
+                        RSP_enc, 0x4, 0, dst_offset,
+                        false);
+
+          emit_opcode(*cbuf, Assembler::REX_W);
+          emit_opcode(*cbuf, 0x8B);
+          emit_opcode(*cbuf, 0x44);
+          emit_opcode(*cbuf, 0x24);
+          emit_opcode(*cbuf, 0xF8);
+
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
+                     "movl    rax, [rsp + #%d]\n\t"
+                     "movl    [rsp + #%d], rax\n\t"
+                     "movq    rax, [rsp - #8]",
+                     src_offset,
+                     dst_offset);
+#endif
+        }
+        return
+          5 + // movq
+          3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
+          3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
+          5; // movq
+      }
+    } else if (dst_first_rc == rc_int) {
+      // mem -> gpr
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        int offset = ra_->reg2offset(src_first);
+        if (cbuf) {
+          if (Matcher::_regEncode[dst_first] < 8) {
+            emit_opcode(*cbuf, Assembler::REX_W);
+          } else {
+            emit_opcode(*cbuf, Assembler::REX_WR);
+          }
+          emit_opcode(*cbuf, 0x8B);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[dst_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movq    %s, [rsp + #%d]\t# spill",
+                     Matcher::regName[dst_first],
+                     offset);
+#endif
+        }
+        return
+          ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        int offset = ra_->reg2offset(src_first);
+        if (cbuf) {
+          if (Matcher::_regEncode[dst_first] >= 8) {
+            emit_opcode(*cbuf, Assembler::REX_R);
+          }
+          emit_opcode(*cbuf, 0x8B);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[dst_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movl    %s, [rsp + #%d]\t# spill",
+                     Matcher::regName[dst_first],
+                     offset);
+#endif
+        }
+        return
+          ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
+          ((Matcher::_regEncode[dst_first] < 8)
+           ? 3
+           : 4); // REX
+      }
+    } else if (dst_first_rc == rc_float) {
+      // mem-> xmm
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        int offset = ra_->reg2offset(src_first);
+        if (cbuf) {
+          emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+          if (Matcher::_regEncode[dst_first] >= 8) {
+            emit_opcode(*cbuf, Assembler::REX_R);
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[dst_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("%s  %s, [rsp + #%d]\t# spill",
+                     UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
+                     Matcher::regName[dst_first],
+                     offset);
+#endif
+        }
+        return
+          ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
+          ((Matcher::_regEncode[dst_first] < 8)
+           ? 5
+           : 6); // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        int offset = ra_->reg2offset(src_first);
+        if (cbuf) {
+          emit_opcode(*cbuf, 0xF3);
+          if (Matcher::_regEncode[dst_first] >= 8) {
+            emit_opcode(*cbuf, Assembler::REX_R);
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, 0x10);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[dst_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movss   %s, [rsp + #%d]\t# spill",
+                     Matcher::regName[dst_first],
+                     offset);
+#endif
+        }
+        return
+          ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
+          ((Matcher::_regEncode[dst_first] < 8)
+           ? 5
+           : 6); // REX
+      }
+    }
+  } else if (src_first_rc == rc_int) {
+    // gpr ->
+    if (dst_first_rc == rc_stack) {
+      // gpr -> mem
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        int offset = ra_->reg2offset(dst_first);
+        if (cbuf) {
+          if (Matcher::_regEncode[src_first] < 8) {
+            emit_opcode(*cbuf, Assembler::REX_W);
+          } else {
+            emit_opcode(*cbuf, Assembler::REX_WR);
+          }
+          emit_opcode(*cbuf, 0x89);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[src_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movq    [rsp + #%d], %s\t# spill",
+                     offset,
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        int offset = ra_->reg2offset(dst_first);
+        if (cbuf) {
+          if (Matcher::_regEncode[src_first] >= 8) {
+            emit_opcode(*cbuf, Assembler::REX_R);
+          }
+          emit_opcode(*cbuf, 0x89);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[src_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movl    [rsp + #%d], %s\t# spill",
+                     offset,
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
+          ((Matcher::_regEncode[src_first] < 8)
+           ? 3
+           : 4); // REX
+      }
+    } else if (dst_first_rc == rc_int) {
+      // gpr -> gpr
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        if (cbuf) {
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_W);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_WB);
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_WR);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_WRB);
+            }
+          }
+          emit_opcode(*cbuf, 0x8B);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movq    %s, %s\t# spill",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return 3; // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        if (cbuf) {
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] >= 8) {
+              emit_opcode(*cbuf, Assembler::REX_B);
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_R);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_RB);
+            }
+          }
+          emit_opcode(*cbuf, 0x8B);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movl    %s, %s\t# spill",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
+          ? 2
+          : 3; // REX
+      }
+    } else if (dst_first_rc == rc_float) {
+      // gpr -> xmm
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        if (cbuf) {
+          emit_opcode(*cbuf, 0x66);
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_W);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_WB);
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_WR);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_WRB);
+            }
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, 0x6E);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movdq   %s, %s\t# spill",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return 5; // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        if (cbuf) {
+          emit_opcode(*cbuf, 0x66);
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] >= 8) {
+              emit_opcode(*cbuf, Assembler::REX_B);
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_R);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_RB);
+            }
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, 0x6E);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movdl   %s, %s\t# spill",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
+          ? 4
+          : 5; // REX
+      }
+    }
+  } else if (src_first_rc == rc_float) {
+    // xmm ->
+    if (dst_first_rc == rc_stack) {
+      // xmm -> mem
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        int offset = ra_->reg2offset(dst_first);
+        if (cbuf) {
+          emit_opcode(*cbuf, 0xF2);
+          if (Matcher::_regEncode[src_first] >= 8) {
+              emit_opcode(*cbuf, Assembler::REX_R);
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, 0x11);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[src_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movsd   [rsp + #%d], %s\t# spill",
+                     offset,
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
+          ((Matcher::_regEncode[src_first] < 8)
+           ? 5
+           : 6); // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        int offset = ra_->reg2offset(dst_first);
+        if (cbuf) {
+          emit_opcode(*cbuf, 0xF3);
+          if (Matcher::_regEncode[src_first] >= 8) {
+              emit_opcode(*cbuf, Assembler::REX_R);
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, 0x11);
+          encode_RegMem(*cbuf,
+                        Matcher::_regEncode[src_first],
+                        RSP_enc, 0x4, 0, offset,
+                        false);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movss   [rsp + #%d], %s\t# spill",
+                     offset,
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
+          ((Matcher::_regEncode[src_first] < 8)
+           ? 5
+           : 6); // REX
+      }
+    } else if (dst_first_rc == rc_int) {
+      // xmm -> gpr
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        if (cbuf) {
+          emit_opcode(*cbuf, 0x66);
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_W);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_WR); // attention!
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_WB); // attention!
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_WRB);
+            }
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, 0x7E);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movdq   %s, %s\t# spill",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return 5; // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        if (cbuf) {
+          emit_opcode(*cbuf, 0x66);
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] >= 8) {
+              emit_opcode(*cbuf, Assembler::REX_R); // attention!
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_B); // attention!
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_RB);
+            }
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, 0x7E);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("movdl   %s, %s\t# spill",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
+          ? 4
+          : 5; // REX
+      }
+    } else if (dst_first_rc == rc_float) {
+      // xmm -> xmm
+      if ((src_first & 1) == 0 && src_first + 1 == src_second &&
+          (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
+        // 64-bit
+        if (cbuf) {
+          emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] >= 8) {
+              emit_opcode(*cbuf, Assembler::REX_B);
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_R);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_RB);
+            }
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("%s  %s, %s\t# spill",
+                     UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
+          ? 4
+          : 5; // REX
+      } else {
+        // 32-bit
+        assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
+        assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
+        if (cbuf) {
+          if (!UseXmmRegToRegMoveAll)
+            emit_opcode(*cbuf, 0xF3);
+          if (Matcher::_regEncode[dst_first] < 8) {
+            if (Matcher::_regEncode[src_first] >= 8) {
+              emit_opcode(*cbuf, Assembler::REX_B);
+            }
+          } else {
+            if (Matcher::_regEncode[src_first] < 8) {
+              emit_opcode(*cbuf, Assembler::REX_R);
+            } else {
+              emit_opcode(*cbuf, Assembler::REX_RB);
+            }
+          }
+          emit_opcode(*cbuf, 0x0F);
+          emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
+          emit_rm(*cbuf, 0x3,
+                  Matcher::_regEncode[dst_first] & 7,
+                  Matcher::_regEncode[src_first] & 7);
+#ifndef PRODUCT
+        } else if (!do_size) {
+          st->print("%s  %s, %s\t# spill",
+                     UseXmmRegToRegMoveAll ? "movaps" : "movss ",
+                     Matcher::regName[dst_first],
+                     Matcher::regName[src_first]);
+#endif
+        }
+        return
+          (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
+          ? (UseXmmRegToRegMoveAll ? 3 : 4)
+          : (UseXmmRegToRegMoveAll ? 4 : 5); // REX
+      }
+    }
+  }
+
+  assert(0," foo ");
+  Unimplemented();
+
+  return 0;
+}
+
+#ifndef PRODUCT
+void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
+{
+  implementation(NULL, ra_, false, st);
+}
+#endif
+
+void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
+{
+  implementation(&cbuf, ra_, false, NULL);
+}
+
+uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
+{
+  return implementation(NULL, ra_, true, NULL);
+}
+
+//=============================================================================
+#ifndef PRODUCT
+void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const
+{
+  st->print("nop \t# %d bytes pad for loops and calls", _count);
+}
+#endif
+
+void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const
+{
+  MacroAssembler _masm(&cbuf);
+  __ nop(_count);
+}
+
+uint MachNopNode::size(PhaseRegAlloc*) const
+{
+  return _count;
+}
+
+
+//=============================================================================
+#ifndef PRODUCT
+void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
+{
+  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
+  int reg = ra_->get_reg_first(this);
+  st->print("leaq    %s, [rsp + #%d]\t# box lock",
+            Matcher::regName[reg], offset);
+}
+#endif
+
+void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
+{
+  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
+  int reg = ra_->get_encode(this);
+  if (offset >= 0x80) {
+    emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
+    emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
+    emit_rm(cbuf, 0x2, reg & 7, 0x04);
+    emit_rm(cbuf, 0x0, 0x04, RSP_enc);
+    emit_d32(cbuf, offset);
+  } else {
+    emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
+    emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
+    emit_rm(cbuf, 0x1, reg & 7, 0x04);
+    emit_rm(cbuf, 0x0, 0x04, RSP_enc);
+    emit_d8(cbuf, offset);
+  }
+}
+
+uint BoxLockNode::size(PhaseRegAlloc *ra_) const
+{
+  int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
+  return (offset < 0x80) ? 5 : 8; // REX
+}
+
+//=============================================================================
+
+// emit call stub, compiled java to interpreter
+void emit_java_to_interp(CodeBuffer& cbuf)
+{
+  // Stub is fixed up when the corresponding call is converted from
+  // calling compiled code to calling interpreted code.
+  // movq rbx, 0
+  // jmp -5 # to self
+
+  address mark = cbuf.inst_mark();  // get mark within main instrs section
+
+  // Note that the code buffer's inst_mark is always relative to insts.
+  // That's why we must use the macroassembler to generate a stub.
+  MacroAssembler _masm(&cbuf);
+
+  address base =
+  __ start_a_stub(Compile::MAX_stubs_size);
+  if (base == NULL)  return;  // CodeBuffer::expand failed
+  // static stub relocation stores the instruction address of the call
+  __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
+  // static stub relocation also tags the methodOop in the code-stream.
+  __ movoop(rbx, (jobject) NULL);  // method is zapped till fixup time
+  __ jump(RuntimeAddress(__ pc()));
+
+  // Update current stubs pointer and restore code_end.
+  __ end_a_stub();
+}
+
+// size of call stub, compiled java to interpretor
+uint size_java_to_interp()
+{
+  return 15;  // movq (1+1+8); jmp (1+4)
+}
+
+// relocation entries for call stub, compiled java to interpretor
+uint reloc_java_to_interp()
+{
+  return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
+}
+
+//=============================================================================
+#ifndef PRODUCT
+void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
+{
+  st->print_cr("cmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t"
+               "# Inline cache check", oopDesc::klass_offset_in_bytes());
+  st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
+  st->print_cr("\tnop");
+  if (!OptoBreakpoint) {
+    st->print_cr("\tnop");
+  }
+}
+#endif
+
+void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
+{
+  MacroAssembler masm(&cbuf);
+#ifdef ASSERT
+  uint code_size = cbuf.code_size();
+#endif
+  masm.cmpq(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
+
+  masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
+
+  /* WARNING these NOPs are critical so that verified entry point is properly
+     aligned for patching by NativeJump::patch_verified_entry() */
+  int nops_cnt = 1;
+  if (!OptoBreakpoint) {
+    // Leave space for int3
+     nops_cnt += 1;
+  }
+  masm.nop(nops_cnt);
+
+  assert(cbuf.code_size() - code_size == size(ra_),
+         "checking code size of inline cache node");
+}
+
+uint MachUEPNode::size(PhaseRegAlloc* ra_) const
+{
+  return OptoBreakpoint ? 11 : 12;
+}
+
+
+//=============================================================================
+uint size_exception_handler()
+{
+  // NativeCall instruction size is the same as NativeJump.
+  // Note that this value is also credited (in output.cpp) to
+  // the size of the code section.
+  return NativeJump::instruction_size;
+}
+
+// Emit exception handler code.
+int emit_exception_handler(CodeBuffer& cbuf)
+{
+
+  // Note that the code buffer's inst_mark is always relative to insts.
+  // That's why we must use the macroassembler to generate a handler.
+  MacroAssembler _masm(&cbuf);
+  address base =
+  __ start_a_stub(size_exception_handler());
+  if (base == NULL)  return 0;  // CodeBuffer::expand failed
+  int offset = __ offset();
+  __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
+  assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
+  __ end_a_stub();
+  return offset;
+}
+
+uint size_deopt_handler()
+{
+  // three 5 byte instructions
+  return 15;
+}
+
+// Emit deopt handler code.
+int emit_deopt_handler(CodeBuffer& cbuf)
+{
+
+  // Note that the code buffer's inst_mark is always relative to insts.
+  // That's why we must use the macroassembler to generate a handler.
+  MacroAssembler _masm(&cbuf);
+  address base =
+  __ start_a_stub(size_deopt_handler());
+  if (base == NULL)  return 0;  // CodeBuffer::expand failed
+  int offset = __ offset();
+  address the_pc = (address) __ pc();
+  Label next;
+  // push a "the_pc" on the stack without destroying any registers
+  // as they all may be live.
+
+  // push address of "next"
+  __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
+  __ bind(next);
+  // adjust it so it matches "the_pc"
+  __ subq(Address(rsp, 0), __ offset() - offset);
+  __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
+  assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
+  __ end_a_stub();
+  return offset;
+}
+
+static void emit_double_constant(CodeBuffer& cbuf, double x) {
+  int mark = cbuf.insts()->mark_off();
+  MacroAssembler _masm(&cbuf);
+  address double_address = __ double_constant(x);
+  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
+  emit_d32_reloc(cbuf,
+                 (int) (double_address - cbuf.code_end() - 4),
+                 internal_word_Relocation::spec(double_address),
+                 RELOC_DISP32);
+}
+
+static void emit_float_constant(CodeBuffer& cbuf, float x) {
+  int mark = cbuf.insts()->mark_off();
+  MacroAssembler _masm(&cbuf);
+  address float_address = __ float_constant(x);
+  cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
+  emit_d32_reloc(cbuf,
+                 (int) (float_address - cbuf.code_end() - 4),
+                 internal_word_Relocation::spec(float_address),
+                 RELOC_DISP32);
+}
+
+
+int Matcher::regnum_to_fpu_offset(int regnum)
+{
+  return regnum - 32; // The FP registers are in the second chunk
+}
+
+// This is UltraSparc specific, true just means we have fast l2f conversion
+const bool Matcher::convL2FSupported(void) {
+  return true;
+}
+
+// Vector width in bytes
+const uint Matcher::vector_width_in_bytes(void) {
+  return 8;
+}
+
+// Vector ideal reg
+const uint Matcher::vector_ideal_reg(void) {
+  return Op_RegD;
+}
+
+// Is this branch offset short enough that a short branch can be used?
+//
+// NOTE: If the platform does not provide any short branch variants, then
+//       this method should return false for offset 0.
+bool Matcher::is_short_branch_offset(int offset)
+{
+  return -0x80 <= offset && offset < 0x80;
+}
+
+const bool Matcher::isSimpleConstant64(jlong value) {
+  // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
+  //return value == (int) value;  // Cf. storeImmL and immL32.
+
+  // Probably always true, even if a temp register is required.
+  return true;
+}
+
+// The ecx parameter to rep stosq for the ClearArray node is in words.
+const bool Matcher::init_array_count_is_in_bytes = false;
+
+// Threshold size for cleararray.
+const int Matcher::init_array_short_size = 8 * BytesPerLong;
+
+// Should the Matcher clone shifts on addressing modes, expecting them
+// to be subsumed into complex addressing expressions or compute them
+// into registers?  True for Intel but false for most RISCs
+const bool Matcher::clone_shift_expressions = true;
+
+// Is it better to copy float constants, or load them directly from
+// memory?  Intel can load a float constant from a direct address,
+// requiring no extra registers.  Most RISCs will have to materialize
+// an address into a register first, so they would do better to copy
+// the constant from stack.
+const bool Matcher::rematerialize_float_constants = true; // XXX
+
+// If CPU can load and store mis-aligned doubles directly then no
+// fixup is needed.  Else we split the double into 2 integer pieces
+// and move it piece-by-piece.  Only happens when passing doubles into
+// C code as the Java calling convention forces doubles to be aligned.
+const bool Matcher::misaligned_doubles_ok = true;
+
+// No-op on amd64
+void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
+
+// Advertise here if the CPU requires explicit rounding operations to
+// implement the UseStrictFP mode.
+const bool Matcher::strict_fp_requires_explicit_rounding = true;
+
+// Do floats take an entire double register or just half?
+const bool Matcher::float_in_double = true;
+// Do ints take an entire long register or just half?
+const bool Matcher::int_in_long = true;
+
+// Return whether or not this register is ever used as an argument.
+// This function is used on startup to build the trampoline stubs in
+// generateOptoStub.  Registers not mentioned will be killed by the VM
+// call in the trampoline, and arguments in those registers not be
+// available to the callee.
+bool Matcher::can_be_java_arg(int reg)
+{
+  return
+    reg ==  RDI_num || reg ==  RDI_H_num ||
+    reg ==  RSI_num || reg ==  RSI_H_num ||
+    reg ==  RDX_num || reg ==  RDX_H_num ||
+    reg ==  RCX_num || reg ==  RCX_H_num ||
+    reg ==   R8_num || reg ==   R8_H_num ||
+    reg ==   R9_num || reg ==   R9_H_num ||
+    reg == XMM0_num || reg == XMM0_H_num ||
+    reg == XMM1_num || reg == XMM1_H_num ||
+    reg == XMM2_num || reg == XMM2_H_num ||
+    reg == XMM3_num || reg == XMM3_H_num ||
+    reg == XMM4_num || reg == XMM4_H_num ||
+    reg == XMM5_num || reg == XMM5_H_num ||
+    reg == XMM6_num || reg == XMM6_H_num ||
+    reg == XMM7_num || reg == XMM7_H_num;
+}
+
+bool Matcher::is_spillable_arg(int reg)
+{
+  return can_be_java_arg(reg);
+}
+
+// Register for DIVI projection of divmodI
+RegMask Matcher::divI_proj_mask() {
+  return INT_RAX_REG_mask;
+}
+
+// Register for MODI projection of divmodI
+RegMask Matcher::modI_proj_mask() {
+  return INT_RDX_REG_mask;
+}
+
+// Register for DIVL projection of divmodL
+RegMask Matcher::divL_proj_mask() {
+  return LONG_RAX_REG_mask;
+}
+
+// Register for MODL projection of divmodL
+RegMask Matcher::modL_proj_mask() {
+  return LONG_RDX_REG_mask;
+}
+
+%}
+
+//----------ENCODING BLOCK-----------------------------------------------------
+// This block specifies the encoding classes used by the compiler to
+// output byte streams.  Encoding classes are parameterized macros
+// used by Machine Instruction Nodes in order to generate the bit
+// encoding of the instruction.  Operands specify their base encoding
+// interface with the interface keyword.  There are currently
+// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
+// COND_INTER.  REG_INTER causes an operand to generate a function
+// which returns its register number when queried.  CONST_INTER causes
+// an operand to generate a function which returns the value of the
+// constant when queried.  MEMORY_INTER causes an operand to generate
+// four functions which return the Base Register, the Index Register,
+// the Scale Value, and the Offset Value of the operand when queried.
+// COND_INTER causes an operand to generate six functions which return
+// the encoding code (ie - encoding bits for the instruction)
+// associated with each basic boolean condition for a conditional
+// instruction.
+//
+// Instructions specify two basic values for encoding.  Again, a
+// function is available to check if the constant displacement is an
+// oop. They use the ins_encode keyword to specify their encoding
+// classes (which must be a sequence of enc_class names, and their
+// parameters, specified in the encoding block), and they use the
+// opcode keyword to specify, in order, their primary, secondary, and
+// tertiary opcode.  Only the opcode sections which a particular
+// instruction needs for encoding need to be specified.
+encode %{
+  // Build emit functions for each basic byte or larger field in the
+  // intel encoding scheme (opcode, rm, sib, immediate), and call them
+  // from C++ code in the enc_class source block.  Emit functions will
+  // live in the main source block for now.  In future, we can
+  // generalize this by adding a syntax that specifies the sizes of
+  // fields in an order, so that the adlc can build the emit functions
+  // automagically
+
+  // Emit primary opcode
+  enc_class OpcP
+  %{
+    emit_opcode(cbuf, $primary);
+  %}
+
+  // Emit secondary opcode
+  enc_class OpcS
+  %{
+    emit_opcode(cbuf, $secondary);
+  %}
+
+  // Emit tertiary opcode
+  enc_class OpcT
+  %{
+    emit_opcode(cbuf, $tertiary);
+  %}
+
+  // Emit opcode directly
+  enc_class Opcode(immI d8)
+  %{
+    emit_opcode(cbuf, $d8$$constant);
+  %}
+
+  // Emit size prefix
+  enc_class SizePrefix
+  %{
+    emit_opcode(cbuf, 0x66);
+  %}
+
+  enc_class reg(rRegI reg)
+  %{
+    emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
+  %}
+
+  enc_class reg_reg(rRegI dst, rRegI src)
+  %{
+    emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
+  %}
+
+  enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
+  %{
+    emit_opcode(cbuf, $opcode$$constant);
+    emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
+  %}
+
+  enc_class cmpfp_fixup()
+  %{
+    // jnp,s exit
+    emit_opcode(cbuf, 0x7B);
+    emit_d8(cbuf, 0x0A);
+
+    // pushfq
+    emit_opcode(cbuf, 0x9C);
+
+    // andq $0xffffff2b, (%rsp)
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x81);
+    emit_opcode(cbuf, 0x24);
+    emit_opcode(cbuf, 0x24);
+    emit_d32(cbuf, 0xffffff2b);
+
+    // popfq
+    emit_opcode(cbuf, 0x9D);
+
+    // nop (target for branch to avoid branch to branch)
+    emit_opcode(cbuf, 0x90);
+  %}
+
+  enc_class cmpfp3(rRegI dst)
+  %{
+    int dstenc = $dst$$reg;
+
+    // movl $dst, -1
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0xB8 | (dstenc & 7));
+    emit_d32(cbuf, -1);
+
+    // jp,s done
+    emit_opcode(cbuf, 0x7A);
+    emit_d8(cbuf, dstenc < 4 ? 0x08 : 0x0A);
+
+    // jb,s done
+    emit_opcode(cbuf, 0x72);
+    emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
+
+    // setne $dst
+    if (dstenc >= 4) {
+      emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x95);
+    emit_opcode(cbuf, 0xC0 | (dstenc & 7));
+
+    // movzbl $dst, $dst
+    if (dstenc >= 4) {
+      emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0xB6);
+    emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
+  %}
+
+  enc_class cdql_enc(no_rax_rdx_RegI div)
+  %{
+    // Full implementation of Java idiv and irem; checks for
+    // special case as described in JVM spec., p.243 & p.271.
+    //
+    //         normal case                           special case
+    //
+    // input : rax: dividend                         min_int
+    //         reg: divisor                          -1
+    //
+    // output: rax: quotient  (= rax idiv reg)       min_int
+    //         rdx: remainder (= rax irem reg)       0
+    //
+    //  Code sequnce:
+    //
+    //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
+    //    5:   75 07/08                jne    e <normal>
+    //    7:   33 d2                   xor    %edx,%edx
+    //  [div >= 8 -> offset + 1]
+    //  [REX_B]
+    //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
+    //    c:   74 03/04                je     11 <done>
+    // 000000000000000e <normal>:
+    //    e:   99                      cltd
+    //  [div >= 8 -> offset + 1]
+    //  [REX_B]
+    //    f:   f7 f9                   idiv   $div
+    // 0000000000000011 <done>:
+
+    // cmp    $0x80000000,%eax
+    emit_opcode(cbuf, 0x3d);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x80);
+
+    // jne    e <normal>
+    emit_opcode(cbuf, 0x75);
+    emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
+
+    // xor    %edx,%edx
+    emit_opcode(cbuf, 0x33);
+    emit_d8(cbuf, 0xD2);
+
+    // cmp    $0xffffffffffffffff,%ecx
+    if ($div$$reg >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x83);
+    emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
+    emit_d8(cbuf, 0xFF);
+
+    // je     11 <done>
+    emit_opcode(cbuf, 0x74);
+    emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
+
+    // <normal>
+    // cltd
+    emit_opcode(cbuf, 0x99);
+
+    // idivl (note: must be emitted by the user of this rule)
+    // <done>
+  %}
+
+  enc_class cdqq_enc(no_rax_rdx_RegL div)
+  %{
+    // Full implementation of Java ldiv and lrem; checks for
+    // special case as described in JVM spec., p.243 & p.271.
+    //
+    //         normal case                           special case
+    //
+    // input : rax: dividend                         min_long
+    //         reg: divisor                          -1
+    //
+    // output: rax: quotient  (= rax idiv reg)       min_long
+    //         rdx: remainder (= rax irem reg)       0
+    //
+    //  Code sequnce:
+    //
+    //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
+    //    7:   00 00 80
+    //    a:   48 39 d0                cmp    %rdx,%rax
+    //    d:   75 08                   jne    17 <normal>
+    //    f:   33 d2                   xor    %edx,%edx
+    //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
+    //   15:   74 05                   je     1c <done>
+    // 0000000000000017 <normal>:
+    //   17:   48 99                   cqto
+    //   19:   48 f7 f9                idiv   $div
+    // 000000000000001c <done>:
+
+    // mov    $0x8000000000000000,%rdx
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0xBA);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x00);
+    emit_d8(cbuf, 0x80);
+
+    // cmp    %rdx,%rax
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x39);
+    emit_d8(cbuf, 0xD0);
+
+    // jne    17 <normal>
+    emit_opcode(cbuf, 0x75);
+    emit_d8(cbuf, 0x08);
+
+    // xor    %edx,%edx
+    emit_opcode(cbuf, 0x33);
+    emit_d8(cbuf, 0xD2);
+
+    // cmp    $0xffffffffffffffff,$div
+    emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
+    emit_opcode(cbuf, 0x83);
+    emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
+    emit_d8(cbuf, 0xFF);
+
+    // je     1e <done>
+    emit_opcode(cbuf, 0x74);
+    emit_d8(cbuf, 0x05);
+
+    // <normal>
+    // cqto
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x99);
+
+    // idivq (note: must be emitted by the user of this rule)
+    // <done>
+  %}
+
+  // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
+  enc_class OpcSE(immI imm)
+  %{
+    // Emit primary opcode and set sign-extend bit
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
+      emit_opcode(cbuf, $primary | 0x02);
+    } else {
+      // 32-bit immediate
+      emit_opcode(cbuf, $primary);
+    }
+  %}
+
+  enc_class OpcSErm(rRegI dst, immI imm)
+  %{
+    // OpcSEr/m
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    }
+    // Emit primary opcode and set sign-extend bit
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
+      emit_opcode(cbuf, $primary | 0x02);
+    } else {
+      // 32-bit immediate
+      emit_opcode(cbuf, $primary);
+    }
+    // Emit r/m byte with secondary opcode, after primary opcode.
+    emit_rm(cbuf, 0x3, $secondary, dstenc);
+  %}
+
+  enc_class OpcSErm_wide(rRegL dst, immI imm)
+  %{
+    // OpcSEr/m
+    int dstenc = $dst$$reg;
+    if (dstenc < 8) {
+      emit_opcode(cbuf, Assembler::REX_W);
+    } else {
+      emit_opcode(cbuf, Assembler::REX_WB);
+      dstenc -= 8;
+    }
+    // Emit primary opcode and set sign-extend bit
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
+      emit_opcode(cbuf, $primary | 0x02);
+    } else {
+      // 32-bit immediate
+      emit_opcode(cbuf, $primary);
+    }
+    // Emit r/m byte with secondary opcode, after primary opcode.
+    emit_rm(cbuf, 0x3, $secondary, dstenc);
+  %}
+
+  enc_class Con8or32(immI imm)
+  %{
+    // Check for 8-bit immediate, and set sign extend bit in opcode
+    if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
+      $$$emit8$imm$$constant;
+    } else {
+      // 32-bit immediate
+      $$$emit32$imm$$constant;
+    }
+  %}
+
+  enc_class Lbl(label labl)
+  %{
+    // JMP, CALL
+    Label* l = $labl$$label;
+    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
+  %}
+
+  enc_class LblShort(label labl)
+  %{
+    // JMP, CALL
+    Label* l = $labl$$label;
+    int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
+    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
+    emit_d8(cbuf, disp);
+  %}
+
+  enc_class opc2_reg(rRegI dst)
+  %{
+    // BSWAP
+    emit_cc(cbuf, $secondary, $dst$$reg);
+  %}
+
+  enc_class opc3_reg(rRegI dst)
+  %{
+    // BSWAP
+    emit_cc(cbuf, $tertiary, $dst$$reg);
+  %}
+
+  enc_class reg_opc(rRegI div)
+  %{
+    // INC, DEC, IDIV, IMOD, JMP indirect, ...
+    emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
+  %}
+
+  enc_class Jcc(cmpOp cop, label labl)
+  %{
+    // JCC
+    Label* l = $labl$$label;
+    $$$emit8$primary;
+    emit_cc(cbuf, $secondary, $cop$$cmpcode);
+    emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
+  %}
+
+  enc_class JccShort (cmpOp cop, label labl)
+  %{
+  // JCC
+    Label *l = $labl$$label;
+    emit_cc(cbuf, $primary, $cop$$cmpcode);
+    int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
+    assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
+    emit_d8(cbuf, disp);
+  %}
+
+  enc_class enc_cmov(cmpOp cop)
+  %{
+    // CMOV
+    $$$emit8$primary;
+    emit_cc(cbuf, $secondary, $cop$$cmpcode);
+  %}
+
+  enc_class enc_cmovf_branch(cmpOp cop, regF dst, regF src)
+  %{
+    // Invert sense of branch from sense of cmov
+    emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
+    emit_d8(cbuf, ($dst$$reg < 8 && $src$$reg < 8)
+                  ? (UseXmmRegToRegMoveAll ? 3 : 4)
+                  : (UseXmmRegToRegMoveAll ? 4 : 5) ); // REX
+    // UseXmmRegToRegMoveAll ? movaps(dst, src) : movss(dst, src)
+    if (!UseXmmRegToRegMoveAll) emit_opcode(cbuf, 0xF3);
+    if ($dst$$reg < 8) {
+      if ($src$$reg >= 8) {
+        emit_opcode(cbuf, Assembler::REX_B);
+      }
+    } else {
+      if ($src$$reg < 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_RB);
+      }
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
+    emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
+  %}
+
+  enc_class enc_cmovd_branch(cmpOp cop, regD dst, regD src)
+  %{
+    // Invert sense of branch from sense of cmov
+    emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
+    emit_d8(cbuf, $dst$$reg < 8 && $src$$reg < 8 ? 4 : 5); // REX
+
+    //  UseXmmRegToRegMoveAll ? movapd(dst, src) : movsd(dst, src)
+    emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
+    if ($dst$$reg < 8) {
+      if ($src$$reg >= 8) {
+        emit_opcode(cbuf, Assembler::REX_B);
+      }
+    } else {
+      if ($src$$reg < 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_RB);
+      }
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
+    emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
+  %}
+
+  enc_class enc_PartialSubtypeCheck()
+  %{
+    Register Rrdi = as_Register(RDI_enc); // result register
+    Register Rrax = as_Register(RAX_enc); // super class
+    Register Rrcx = as_Register(RCX_enc); // killed
+    Register Rrsi = as_Register(RSI_enc); // sub class
+    Label hit, miss;
+
+    MacroAssembler _masm(&cbuf);
+    // Compare super with sub directly, since super is not in its own SSA.
+    // The compiler used to emit this test, but we fold it in here,
+    // to allow platform-specific tweaking on sparc.
+    __ cmpq(Rrax, Rrsi);
+    __ jcc(Assembler::equal, hit);
+#ifndef PRODUCT
+    __ lea(Rrcx, ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
+    __ incrementl(Address(Rrcx, 0));
+#endif //PRODUCT
+    __ movq(Rrdi, Address(Rrsi,
+                          sizeof(oopDesc) +
+                          Klass::secondary_supers_offset_in_bytes()));
+    __ movl(Rrcx, Address(Rrdi, arrayOopDesc::length_offset_in_bytes()));
+    __ addq(Rrdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
+    __ repne_scan();
+    __ jcc(Assembler::notEqual, miss);
+    __ movq(Address(Rrsi,
+                    sizeof(oopDesc) +
+                    Klass::secondary_super_cache_offset_in_bytes()),
+            Rrax);
+    __ bind(hit);
+    if ($primary) {
+      __ xorq(Rrdi, Rrdi);
+    }
+    __ bind(miss);
+  %}
+
+  enc_class Java_To_Interpreter(method meth)
+  %{
+    // CALL Java_To_Interpreter
+    // This is the instruction starting address for relocation info.
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    // CALL directly to the runtime
+    emit_d32_reloc(cbuf,
+                   (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
+                   runtime_call_Relocation::spec(),
+                   RELOC_DISP32);
+  %}
+
+  enc_class Java_Static_Call(method meth)
+  %{
+    // JAVA STATIC CALL
+    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
+    // determine who we intended to call.
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+
+    if (!_method) {
+      emit_d32_reloc(cbuf,
+                     (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
+                     runtime_call_Relocation::spec(),
+                     RELOC_DISP32);
+    } else if (_optimized_virtual) {
+      emit_d32_reloc(cbuf,
+                     (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
+                     opt_virtual_call_Relocation::spec(),
+                     RELOC_DISP32);
+    } else {
+      emit_d32_reloc(cbuf,
+                     (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
+                     static_call_Relocation::spec(),
+                     RELOC_DISP32);
+    }
+    if (_method) {
+      // Emit stub for static call
+      emit_java_to_interp(cbuf);
+    }
+  %}
+
+  enc_class Java_Dynamic_Call(method meth)
+  %{
+    // JAVA DYNAMIC CALL
+    // !!!!!
+    // Generate  "movq rax, -1", placeholder instruction to load oop-info
+    // emit_call_dynamic_prologue( cbuf );
+    cbuf.set_inst_mark();
+
+    // movq rax, -1
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0xB8 | RAX_enc);
+    emit_d64_reloc(cbuf,
+                   (int64_t) Universe::non_oop_word(),
+                   oop_Relocation::spec_for_immediate(), RELOC_IMM64);
+    address virtual_call_oop_addr = cbuf.inst_mark();
+    // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
+    // who we intended to call.
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    emit_d32_reloc(cbuf,
+                   (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
+                   virtual_call_Relocation::spec(virtual_call_oop_addr),
+                   RELOC_DISP32);
+  %}
+
+  enc_class Java_Compiled_Call(method meth)
+  %{
+    // JAVA COMPILED CALL
+    int disp = in_bytes(methodOopDesc:: from_compiled_offset());
+
+    // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
+    // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
+
+    // callq *disp(%rax)
+    cbuf.set_inst_mark();
+    $$$emit8$primary;
+    if (disp < 0x80) {
+      emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
+      emit_d8(cbuf, disp); // Displacement
+    } else {
+      emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
+      emit_d32(cbuf, disp); // Displacement
+    }
+  %}
+
+  enc_class reg_opc_imm(rRegI dst, immI8 shift)
+  %{
+    // SAL, SAR, SHR
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    }
+    $$$emit8$primary;
+    emit_rm(cbuf, 0x3, $secondary, dstenc);
+    $$$emit8$shift$$constant;
+  %}
+
+  enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
+  %{
+    // SAL, SAR, SHR
+    int dstenc = $dst$$reg;
+    if (dstenc < 8) {
+      emit_opcode(cbuf, Assembler::REX_W);
+    } else {
+      emit_opcode(cbuf, Assembler::REX_WB);
+      dstenc -= 8;
+    }
+    $$$emit8$primary;
+    emit_rm(cbuf, 0x3, $secondary, dstenc);
+    $$$emit8$shift$$constant;
+  %}
+
+  enc_class load_immI(rRegI dst, immI src)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    }
+    emit_opcode(cbuf, 0xB8 | dstenc);
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class load_immL(rRegL dst, immL src)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc < 8) {
+      emit_opcode(cbuf, Assembler::REX_W);
+    } else {
+      emit_opcode(cbuf, Assembler::REX_WB);
+      dstenc -= 8;
+    }
+    emit_opcode(cbuf, 0xB8 | dstenc);
+    emit_d64(cbuf, $src$$constant);
+  %}
+
+  enc_class load_immUL32(rRegL dst, immUL32 src)
+  %{
+    // same as load_immI, but this time we care about zeroes in the high word
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    }
+    emit_opcode(cbuf, 0xB8 | dstenc);
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class load_immL32(rRegL dst, immL32 src)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc < 8) {
+      emit_opcode(cbuf, Assembler::REX_W);
+    } else {
+      emit_opcode(cbuf, Assembler::REX_WB);
+      dstenc -= 8;
+    }
+    emit_opcode(cbuf, 0xC7);
+    emit_rm(cbuf, 0x03, 0x00, dstenc);
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class load_immP31(rRegP dst, immP32 src)
+  %{
+    // same as load_immI, but this time we care about zeroes in the high word
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    }
+    emit_opcode(cbuf, 0xB8 | dstenc);
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class load_immP(rRegP dst, immP src)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc < 8) {
+      emit_opcode(cbuf, Assembler::REX_W);
+    } else {
+      emit_opcode(cbuf, Assembler::REX_WB);
+      dstenc -= 8;
+    }
+    emit_opcode(cbuf, 0xB8 | dstenc);
+    // This next line should be generated from ADLC
+    if ($src->constant_is_oop()) {
+      emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
+    } else {
+      emit_d64(cbuf, $src$$constant);
+    }
+  %}
+
+  enc_class load_immF(regF dst, immF con)
+  %{
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
+    emit_float_constant(cbuf, $con$$constant);
+  %}
+
+  enc_class load_immD(regD dst, immD con)
+  %{
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
+    emit_double_constant(cbuf, $con$$constant);
+  %}
+
+  enc_class load_conF (regF dst, immF con) %{    // Load float constant
+    emit_opcode(cbuf, 0xF3);
+    if ($dst$$reg >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x10);
+    emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
+    emit_float_constant(cbuf, $con$$constant);
+  %}
+
+  enc_class load_conD (regD dst, immD con) %{    // Load double constant
+    // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
+    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+    if ($dst$$reg >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
+    emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
+    emit_double_constant(cbuf, $con$$constant);
+  %}
+
+  // Encode a reg-reg copy.  If it is useless, then empty encoding.
+  enc_class enc_copy(rRegI dst, rRegI src)
+  %{
+    encode_copy(cbuf, $dst$$reg, $src$$reg);
+  %}
+
+  // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
+  enc_class enc_CopyXD( RegD dst, RegD src ) %{
+    encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
+  %}
+
+  enc_class enc_copy_always(rRegI dst, rRegI src)
+  %{
+    int srcenc = $src$$reg;
+    int dstenc = $dst$$reg;
+
+    if (dstenc < 8) {
+      if (srcenc >= 8) {
+        emit_opcode(cbuf, Assembler::REX_B);
+        srcenc -= 8;
+      }
+    } else {
+      if (srcenc < 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_RB);
+        srcenc -= 8;
+      }
+      dstenc -= 8;
+    }
+
+    emit_opcode(cbuf, 0x8B);
+    emit_rm(cbuf, 0x3, dstenc, srcenc);
+  %}
+
+  enc_class enc_copy_wide(rRegL dst, rRegL src)
+  %{
+    int srcenc = $src$$reg;
+    int dstenc = $dst$$reg;
+
+    if (dstenc != srcenc) {
+      if (dstenc < 8) {
+        if (srcenc < 8) {
+          emit_opcode(cbuf, Assembler::REX_W);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_WB);
+          srcenc -= 8;
+        }
+      } else {
+        if (srcenc < 8) {
+          emit_opcode(cbuf, Assembler::REX_WR);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_WRB);
+          srcenc -= 8;
+        }
+        dstenc -= 8;
+      }
+      emit_opcode(cbuf, 0x8B);
+      emit_rm(cbuf, 0x3, dstenc, srcenc);
+    }
+  %}
+
+  enc_class Con32(immI src)
+  %{
+    // Output immediate
+    $$$emit32$src$$constant;
+  %}
+
+  enc_class Con64(immL src)
+  %{
+    // Output immediate
+    emit_d64($src$$constant);
+  %}
+
+  enc_class Con32F_as_bits(immF src)
+  %{
+    // Output Float immediate bits
+    jfloat jf = $src$$constant;
+    jint jf_as_bits = jint_cast(jf);
+    emit_d32(cbuf, jf_as_bits);
+  %}
+
+  enc_class Con16(immI src)
+  %{
+    // Output immediate
+    $$$emit16$src$$constant;
+  %}
+
+  // How is this different from Con32??? XXX
+  enc_class Con_d32(immI src)
+  %{
+    emit_d32(cbuf,$src$$constant);
+  %}
+
+  enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
+    // Output immediate memory reference
+    emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
+    emit_d32(cbuf, 0x00);
+  %}
+
+  enc_class jump_enc(rRegL switch_val, rRegI dest) %{
+    MacroAssembler masm(&cbuf);
+
+    Register switch_reg = as_Register($switch_val$$reg);
+    Register dest_reg   = as_Register($dest$$reg);
+    address table_base  = masm.address_table_constant(_index2label);
+
+    // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
+    // to do that and the compiler is using that register as one it can allocate.
+    // So we build it all by hand.
+    // Address index(noreg, switch_reg, Address::times_1);
+    // ArrayAddress dispatch(table, index);
+
+    Address dispatch(dest_reg, switch_reg, Address::times_1);
+
+    masm.lea(dest_reg, InternalAddress(table_base));
+    masm.jmp(dispatch);
+  %}
+
+  enc_class jump_enc_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
+    MacroAssembler masm(&cbuf);
+
+    Register switch_reg = as_Register($switch_val$$reg);
+    Register dest_reg   = as_Register($dest$$reg);
+    address table_base  = masm.address_table_constant(_index2label);
+
+    // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
+    // to do that and the compiler is using that register as one it can allocate.
+    // So we build it all by hand.
+    // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
+    // ArrayAddress dispatch(table, index);
+
+    Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
+
+    masm.lea(dest_reg, InternalAddress(table_base));
+    masm.jmp(dispatch);
+  %}
+
+  enc_class jump_enc_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
+    MacroAssembler masm(&cbuf);
+
+    Register switch_reg = as_Register($switch_val$$reg);
+    Register dest_reg   = as_Register($dest$$reg);
+    address table_base  = masm.address_table_constant(_index2label);
+
+    // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
+    // to do that and the compiler is using that register as one it can allocate.
+    // So we build it all by hand.
+    // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
+    // ArrayAddress dispatch(table, index);
+
+    Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant);
+    masm.lea(dest_reg, InternalAddress(table_base));
+    masm.jmp(dispatch);
+
+  %}
+
+  enc_class lock_prefix()
+  %{
+    if (os::is_MP()) {
+      emit_opcode(cbuf, 0xF0); // lock
+    }
+  %}
+
+  enc_class REX_mem(memory mem)
+  %{
+    if ($mem$$base >= 8) {
+      if ($mem$$index < 8) {
+        emit_opcode(cbuf, Assembler::REX_B);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_XB);
+      }
+    } else {
+      if ($mem$$index >= 8) {
+        emit_opcode(cbuf, Assembler::REX_X);
+      }
+    }
+  %}
+
+  enc_class REX_mem_wide(memory mem)
+  %{
+    if ($mem$$base >= 8) {
+      if ($mem$$index < 8) {
+        emit_opcode(cbuf, Assembler::REX_WB);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_WXB);
+      }
+    } else {
+      if ($mem$$index < 8) {
+        emit_opcode(cbuf, Assembler::REX_W);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_WX);
+      }
+    }
+  %}
+
+  // for byte regs
+  enc_class REX_breg(rRegI reg)
+  %{
+    if ($reg$$reg >= 4) {
+      emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
+    }
+  %}
+
+  // for byte regs
+  enc_class REX_reg_breg(rRegI dst, rRegI src)
+  %{
+    if ($dst$$reg < 8) {
+      if ($src$$reg >= 4) {
+        emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
+      }
+    } else {
+      if ($src$$reg < 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_RB);
+      }
+    }
+  %}
+
+  // for byte regs
+  enc_class REX_breg_mem(rRegI reg, memory mem)
+  %{
+    if ($reg$$reg < 8) {
+      if ($mem$$base < 8) {
+        if ($mem$$index >= 8) {
+          emit_opcode(cbuf, Assembler::REX_X);
+        } else if ($reg$$reg >= 4) {
+          emit_opcode(cbuf, Assembler::REX);
+        }
+      } else {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_B);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_XB);
+        }
+      }
+    } else {
+      if ($mem$$base < 8) {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_R);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_RX);
+        }
+      } else {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_RB);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_RXB);
+        }
+      }
+    }
+  %}
+
+  enc_class REX_reg(rRegI reg)
+  %{
+    if ($reg$$reg >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+  %}
+
+  enc_class REX_reg_wide(rRegI reg)
+  %{
+    if ($reg$$reg < 8) {
+      emit_opcode(cbuf, Assembler::REX_W);
+    } else {
+      emit_opcode(cbuf, Assembler::REX_WB);
+    }
+  %}
+
+  enc_class REX_reg_reg(rRegI dst, rRegI src)
+  %{
+    if ($dst$$reg < 8) {
+      if ($src$$reg >= 8) {
+        emit_opcode(cbuf, Assembler::REX_B);
+      }
+    } else {
+      if ($src$$reg < 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_RB);
+      }
+    }
+  %}
+
+  enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
+  %{
+    if ($dst$$reg < 8) {
+      if ($src$$reg < 8) {
+        emit_opcode(cbuf, Assembler::REX_W);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_WB);
+      }
+    } else {
+      if ($src$$reg < 8) {
+        emit_opcode(cbuf, Assembler::REX_WR);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_WRB);
+      }
+    }
+  %}
+
+  enc_class REX_reg_mem(rRegI reg, memory mem)
+  %{
+    if ($reg$$reg < 8) {
+      if ($mem$$base < 8) {
+        if ($mem$$index >= 8) {
+          emit_opcode(cbuf, Assembler::REX_X);
+        }
+      } else {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_B);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_XB);
+        }
+      }
+    } else {
+      if ($mem$$base < 8) {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_R);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_RX);
+        }
+      } else {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_RB);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_RXB);
+        }
+      }
+    }
+  %}
+
+  enc_class REX_reg_mem_wide(rRegL reg, memory mem)
+  %{
+    if ($reg$$reg < 8) {
+      if ($mem$$base < 8) {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_W);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_WX);
+        }
+      } else {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_WB);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_WXB);
+        }
+      }
+    } else {
+      if ($mem$$base < 8) {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_WR);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_WRX);
+        }
+      } else {
+        if ($mem$$index < 8) {
+          emit_opcode(cbuf, Assembler::REX_WRB);
+        } else {
+          emit_opcode(cbuf, Assembler::REX_WRXB);
+        }
+      }
+    }
+  %}
+
+  enc_class reg_mem(rRegI ereg, memory mem)
+  %{
+    // High registers handle in encode_RegMem
+    int reg = $ereg$$reg;
+    int base = $mem$$base;
+    int index = $mem$$index;
+    int scale = $mem$$scale;
+    int disp = $mem$$disp;
+    bool disp_is_oop = $mem->disp_is_oop();
+
+    encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
+  %}
+
+  enc_class RM_opc_mem(immI rm_opcode, memory mem)
+  %{
+    int rm_byte_opcode = $rm_opcode$$constant;
+
+    // High registers handle in encode_RegMem
+    int base = $mem$$base;
+    int index = $mem$$index;
+    int scale = $mem$$scale;
+    int displace = $mem$$disp;
+
+    bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
+                                            // working with static
+                                            // globals
+    encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
+                  disp_is_oop);
+  %}
+
+  enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
+  %{
+    int reg_encoding = $dst$$reg;
+    int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
+    int index        = 0x04;            // 0x04 indicates no index
+    int scale        = 0x00;            // 0x00 indicates no scale
+    int displace     = $src1$$constant; // 0x00 indicates no displacement
+    bool disp_is_oop = false;
+    encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
+                  disp_is_oop);
+  %}
+
+  enc_class neg_reg(rRegI dst)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    }
+    // NEG $dst
+    emit_opcode(cbuf, 0xF7);
+    emit_rm(cbuf, 0x3, 0x03, dstenc);
+  %}
+
+  enc_class neg_reg_wide(rRegI dst)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc < 8) {
+      emit_opcode(cbuf, Assembler::REX_W);
+    } else {
+      emit_opcode(cbuf, Assembler::REX_WB);
+      dstenc -= 8;
+    }
+    // NEG $dst
+    emit_opcode(cbuf, 0xF7);
+    emit_rm(cbuf, 0x3, 0x03, dstenc);
+  %}
+
+  enc_class setLT_reg(rRegI dst)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    } else if (dstenc >= 4) {
+      emit_opcode(cbuf, Assembler::REX);
+    }
+    // SETLT $dst
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x9C);
+    emit_rm(cbuf, 0x3, 0x0, dstenc);
+  %}
+
+  enc_class setNZ_reg(rRegI dst)
+  %{
+    int dstenc = $dst$$reg;
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+      dstenc -= 8;
+    } else if (dstenc >= 4) {
+      emit_opcode(cbuf, Assembler::REX);
+    }
+    // SETNZ $dst
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x95);
+    emit_rm(cbuf, 0x3, 0x0, dstenc);
+  %}
+
+  enc_class enc_cmpLTP(no_rcx_RegI p, no_rcx_RegI q, no_rcx_RegI y,
+                       rcx_RegI tmp)
+  %{
+    // cadd_cmpLT
+
+    int tmpReg = $tmp$$reg;
+
+    int penc = $p$$reg;
+    int qenc = $q$$reg;
+    int yenc = $y$$reg;
+
+    // subl $p,$q
+    if (penc < 8) {
+      if (qenc >= 8) {
+        emit_opcode(cbuf, Assembler::REX_B);
+      }
+    } else {
+      if (qenc < 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_RB);
+      }
+    }
+    emit_opcode(cbuf, 0x2B);
+    emit_rm(cbuf, 0x3, penc & 7, qenc & 7);
+
+    // sbbl $tmp, $tmp
+    emit_opcode(cbuf, 0x1B);
+    emit_rm(cbuf, 0x3, tmpReg, tmpReg);
+
+    // andl $tmp, $y
+    if (yenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x23);
+    emit_rm(cbuf, 0x3, tmpReg, yenc & 7);
+
+    // addl $p,$tmp
+    if (penc >= 8) {
+        emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x03);
+    emit_rm(cbuf, 0x3, penc & 7, tmpReg);
+  %}
+
+  // Compare the lonogs and set -1, 0, or 1 into dst
+  enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
+  %{
+    int src1enc = $src1$$reg;
+    int src2enc = $src2$$reg;
+    int dstenc = $dst$$reg;
+
+    // cmpq $src1, $src2
+    if (src1enc < 8) {
+      if (src2enc < 8) {
+        emit_opcode(cbuf, Assembler::REX_W);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_WB);
+      }
+    } else {
+      if (src2enc < 8) {
+        emit_opcode(cbuf, Assembler::REX_WR);
+      } else {
+        emit_opcode(cbuf, Assembler::REX_WRB);
+      }
+    }
+    emit_opcode(cbuf, 0x3B);
+    emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
+
+    // movl $dst, -1
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0xB8 | (dstenc & 7));
+    emit_d32(cbuf, -1);
+
+    // jl,s done
+    emit_opcode(cbuf, 0x7C);
+    emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
+
+    // setne $dst
+    if (dstenc >= 4) {
+      emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x95);
+    emit_opcode(cbuf, 0xC0 | (dstenc & 7));
+
+    // movzbl $dst, $dst
+    if (dstenc >= 4) {
+      emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0xB6);
+    emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
+  %}
+
+  enc_class Push_ResultXD(regD dst) %{
+    int dstenc = $dst$$reg;
+
+    store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [RSP]
+
+    // UseXmmLoadAndClearUpper ? movsd dst,[rsp] : movlpd dst,[rsp]
+    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode  (cbuf, 0x0F );
+    emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12 );
+    encode_RegMem(cbuf, dstenc, RSP_enc, 0x4, 0, 0, false);
+
+    // add rsp,8
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf,0x83);
+    emit_rm(cbuf,0x3, 0x0, RSP_enc);
+    emit_d8(cbuf,0x08);
+  %}
+
+  enc_class Push_SrcXD(regD src) %{
+    int srcenc = $src$$reg;
+
+    // subq rsp,#8
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x83);
+    emit_rm(cbuf, 0x3, 0x5, RSP_enc);
+    emit_d8(cbuf, 0x8);
+
+    // movsd [rsp],src
+    emit_opcode(cbuf, 0xF2);
+    if (srcenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x11);
+    encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false);
+
+    // fldd [rsp]
+    emit_opcode(cbuf, 0x66);
+    emit_opcode(cbuf, 0xDD);
+    encode_RegMem(cbuf, 0x0, RSP_enc, 0x4, 0, 0, false);
+  %}
+
+
+  enc_class movq_ld(regD dst, memory mem) %{
+    MacroAssembler _masm(&cbuf);
+    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
+    __ movq(as_XMMRegister($dst$$reg), madr);
+  %}
+
+  enc_class movq_st(memory mem, regD src) %{
+    MacroAssembler _masm(&cbuf);
+    Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
+    __ movq(madr, as_XMMRegister($src$$reg));
+  %}
+
+  enc_class pshufd_8x8(regF dst, regF src) %{
+    MacroAssembler _masm(&cbuf);
+
+    encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
+    __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
+    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
+  %}
+
+  enc_class pshufd_4x16(regF dst, regF src) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
+  %}
+
+  enc_class pshufd(regD dst, regD src, int mode) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
+  %}
+
+  enc_class pxor(regD dst, regD src) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
+  %}
+
+  enc_class mov_i2x(regD dst, rRegI src) %{
+    MacroAssembler _masm(&cbuf);
+
+    __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
+  %}
+
+  // obj: object to lock
+  // box: box address (header location) -- killed
+  // tmp: rax -- killed
+  // scr: rbx -- killed
+  //
+  // What follows is a direct transliteration of fast_lock() and fast_unlock()
+  // from i486.ad.  See that file for comments.
+  // TODO: where possible switch from movq (r, 0) to movl(r,0) and
+  // use the shorter encoding.  (Movl clears the high-order 32-bits).
+
+
+  enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
+  %{
+    Register objReg = as_Register((int)$obj$$reg);
+    Register boxReg = as_Register((int)$box$$reg);
+    Register tmpReg = as_Register($tmp$$reg);
+    Register scrReg = as_Register($scr$$reg);
+    MacroAssembler masm(&cbuf);
+
+    // Verify uniqueness of register assignments -- necessary but not sufficient
+    assert (objReg != boxReg && objReg != tmpReg &&
+            objReg != scrReg && tmpReg != scrReg, "invariant") ;
+
+    if (_counters != NULL) {
+      masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
+    }
+    if (EmitSync & 1) {
+        masm.movptr (Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
+        masm.cmpq   (rsp, 0) ;
+    } else
+    if (EmitSync & 2) {
+        Label DONE_LABEL;
+        if (UseBiasedLocking) {
+           // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
+          masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
+        }
+        masm.movl(tmpReg, 0x1);
+        masm.orq(tmpReg, Address(objReg, 0));
+        masm.movq(Address(boxReg, 0), tmpReg);
+        if (os::is_MP()) {
+          masm.lock();
+        }
+        masm.cmpxchgq(boxReg, Address(objReg, 0)); // Updates tmpReg
+        masm.jcc(Assembler::equal, DONE_LABEL);
+
+        // Recursive locking
+        masm.subq(tmpReg, rsp);
+        masm.andq(tmpReg, 7 - os::vm_page_size());
+        masm.movq(Address(boxReg, 0), tmpReg);
+
+        masm.bind(DONE_LABEL);
+        masm.nop(); // avoid branch to branch
+    } else {
+        Label DONE_LABEL, IsInflated, Egress;
+
+        masm.movq  (tmpReg, Address(objReg, 0)) ;
+        masm.testq (tmpReg, 0x02) ;         // inflated vs stack-locked|neutral|biased
+        masm.jcc   (Assembler::notZero, IsInflated) ;
+
+        // it's stack-locked, biased or neutral
+        // TODO: optimize markword triage order to reduce the number of
+        // conditional branches in the most common cases.
+        // Beware -- there's a subtle invariant that fetch of the markword
+        // at [FETCH], below, will never observe a biased encoding (*101b).
+        // If this invariant is not held we'll suffer exclusion (safety) failure.
+
+        if (UseBiasedLocking) {
+          masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
+          masm.movq  (tmpReg, Address(objReg, 0)) ;        // [FETCH]
+        }
+
+        masm.orq   (tmpReg, 1) ;
+        masm.movq  (Address(boxReg, 0), tmpReg) ;
+        if (os::is_MP()) { masm.lock(); }
+        masm.cmpxchgq(boxReg, Address(objReg, 0)); // Updates tmpReg
+        if (_counters != NULL) {
+           masm.cond_inc32(Assembler::equal,
+                           ExternalAddress((address) _counters->fast_path_entry_count_addr()));
+        }
+        masm.jcc   (Assembler::equal, DONE_LABEL);
+
+        // Recursive locking
+        masm.subq  (tmpReg, rsp);
+        masm.andq  (tmpReg, 7 - os::vm_page_size());
+        masm.movq  (Address(boxReg, 0), tmpReg);
+        if (_counters != NULL) {
+           masm.cond_inc32(Assembler::equal,
+                           ExternalAddress((address) _counters->fast_path_entry_count_addr()));
+        }
+        masm.jmp   (DONE_LABEL) ;
+
+        masm.bind  (IsInflated) ;
+        // It's inflated
+
+        // TODO: someday avoid the ST-before-CAS penalty by
+        // relocating (deferring) the following ST.
+        // We should also think about trying a CAS without having
+        // fetched _owner.  If the CAS is successful we may
+        // avoid an RTO->RTS upgrade on the $line.
+        masm.movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark())) ;
+
+        masm.movq  (boxReg, tmpReg) ;
+        masm.movq  (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+        masm.testq (tmpReg, tmpReg) ;
+        masm.jcc   (Assembler::notZero, DONE_LABEL) ;
+
+        // It's inflated and appears unlocked
+        if (os::is_MP()) { masm.lock(); }
+        masm.cmpxchgq(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+        // Intentional fall-through into DONE_LABEL ...
+
+        masm.bind  (DONE_LABEL) ;
+        masm.nop   () ;                 // avoid jmp to jmp
+    }
+  %}
+
+  // obj: object to unlock
+  // box: box address (displaced header location), killed
+  // RBX: killed tmp; cannot be obj nor box
+  enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
+  %{
+
+    Register objReg = as_Register($obj$$reg);
+    Register boxReg = as_Register($box$$reg);
+    Register tmpReg = as_Register($tmp$$reg);
+    MacroAssembler masm(&cbuf);
+
+    if (EmitSync & 4) {
+       masm.cmpq  (rsp, 0) ;
+    } else
+    if (EmitSync & 8) {
+       Label DONE_LABEL;
+       if (UseBiasedLocking) {
+         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
+       }
+
+       // Check whether the displaced header is 0
+       //(=> recursive unlock)
+       masm.movq(tmpReg, Address(boxReg, 0));
+       masm.testq(tmpReg, tmpReg);
+       masm.jcc(Assembler::zero, DONE_LABEL);
+
+       // If not recursive lock, reset the header to displaced header
+       if (os::is_MP()) {
+         masm.lock();
+       }
+       masm.cmpxchgq(tmpReg, Address(objReg, 0)); // Uses RAX which is box
+       masm.bind(DONE_LABEL);
+       masm.nop(); // avoid branch to branch
+    } else {
+       Label DONE_LABEL, Stacked, CheckSucc ;
+
+       if (UseBiasedLocking) {
+         masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
+       }
+
+       masm.movq  (tmpReg, Address(objReg, 0)) ;
+       masm.cmpq  (Address(boxReg, 0), (int)NULL_WORD) ;
+       masm.jcc   (Assembler::zero, DONE_LABEL) ;
+       masm.testq (tmpReg, 0x02) ;
+       masm.jcc   (Assembler::zero, Stacked) ;
+
+       // It's inflated
+       masm.movq  (boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
+       masm.xorq  (boxReg, r15_thread) ;
+       masm.orq   (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
+       masm.jcc   (Assembler::notZero, DONE_LABEL) ;
+       masm.movq  (boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
+       masm.orq   (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
+       masm.jcc   (Assembler::notZero, CheckSucc) ;
+       masm.mov64 (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int)NULL_WORD) ;
+       masm.jmp   (DONE_LABEL) ;
+
+       if ((EmitSync & 65536) == 0) {
+         Label LSuccess, LGoSlowPath ;
+         masm.bind  (CheckSucc) ;
+         masm.cmpq  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int)NULL_WORD) ;
+         masm.jcc   (Assembler::zero, LGoSlowPath) ;
+
+         // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
+         // the explicit ST;MEMBAR combination, but masm doesn't currently support
+         // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
+         // are all faster when the write buffer is populated.
+         masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int)NULL_WORD) ;
+         if (os::is_MP()) {
+            masm.lock () ; masm.addq (Address(rsp, 0), 0) ;
+         }
+         masm.cmpq  (Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int)NULL_WORD) ;
+         masm.jcc   (Assembler::notZero, LSuccess) ;
+
+         masm.movptr (boxReg, (int)NULL_WORD) ;                   // box is really EAX
+         if (os::is_MP()) { masm.lock(); }
+         masm.cmpxchgq (r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
+         masm.jcc   (Assembler::notEqual, LSuccess) ;
+         // Intentional fall-through into slow-path
+
+         masm.bind  (LGoSlowPath) ;
+         masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
+         masm.jmp   (DONE_LABEL) ;
+
+         masm.bind  (LSuccess) ;
+         masm.testl (boxReg, 0) ;                      // set ICC.ZF=1 to indicate success
+         masm.jmp   (DONE_LABEL) ;
+       }
+
+       masm.bind  (Stacked) ;
+       masm.movq  (tmpReg, Address (boxReg, 0)) ;      // re-fetch
+       if (os::is_MP()) { masm.lock(); }
+       masm.cmpxchgq(tmpReg, Address(objReg, 0)); // Uses RAX which is box
+
+       if (EmitSync & 65536) {
+          masm.bind (CheckSucc) ;
+       }
+       masm.bind(DONE_LABEL);
+       if (EmitSync & 32768) {
+          masm.nop();                      // avoid branch to branch
+       }
+    }
+  %}
+
+  enc_class enc_String_Compare()
+  %{
+    Label RCX_GOOD_LABEL, LENGTH_DIFF_LABEL,
+          POP_LABEL, DONE_LABEL, CONT_LABEL,
+          WHILE_HEAD_LABEL;
+    MacroAssembler masm(&cbuf);
+
+    // Get the first character position in both strings
+    //         [8] char array, [12] offset, [16] count
+    int value_offset  = java_lang_String::value_offset_in_bytes();
+    int offset_offset = java_lang_String::offset_offset_in_bytes();
+    int count_offset  = java_lang_String::count_offset_in_bytes();
+    int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
+
+    masm.movq(rax, Address(rsi, value_offset));
+    masm.movl(rcx, Address(rsi, offset_offset));
+    masm.leaq(rax, Address(rax, rcx, Address::times_2, base_offset));
+    masm.movq(rbx, Address(rdi, value_offset));
+    masm.movl(rcx, Address(rdi, offset_offset));
+    masm.leaq(rbx, Address(rbx, rcx, Address::times_2, base_offset));
+
+    // Compute the minimum of the string lengths(rsi) and the
+    // difference of the string lengths (stack)
+
+    masm.movl(rdi, Address(rdi, count_offset));
+    masm.movl(rsi, Address(rsi, count_offset));
+    masm.movl(rcx, rdi);
+    masm.subl(rdi, rsi);
+    masm.pushq(rdi);
+    masm.cmovl(Assembler::lessEqual, rsi, rcx);
+
+    // Is the minimum length zero?
+    masm.bind(RCX_GOOD_LABEL);
+    masm.testl(rsi, rsi);
+    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+
+    // Load first characters
+    masm.load_unsigned_word(rcx, Address(rbx, 0));
+    masm.load_unsigned_word(rdi, Address(rax, 0));
+
+    // Compare first characters
+    masm.subl(rcx, rdi);
+    masm.jcc(Assembler::notZero,  POP_LABEL);
+    masm.decrementl(rsi);
+    masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
+
+    {
+      // Check after comparing first character to see if strings are equivalent
+      Label LSkip2;
+      // Check if the strings start at same location
+      masm.cmpq(rbx, rax);
+      masm.jcc(Assembler::notEqual, LSkip2);
+
+      // Check if the length difference is zero (from stack)
+      masm.cmpl(Address(rsp, 0), 0x0);
+      masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
+
+      // Strings might not be equivalent
+      masm.bind(LSkip2);
+    }
+
+    // Shift RAX and RBX to the end of the arrays, negate min
+    masm.leaq(rax, Address(rax, rsi, Address::times_2, 2));
+    masm.leaq(rbx, Address(rbx, rsi, Address::times_2, 2));
+    masm.negq(rsi);
+
+    // Compare the rest of the characters
+    masm.bind(WHILE_HEAD_LABEL);
+    masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
+    masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
+    masm.subl(rcx, rdi);
+    masm.jcc(Assembler::notZero, POP_LABEL);
+    masm.incrementq(rsi);
+    masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
+
+    // Strings are equal up to min length.  Return the length difference.
+    masm.bind(LENGTH_DIFF_LABEL);
+    masm.popq(rcx);
+    masm.jmp(DONE_LABEL);
+
+    // Discard the stored length difference
+    masm.bind(POP_LABEL);
+    masm.addq(rsp, 8);
+
+    // That's it
+    masm.bind(DONE_LABEL);
+  %}
+
+  enc_class enc_rethrow()
+  %{
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0xE9); // jmp entry
+    emit_d32_reloc(cbuf,
+                   (int) (OptoRuntime::rethrow_stub() - cbuf.code_end() - 4),
+                   runtime_call_Relocation::spec(),
+                   RELOC_DISP32);
+  %}
+
+  enc_class absF_encoding(regF dst)
+  %{
+    int dstenc = $dst$$reg;
+    address signmask_address = (address) StubRoutines::amd64::float_sign_mask();
+
+    cbuf.set_inst_mark();
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+      dstenc -= 8;
+    }
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x54);
+    emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
+    emit_d32_reloc(cbuf, signmask_address);
+  %}
+
+  enc_class absD_encoding(regD dst)
+  %{
+    int dstenc = $dst$$reg;
+    address signmask_address = (address) StubRoutines::amd64::double_sign_mask();
+
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0x66);
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+      dstenc -= 8;
+    }
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x54);
+    emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
+    emit_d32_reloc(cbuf, signmask_address);
+  %}
+
+  enc_class negF_encoding(regF dst)
+  %{
+    int dstenc = $dst$$reg;
+    address signflip_address = (address) StubRoutines::amd64::float_sign_flip();
+
+    cbuf.set_inst_mark();
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+      dstenc -= 8;
+    }
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x57);
+    emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
+    emit_d32_reloc(cbuf, signflip_address);
+  %}
+
+  enc_class negD_encoding(regD dst)
+  %{
+    int dstenc = $dst$$reg;
+    address signflip_address = (address) StubRoutines::amd64::double_sign_flip();
+
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0x66);
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+      dstenc -= 8;
+    }
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x57);
+    emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
+    emit_d32_reloc(cbuf, signflip_address);
+  %}
+
+  enc_class f2i_fixup(rRegI dst, regF src)
+  %{
+    int dstenc = $dst$$reg;
+    int srcenc = $src$$reg;
+
+    // cmpl $dst, #0x80000000
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x81);
+    emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
+    emit_d32(cbuf, 0x80000000);
+
+    // jne,s done
+    emit_opcode(cbuf, 0x75);
+    if (srcenc < 8 && dstenc < 8) {
+      emit_d8(cbuf, 0xF);
+    } else if (srcenc >= 8 && dstenc >= 8) {
+      emit_d8(cbuf, 0x11);
+    } else {
+      emit_d8(cbuf, 0x10);
+    }
+
+    // subq rsp, #8
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x83);
+    emit_rm(cbuf, 0x3, 0x5, RSP_enc);
+    emit_d8(cbuf, 8);
+
+    // movss [rsp], $src
+    emit_opcode(cbuf, 0xF3);
+    if (srcenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x11);
+    encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
+
+    // call f2i_fixup
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0xE8);
+    emit_d32_reloc(cbuf,
+                   (int)
+                   (StubRoutines::amd64::f2i_fixup() - cbuf.code_end() - 4),
+                   runtime_call_Relocation::spec(),
+                   RELOC_DISP32);
+
+    // popq $dst
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x58 | (dstenc & 7));
+
+    // done:
+  %}
+
+  enc_class f2l_fixup(rRegL dst, regF src)
+  %{
+    int dstenc = $dst$$reg;
+    int srcenc = $src$$reg;
+    address const_address = (address) StubRoutines::amd64::double_sign_flip();
+
+    // cmpq $dst, [0x8000000000000000]
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
+    emit_opcode(cbuf, 0x39);
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
+    emit_d32_reloc(cbuf, const_address);
+
+
+    // jne,s done
+    emit_opcode(cbuf, 0x75);
+    if (srcenc < 8 && dstenc < 8) {
+      emit_d8(cbuf, 0xF);
+    } else if (srcenc >= 8 && dstenc >= 8) {
+      emit_d8(cbuf, 0x11);
+    } else {
+      emit_d8(cbuf, 0x10);
+    }
+
+    // subq rsp, #8
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x83);
+    emit_rm(cbuf, 0x3, 0x5, RSP_enc);
+    emit_d8(cbuf, 8);
+
+    // movss [rsp], $src
+    emit_opcode(cbuf, 0xF3);
+    if (srcenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x11);
+    encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
+
+    // call f2l_fixup
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0xE8);
+    emit_d32_reloc(cbuf,
+                   (int)
+                   (StubRoutines::amd64::f2l_fixup() - cbuf.code_end() - 4),
+                   runtime_call_Relocation::spec(),
+                   RELOC_DISP32);
+
+    // popq $dst
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x58 | (dstenc & 7));
+
+    // done:
+  %}
+
+  enc_class d2i_fixup(rRegI dst, regD src)
+  %{
+    int dstenc = $dst$$reg;
+    int srcenc = $src$$reg;
+
+    // cmpl $dst, #0x80000000
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x81);
+    emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
+    emit_d32(cbuf, 0x80000000);
+
+    // jne,s done
+    emit_opcode(cbuf, 0x75);
+    if (srcenc < 8 && dstenc < 8) {
+      emit_d8(cbuf, 0xF);
+    } else if (srcenc >= 8 && dstenc >= 8) {
+      emit_d8(cbuf, 0x11);
+    } else {
+      emit_d8(cbuf, 0x10);
+    }
+
+    // subq rsp, #8
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x83);
+    emit_rm(cbuf, 0x3, 0x5, RSP_enc);
+    emit_d8(cbuf, 8);
+
+    // movsd [rsp], $src
+    emit_opcode(cbuf, 0xF2);
+    if (srcenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x11);
+    encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
+
+    // call d2i_fixup
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0xE8);
+    emit_d32_reloc(cbuf,
+                   (int)
+                   (StubRoutines::amd64::d2i_fixup() - cbuf.code_end() - 4),
+                   runtime_call_Relocation::spec(),
+                   RELOC_DISP32);
+
+    // popq $dst
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x58 | (dstenc & 7));
+
+    // done:
+  %}
+
+  enc_class d2l_fixup(rRegL dst, regD src)
+  %{
+    int dstenc = $dst$$reg;
+    int srcenc = $src$$reg;
+    address const_address = (address) StubRoutines::amd64::double_sign_flip();
+
+    // cmpq $dst, [0x8000000000000000]
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
+    emit_opcode(cbuf, 0x39);
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
+    emit_d32_reloc(cbuf, const_address);
+
+
+    // jne,s done
+    emit_opcode(cbuf, 0x75);
+    if (srcenc < 8 && dstenc < 8) {
+      emit_d8(cbuf, 0xF);
+    } else if (srcenc >= 8 && dstenc >= 8) {
+      emit_d8(cbuf, 0x11);
+    } else {
+      emit_d8(cbuf, 0x10);
+    }
+
+    // subq rsp, #8
+    emit_opcode(cbuf, Assembler::REX_W);
+    emit_opcode(cbuf, 0x83);
+    emit_rm(cbuf, 0x3, 0x5, RSP_enc);
+    emit_d8(cbuf, 8);
+
+    // movsd [rsp], $src
+    emit_opcode(cbuf, 0xF2);
+    if (srcenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_R);
+    }
+    emit_opcode(cbuf, 0x0F);
+    emit_opcode(cbuf, 0x11);
+    encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
+
+    // call d2l_fixup
+    cbuf.set_inst_mark();
+    emit_opcode(cbuf, 0xE8);
+    emit_d32_reloc(cbuf,
+                   (int)
+                   (StubRoutines::amd64::d2l_fixup() - cbuf.code_end() - 4),
+                   runtime_call_Relocation::spec(),
+                   RELOC_DISP32);
+
+    // popq $dst
+    if (dstenc >= 8) {
+      emit_opcode(cbuf, Assembler::REX_B);
+    }
+    emit_opcode(cbuf, 0x58 | (dstenc & 7));
+
+    // done:
+  %}
+
+  enc_class enc_membar_acquire
+  %{
+    // [jk] not needed currently, if you enable this and it really
+    // emits code don't forget to the remove the "size(0)" line in
+    // membar_acquire()
+    // MacroAssembler masm(&cbuf);
+    // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
+    //                                         Assembler::LoadLoad));
+  %}
+
+  enc_class enc_membar_release
+  %{
+    // [jk] not needed currently, if you enable this and it really
+    // emits code don't forget to the remove the "size(0)" line in
+    // membar_release()
+    // MacroAssembler masm(&cbuf);
+    // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
+    //                                         Assembler::StoreStore));
+  %}
+
+  enc_class enc_membar_volatile
+  %{
+    MacroAssembler masm(&cbuf);
+    masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
+                                            Assembler::StoreStore));
+  %}
+
+  // Safepoint Poll.  This polls the safepoint page, and causes an
+  // exception if it is not readable. Unfortunately, it kills
+  // RFLAGS in the process.
+  enc_class enc_safepoint_poll
+  %{
+    // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
+    // XXX reg_mem doesn't support RIP-relative addressing yet
+    cbuf.set_inst_mark();
+    cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); // XXX
+    emit_opcode(cbuf, 0x85); // testl
+    emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
+    // cbuf.inst_mark() is beginning of instruction
+    emit_d32_reloc(cbuf, os::get_polling_page());
+//                    relocInfo::poll_type,
+  %}
+%}
+
+
+//----------FRAME--------------------------------------------------------------
+// Definition of frame structure and management information.
+//
+//  S T A C K   L A Y O U T    Allocators stack-slot number
+//                             |   (to get allocators register number
+//  G  Owned by    |        |  v    add OptoReg::stack0())
+//  r   CALLER     |        |
+//  o     |        +--------+      pad to even-align allocators stack-slot
+//  w     V        |  pad0  |        numbers; owned by CALLER
+//  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
+//  h     ^        |   in   |  5
+//        |        |  args  |  4   Holes in incoming args owned by SELF
+//  |     |        |        |  3
+//  |     |        +--------+
+//  V     |        | old out|      Empty on Intel, window on Sparc
+//        |    old |preserve|      Must be even aligned.
+//        |     SP-+--------+----> Matcher::_old_SP, even aligned
+//        |        |   in   |  3   area for Intel ret address
+//     Owned by    |preserve|      Empty on Sparc.
+//       SELF      +--------+
+//        |        |  pad2  |  2   pad to align old SP
+//        |        +--------+  1
+//        |        | locks  |  0
+//        |        +--------+----> OptoReg::stack0(), even aligned
+//        |        |  pad1  | 11   pad to align new SP
+//        |        +--------+
+//        |        |        | 10
+//        |        | spills |  9   spills
+//        V        |        |  8   (pad0 slot for callee)
+//      -----------+--------+----> Matcher::_out_arg_limit, unaligned
+//        ^        |  out   |  7
+//        |        |  args  |  6   Holes in outgoing args owned by CALLEE
+//     Owned by    +--------+
+//      CALLEE     | new out|  6   Empty on Intel, window on Sparc
+//        |    new |preserve|      Must be even-aligned.
+//        |     SP-+--------+----> Matcher::_new_SP, even aligned
+//        |        |        |
+//
+// Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
+//         known from SELF's arguments and the Java calling convention.
+//         Region 6-7 is determined per call site.
+// Note 2: If the calling convention leaves holes in the incoming argument
+//         area, those holes are owned by SELF.  Holes in the outgoing area
+//         are owned by the CALLEE.  Holes should not be nessecary in the
+//         incoming area, as the Java calling convention is completely under
+//         the control of the AD file.  Doubles can be sorted and packed to
+//         avoid holes.  Holes in the outgoing arguments may be nessecary for
+//         varargs C calling conventions.
+// Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
+//         even aligned with pad0 as needed.
+//         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
+//         region 6-11 is even aligned; it may be padded out more so that
+//         the region from SP to FP meets the minimum stack alignment.
+// Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
+//         alignment.  Region 11, pad1, may be dynamically extended so that
+//         SP meets the minimum alignment.
+
+frame
+%{
+  // What direction does stack grow in (assumed to be same for C & Java)
+  stack_direction(TOWARDS_LOW);
+
+  // These three registers define part of the calling convention
+  // between compiled code and the interpreter.
+  inline_cache_reg(RAX);                // Inline Cache Register
+  interpreter_method_oop_reg(RBX);      // Method Oop Register when
+                                        // calling interpreter
+
+  // Optional: name the operand used by cisc-spilling to access
+  // [stack_pointer + offset]
+  cisc_spilling_operand_name(indOffset32);
+
+  // Number of stack slots consumed by locking an object
+  sync_stack_slots(2);
+
+  // Compiled code's Frame Pointer
+  frame_pointer(RSP);
+
+  // Interpreter stores its frame pointer in a register which is
+  // stored to the stack by I2CAdaptors.
+  // I2CAdaptors convert from interpreted java to compiled java.
+  interpreter_frame_pointer(RBP);
+
+  // Stack alignment requirement
+  stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
+
+  // Number of stack slots between incoming argument block and the start of
+  // a new frame.  The PROLOG must add this many slots to the stack.  The
+  // EPILOG must remove this many slots.  amd64 needs two slots for
+  // return address.
+  in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
+
+  // Number of outgoing stack slots killed above the out_preserve_stack_slots
+  // for calls to C.  Supports the var-args backing area for register parms.
+  varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
+
+  // The after-PROLOG location of the return address.  Location of
+  // return address specifies a type (REG or STACK) and a number
+  // representing the register number (i.e. - use a register name) or
+  // stack slot.
+  // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
+  // Otherwise, it is above the locks and verification slot and alignment word
+  return_addr(STACK - 2 +
+              round_to(2 + 2 * VerifyStackAtCalls +
+                       Compile::current()->fixed_slots(),
+                       WordsPerLong * 2));
+
+  // Body of function which returns an integer array locating
+  // arguments either in registers or in stack slots.  Passed an array
+  // of ideal registers called "sig" and a "length" count.  Stack-slot
+  // offsets are based on outgoing arguments, i.e. a CALLER setting up
+  // arguments for a CALLEE.  Incoming stack arguments are
+  // automatically biased by the preserve_stack_slots field above.
+
+  calling_convention
+  %{
+    // No difference between ingoing/outgoing just pass false
+    SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
+  %}
+
+  c_calling_convention
+  %{
+    // This is obviously always outgoing
+    (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
+  %}
+
+  // Location of compiled Java return values.  Same as C for now.
+  return_value
+  %{
+    assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
+           "only return normal values");
+
+    static const int lo[Op_RegL + 1] = {
+      0,
+      0,
+      RAX_num,  // Op_RegI
+      RAX_num,  // Op_RegP
+      XMM0_num, // Op_RegF
+      XMM0_num, // Op_RegD
+      RAX_num   // Op_RegL
+    };
+    static const int hi[Op_RegL + 1] = {
+      0,
+      0,
+      OptoReg::Bad, // Op_RegI
+      RAX_H_num,    // Op_RegP
+      OptoReg::Bad, // Op_RegF
+      XMM0_H_num,   // Op_RegD
+      RAX_H_num     // Op_RegL
+    };
+
+    return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
+  %}
+%}
+
+//----------ATTRIBUTES---------------------------------------------------------
+//----------Operand Attributes-------------------------------------------------
+op_attrib op_cost(0);        // Required cost attribute
+
+//----------Instruction Attributes---------------------------------------------
+ins_attrib ins_cost(100);       // Required cost attribute
+ins_attrib ins_size(8);         // Required size attribute (in bits)
+ins_attrib ins_pc_relative(0);  // Required PC Relative flag
+ins_attrib ins_short_branch(0); // Required flag: is this instruction
+                                // a non-matching short branch variant
+                                // of some long branch?
+ins_attrib ins_alignment(1);    // Required alignment attribute (must
+                                // be a power of 2) specifies the
+                                // alignment that some part of the
+                                // instruction (not necessarily the
+                                // start) requires.  If > 1, a
+                                // compute_padding() function must be
+                                // provided for the instruction
+
+//----------OPERANDS-----------------------------------------------------------
+// Operand definitions must precede instruction definitions for correct parsing
+// in the ADLC because operands constitute user defined types which are used in
+// instruction definitions.
+
+//----------Simple Operands----------------------------------------------------
+// Immediate Operands
+// Integer Immediate
+operand immI()
+%{
+  match(ConI);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for test vs zero
+operand immI0()
+%{
+  predicate(n->get_int() == 0);
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for increment
+operand immI1()
+%{
+  predicate(n->get_int() == 1);
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for decrement
+operand immI_M1()
+%{
+  predicate(n->get_int() == -1);
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Valid scale values for addressing modes
+operand immI2()
+%{
+  predicate(0 <= n->get_int() && (n->get_int() <= 3));
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI8()
+%{
+  predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
+  match(ConI);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI16()
+%{
+  predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
+  match(ConI);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for long shifts
+operand immI_32()
+%{
+  predicate( n->get_int() == 32 );
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for long shifts
+operand immI_64()
+%{
+  predicate( n->get_int() == 64 );
+  match(ConI);
+
+  op_cost(0);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Pointer Immediate
+operand immP()
+%{
+  match(ConP);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// NULL Pointer Immediate
+operand immP0()
+%{
+  predicate(n->get_ptr() == 0);
+  match(ConP);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Unsigned 31-bit Pointer Immediate
+// Can be used in both 32-bit signed and 32-bit unsigned insns.
+// Works for nulls and markOops; not for relocatable (oop) pointers.
+operand immP31()
+%{
+  predicate(!n->as_Type()->type()->isa_oopptr()
+            && (n->get_ptr() >> 31) == 0);
+  match(ConP);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate
+operand immL()
+%{
+  match(ConL);
+
+  op_cost(20);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate 8-bit
+operand immL8()
+%{
+  predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
+  match(ConL);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate 32-bit unsigned
+operand immUL32()
+%{
+  predicate(n->get_long() == (unsigned int) (n->get_long()));
+  match(ConL);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate 32-bit signed
+operand immL32()
+%{
+  predicate(n->get_long() == (int) (n->get_long()));
+  match(ConL);
+
+  op_cost(15);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate zero
+operand immL0()
+%{
+  predicate(n->get_long() == 0L);
+  match(ConL);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for increment
+operand immL1()
+%{
+  predicate(n->get_long() == 1);
+  match(ConL);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for decrement
+operand immL_M1()
+%{
+  predicate(n->get_long() == -1);
+  match(ConL);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate: the value 10
+operand immL10()
+%{
+  predicate(n->get_long() == 10);
+  match(ConL);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long immediate from 0 to 127.
+// Used for a shorter form of long mul by 10.
+operand immL_127()
+%{
+  predicate(0 <= n->get_long() && n->get_long() < 0x80);
+  match(ConL);
+
+  op_cost(10);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Long Immediate: low 32-bit mask
+operand immL_32bits()
+%{
+  predicate(n->get_long() == 0xFFFFFFFFL);
+  match(ConL);
+  op_cost(20);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Float Immediate zero
+operand immF0()
+%{
+  predicate(jint_cast(n->getf()) == 0);
+  match(ConF);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Float Immediate
+operand immF()
+%{
+  match(ConF);
+
+  op_cost(15);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Double Immediate zero
+operand immD0()
+%{
+  predicate(jlong_cast(n->getd()) == 0);
+  match(ConD);
+
+  op_cost(5);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Double Immediate
+operand immD()
+%{
+  match(ConD);
+
+  op_cost(15);
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Immediates for special shifts (sign extend)
+
+// Constants for increment
+operand immI_16()
+%{
+  predicate(n->get_int() == 16);
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+operand immI_24()
+%{
+  predicate(n->get_int() == 24);
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for byte-wide masking
+operand immI_255()
+%{
+  predicate(n->get_int() == 255);
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for short-wide masking
+operand immI_65535()
+%{
+  predicate(n->get_int() == 65535);
+  match(ConI);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for byte-wide masking
+operand immL_255()
+%{
+  predicate(n->get_long() == 255);
+  match(ConL);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Constant for short-wide masking
+operand immL_65535()
+%{
+  predicate(n->get_long() == 65535);
+  match(ConL);
+
+  format %{ %}
+  interface(CONST_INTER);
+%}
+
+// Register Operands
+// Integer Register
+operand rRegI()
+%{
+  constraint(ALLOC_IN_RC(int_reg));
+  match(RegI);
+
+  match(rax_RegI);
+  match(rbx_RegI);
+  match(rcx_RegI);
+  match(rdx_RegI);
+  match(rdi_RegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Special Registers
+operand rax_RegI()
+%{
+  constraint(ALLOC_IN_RC(int_rax_reg));
+  match(RegI);
+  match(rRegI);
+
+  format %{ "RAX" %}
+  interface(REG_INTER);
+%}
+
+// Special Registers
+operand rbx_RegI()
+%{
+  constraint(ALLOC_IN_RC(int_rbx_reg));
+  match(RegI);
+  match(rRegI);
+
+  format %{ "RBX" %}
+  interface(REG_INTER);
+%}
+
+operand rcx_RegI()
+%{
+  constraint(ALLOC_IN_RC(int_rcx_reg));
+  match(RegI);
+  match(rRegI);
+
+  format %{ "RCX" %}
+  interface(REG_INTER);
+%}
+
+operand rdx_RegI()
+%{
+  constraint(ALLOC_IN_RC(int_rdx_reg));
+  match(RegI);
+  match(rRegI);
+
+  format %{ "RDX" %}
+  interface(REG_INTER);
+%}
+
+operand rdi_RegI()
+%{
+  constraint(ALLOC_IN_RC(int_rdi_reg));
+  match(RegI);
+  match(rRegI);
+
+  format %{ "RDI" %}
+  interface(REG_INTER);
+%}
+
+operand no_rcx_RegI()
+%{
+  constraint(ALLOC_IN_RC(int_no_rcx_reg));
+  match(RegI);
+  match(rax_RegI);
+  match(rbx_RegI);
+  match(rdx_RegI);
+  match(rdi_RegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand no_rax_rdx_RegI()
+%{
+  constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
+  match(RegI);
+  match(rbx_RegI);
+  match(rcx_RegI);
+  match(rdi_RegI);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Pointer Register
+operand any_RegP()
+%{
+  constraint(ALLOC_IN_RC(any_reg));
+  match(RegP);
+  match(rax_RegP);
+  match(rbx_RegP);
+  match(rdi_RegP);
+  match(rsi_RegP);
+  match(rbp_RegP);
+  match(r15_RegP);
+  match(rRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand rRegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(RegP);
+  match(rax_RegP);
+  match(rbx_RegP);
+  match(rdi_RegP);
+  match(rsi_RegP);
+  match(rbp_RegP);
+  match(r15_RegP);  // See Q&A below about r15_RegP.
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
+// Answer: Operand match rules govern the DFA as it processes instruction inputs.
+// It's fine for an instruction input which expects rRegP to match a r15_RegP.
+// The output of an instruction is controlled by the allocator, which respects
+// register class masks, not match rules.  Unless an instruction mentions
+// r15_RegP or any_RegP explicitly as its output, r15 will not be considered
+// by the allocator as an input.
+
+operand no_rax_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_no_rax_reg));
+  match(RegP);
+  match(rbx_RegP);
+  match(rsi_RegP);
+  match(rdi_RegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand no_rbp_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
+  match(RegP);
+  match(rbx_RegP);
+  match(rsi_RegP);
+  match(rdi_RegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand no_rax_rbx_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
+  match(RegP);
+  match(rsi_RegP);
+  match(rdi_RegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Special Registers
+// Return a pointer value
+operand rax_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_rax_reg));
+  match(RegP);
+  match(rRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Used in AtomicAdd
+operand rbx_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_rbx_reg));
+  match(RegP);
+  match(rRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand rsi_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_rsi_reg));
+  match(RegP);
+  match(rRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Used in rep stosq
+operand rdi_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_rdi_reg));
+  match(RegP);
+  match(rRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand rbp_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_rbp_reg));
+  match(RegP);
+  match(rRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand r15_RegP()
+%{
+  constraint(ALLOC_IN_RC(ptr_r15_reg));
+  match(RegP);
+  match(rRegP);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand rRegL()
+%{
+  constraint(ALLOC_IN_RC(long_reg));
+  match(RegL);
+  match(rax_RegL);
+  match(rdx_RegL);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Special Registers
+operand no_rax_rdx_RegL()
+%{
+  constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
+  match(RegL);
+  match(rRegL);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand no_rax_RegL()
+%{
+  constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
+  match(RegL);
+  match(rRegL);
+  match(rdx_RegL);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand no_rcx_RegL()
+%{
+  constraint(ALLOC_IN_RC(long_no_rcx_reg));
+  match(RegL);
+  match(rRegL);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand rax_RegL()
+%{
+  constraint(ALLOC_IN_RC(long_rax_reg));
+  match(RegL);
+  match(rRegL);
+
+  format %{ "RAX" %}
+  interface(REG_INTER);
+%}
+
+operand rcx_RegL()
+%{
+  constraint(ALLOC_IN_RC(long_rcx_reg));
+  match(RegL);
+  match(rRegL);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+operand rdx_RegL()
+%{
+  constraint(ALLOC_IN_RC(long_rdx_reg));
+  match(RegL);
+  match(rRegL);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Flags register, used as output of compare instructions
+operand rFlagsReg()
+%{
+  constraint(ALLOC_IN_RC(int_flags));
+  match(RegFlags);
+
+  format %{ "RFLAGS" %}
+  interface(REG_INTER);
+%}
+
+// Flags register, used as output of FLOATING POINT compare instructions
+operand rFlagsRegU()
+%{
+  constraint(ALLOC_IN_RC(int_flags));
+  match(RegFlags);
+
+  format %{ "RFLAGS_U" %}
+  interface(REG_INTER);
+%}
+
+// Float register operands
+operand regF()
+%{
+  constraint(ALLOC_IN_RC(float_reg));
+  match(RegF);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+// Double register operands
+operand regD()
+%{
+  constraint(ALLOC_IN_RC(double_reg));
+  match(RegD);
+
+  format %{ %}
+  interface(REG_INTER);
+%}
+
+
+//----------Memory Operands----------------------------------------------------
+// Direct Memory Operand
+// operand direct(immP addr)
+// %{
+//   match(addr);
+
+//   format %{ "[$addr]" %}
+//   interface(MEMORY_INTER) %{
+//     base(0xFFFFFFFF);
+//     index(0x4);
+//     scale(0x0);
+//     disp($addr);
+//   %}
+// %}
+
+// Indirect Memory Operand
+operand indirect(any_RegP reg)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(reg);
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Plus Short Offset Operand
+operand indOffset8(any_RegP reg, immL8 off)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(AddP reg off);
+
+  format %{ "[$reg + $off (8-bit)]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Long Offset Operand
+operand indOffset32(any_RegP reg, immL32 off)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(AddP reg off);
+
+  format %{ "[$reg + $off (32-bit)]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index(0x4);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Index Register Plus Offset Operand
+operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(AddP (AddP reg lreg) off);
+
+  op_cost(10);
+  format %{"[$reg + $off + $lreg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($lreg);
+    scale(0x0);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Plus Index Register Plus Offset Operand
+operand indIndex(any_RegP reg, rRegL lreg)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(AddP reg lreg);
+
+  op_cost(10);
+  format %{"[$reg + $lreg]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($lreg);
+    scale(0x0);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Times Scale Plus Index Register
+operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(AddP reg (LShiftL lreg scale));
+
+  op_cost(10);
+  format %{"[$reg + $lreg << $scale]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($lreg);
+    scale($scale);
+    disp(0x0);
+  %}
+%}
+
+// Indirect Memory Times Scale Plus Index Register Plus Offset Operand
+operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  match(AddP (AddP reg (LShiftL lreg scale)) off);
+
+  op_cost(10);
+  format %{"[$reg + $off + $lreg << $scale]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($lreg);
+    scale($scale);
+    disp($off);
+  %}
+%}
+
+// Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
+operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
+%{
+  constraint(ALLOC_IN_RC(ptr_reg));
+  predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
+  match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
+
+  op_cost(10);
+  format %{"[$reg + $off + $idx << $scale]" %}
+  interface(MEMORY_INTER) %{
+    base($reg);
+    index($idx);
+    scale($scale);
+    disp($off);
+  %}
+%}
+
+//----------Special Memory Operands--------------------------------------------
+// Stack Slot Operand - This operand is used for loading and storing temporary
+//                      values on the stack where a match requires a value to
+//                      flow through memory.
+operand stackSlotP(sRegP reg)
+%{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // RSP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+operand stackSlotI(sRegI reg)
+%{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // RSP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+operand stackSlotF(sRegF reg)
+%{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // RSP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+operand stackSlotD(sRegD reg)
+%{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // RSP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+operand stackSlotL(sRegL reg)
+%{
+  constraint(ALLOC_IN_RC(stack_slots));
+  // No match rule because this operand is only generated in matching
+
+  format %{ "[$reg]" %}
+  interface(MEMORY_INTER) %{
+    base(0x4);   // RSP
+    index(0x4);  // No Index
+    scale(0x0);  // No Scale
+    disp($reg);  // Stack Offset
+  %}
+%}
+
+//----------Conditional Branch Operands----------------------------------------
+// Comparison Op  - This is the operation of the comparison, and is limited to
+//                  the following set of codes:
+//                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
+//
+// Other attributes of the comparison, such as unsignedness, are specified
+// by the comparison instruction that sets a condition code flags register.
+// That result is represented by a flags operand whose subtype is appropriate
+// to the unsignedness (etc.) of the comparison.
+//
+// Later, the instruction which matches both the Comparison Op (a Bool) and
+// the flags (produced by the Cmp) specifies the coding of the comparison op
+// by matching a specific subtype of Bool operand below, such as cmpOpU.
+
+// Comparision Code
+operand cmpOp()
+%{
+  match(Bool);
+
+  format %{ "" %}
+  interface(COND_INTER) %{
+    equal(0x4);
+    not_equal(0x5);
+    less(0xC);
+    greater_equal(0xD);
+    less_equal(0xE);
+    greater(0xF);
+  %}
+%}
+
+// Comparison Code, unsigned compare.  Used by FP also, with
+// C2 (unordered) turned into GT or LT already.  The other bits
+// C0 and C3 are turned into Carry & Zero flags.
+operand cmpOpU()
+%{
+  match(Bool);
+
+  format %{ "" %}
+  interface(COND_INTER) %{
+    equal(0x4);
+    not_equal(0x5);
+    less(0x2);
+    greater_equal(0x3);
+    less_equal(0x6);
+    greater(0x7);
+  %}
+%}
+
+
+//----------OPERAND CLASSES----------------------------------------------------
+// Operand Classes are groups of operands that are used as to simplify
+// instruction definitions by not requiring the AD writer to specify seperate
+// instructions for every form of operand when the instruction accepts
+// multiple operand types with the same basic encoding and format.  The classic
+// case of this is memory operands.
+
+opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
+               indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset);
+
+//----------PIPELINE-----------------------------------------------------------
+// Rules which define the behavior of the target architectures pipeline.
+pipeline %{
+
+//----------ATTRIBUTES---------------------------------------------------------
+attributes %{
+  variable_size_instructions;        // Fixed size instructions
+  max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
+  instruction_unit_size = 1;         // An instruction is 1 bytes long
+  instruction_fetch_unit_size = 16;  // The processor fetches one line
+  instruction_fetch_units = 1;       // of 16 bytes
+
+  // List of nop instructions
+  nops( MachNop );
+%}
+
+//----------RESOURCES----------------------------------------------------------
+// Resources are the functional units available to the machine
+
+// Generic P2/P3 pipeline
+// 3 decoders, only D0 handles big operands; a "bundle" is the limit of
+// 3 instructions decoded per cycle.
+// 2 load/store ops per cycle, 1 branch, 1 FPU,
+// 3 ALU op, only ALU0 handles mul instructions.
+resources( D0, D1, D2, DECODE = D0 | D1 | D2,
+           MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
+           BR, FPU,
+           ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
+
+//----------PIPELINE DESCRIPTION-----------------------------------------------
+// Pipeline Description specifies the stages in the machine's pipeline
+
+// Generic P2/P3 pipeline
+pipe_desc(S0, S1, S2, S3, S4, S5);
+
+//----------PIPELINE CLASSES---------------------------------------------------
+// Pipeline Classes describe the stages in which input and output are
+// referenced by the hardware pipeline.
+
+// Naming convention: ialu or fpu
+// Then: _reg
+// Then: _reg if there is a 2nd register
+// Then: _long if it's a pair of instructions implementing a long
+// Then: _fat if it requires the big decoder
+//   Or: _mem if it requires the big decoder and a memory unit.
+
+// Integer ALU reg operation
+pipe_class ialu_reg(rRegI dst)
+%{
+    single_instruction;
+    dst    : S4(write);
+    dst    : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg operation
+pipe_class ialu_reg_long(rRegL dst)
+%{
+    instruction_count(2);
+    dst    : S4(write);
+    dst    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    ALU    : S3(2);     // both alus
+%}
+
+// Integer ALU reg operation using big decoder
+pipe_class ialu_reg_fat(rRegI dst)
+%{
+    single_instruction;
+    dst    : S4(write);
+    dst    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg operation using big decoder
+pipe_class ialu_reg_long_fat(rRegL dst)
+%{
+    instruction_count(2);
+    dst    : S4(write);
+    dst    : S3(read);
+    D0     : S0(2);     // big decoder only; twice
+    ALU    : S3(2);     // any 2 alus
+%}
+
+// Integer ALU reg-reg operation
+pipe_class ialu_reg_reg(rRegI dst, rRegI src)
+%{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg-reg operation
+pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
+%{
+    instruction_count(2);
+    dst    : S4(write);
+    src    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    ALU    : S3(2);     // both alus
+%}
+
+// Integer ALU reg-reg operation
+pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
+%{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S3;        // any alu
+%}
+
+// Long ALU reg-reg operation
+pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
+%{
+    instruction_count(2);
+    dst    : S4(write);
+    src    : S3(read);
+    D0     : S0(2);     // big decoder only; twice
+    ALU    : S3(2);     // both alus
+%}
+
+// Integer ALU reg-mem operation
+pipe_class ialu_reg_mem(rRegI dst, memory mem)
+%{
+    single_instruction;
+    dst    : S5(write);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;        // any mem
+%}
+
+// Integer mem operation (prefetch)
+pipe_class ialu_mem(memory mem)
+%{
+    single_instruction;
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    MEM    : S3;        // any mem
+%}
+
+// Integer Store to Memory
+pipe_class ialu_mem_reg(memory mem, rRegI src)
+%{
+    single_instruction;
+    mem    : S3(read);
+    src    : S5(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;
+%}
+
+// // Long Store to Memory
+// pipe_class ialu_mem_long_reg(memory mem, rRegL src)
+// %{
+//     instruction_count(2);
+//     mem    : S3(read);
+//     src    : S5(read);
+//     D0     : S0(2);          // big decoder only; twice
+//     ALU    : S4(2);     // any 2 alus
+//     MEM    : S3(2);  // Both mems
+// %}
+
+// Integer Store to Memory
+pipe_class ialu_mem_imm(memory mem)
+%{
+    single_instruction;
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;
+%}
+
+// Integer ALU0 reg-reg operation
+pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
+%{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    D0     : S0;        // Big decoder only
+    ALU0   : S3;        // only alu0
+%}
+
+// Integer ALU0 reg-mem operation
+pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
+%{
+    single_instruction;
+    dst    : S5(write);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    ALU0   : S4;        // ALU0 only
+    MEM    : S3;        // any mem
+%}
+
+// Integer ALU reg-reg operation
+pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
+%{
+    single_instruction;
+    cr     : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Integer ALU reg-imm operation
+pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
+%{
+    single_instruction;
+    cr     : S4(write);
+    src1   : S3(read);
+    DECODE : S0;        // any decoder
+    ALU    : S3;        // any alu
+%}
+
+// Integer ALU reg-mem operation
+pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
+%{
+    single_instruction;
+    cr     : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    D0     : S0;        // big decoder only
+    ALU    : S4;        // any alu
+    MEM    : S3;
+%}
+
+// Conditional move reg-reg
+pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
+%{
+    instruction_count(4);
+    y      : S4(read);
+    q      : S3(read);
+    p      : S3(read);
+    DECODE : S0(4);     // any decoder
+%}
+
+// Conditional move reg-reg
+pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
+%{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    cr     : S3(read);
+    DECODE : S0;        // any decoder
+%}
+
+// Conditional move reg-mem
+pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
+%{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    cr     : S3(read);
+    DECODE : S0;        // any decoder
+    MEM    : S3;
+%}
+
+// Conditional move reg-reg long
+pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
+%{
+    single_instruction;
+    dst    : S4(write);
+    src    : S3(read);
+    cr     : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+%}
+
+// XXX
+// // Conditional move double reg-reg
+// pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
+// %{
+//     single_instruction;
+//     dst    : S4(write);
+//     src    : S3(read);
+//     cr     : S3(read);
+//     DECODE : S0;     // any decoder
+// %}
+
+// Float reg-reg operation
+pipe_class fpu_reg(regD dst)
+%{
+    instruction_count(2);
+    dst    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    FPU    : S3;
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_reg(regD dst, regD src)
+%{
+    instruction_count(2);
+    dst    : S4(write);
+    src    : S3(read);
+    DECODE : S0(2);     // any 2 decoders
+    FPU    : S3;
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
+%{
+    instruction_count(3);
+    dst    : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    DECODE : S0(3);     // any 3 decoders
+    FPU    : S3(2);
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
+%{
+    instruction_count(4);
+    dst    : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    src3   : S3(read);
+    DECODE : S0(4);     // any 3 decoders
+    FPU    : S3(2);
+%}
+
+// Float reg-reg operation
+pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
+%{
+    instruction_count(4);
+    dst    : S4(write);
+    src1   : S3(read);
+    src2   : S3(read);
+    src3   : S3(read);
+    DECODE : S1(3);     // any 3 decoders
+    D0     : S0;        // Big decoder only
+    FPU    : S3(2);
+    MEM    : S3;
+%}
+
+// Float reg-mem operation
+pipe_class fpu_reg_mem(regD dst, memory mem)
+%{
+    instruction_count(2);
+    dst    : S5(write);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    DECODE : S1;        // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// Float reg-mem operation
+pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
+%{
+    instruction_count(3);
+    dst    : S5(write);
+    src1   : S3(read);
+    mem    : S3(read);
+    D0     : S0;        // big decoder only
+    DECODE : S1(2);     // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// Float mem-reg operation
+pipe_class fpu_mem_reg(memory mem, regD src)
+%{
+    instruction_count(2);
+    src    : S5(read);
+    mem    : S3(read);
+    DECODE : S0;        // any decoder for FPU PUSH
+    D0     : S1;        // big decoder only
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
+%{
+    instruction_count(3);
+    src1   : S3(read);
+    src2   : S3(read);
+    mem    : S3(read);
+    DECODE : S0(2);     // any decoder for FPU PUSH
+    D0     : S1;        // big decoder only
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
+%{
+    instruction_count(3);
+    src1   : S3(read);
+    src2   : S3(read);
+    mem    : S4(read);
+    DECODE : S0;        // any decoder for FPU PUSH
+    D0     : S0(2);     // big decoder only
+    FPU    : S4;
+    MEM    : S3(2);     // any mem
+%}
+
+pipe_class fpu_mem_mem(memory dst, memory src1)
+%{
+    instruction_count(2);
+    src1   : S3(read);
+    dst    : S4(read);
+    D0     : S0(2);     // big decoder only
+    MEM    : S3(2);     // any mem
+%}
+
+pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
+%{
+    instruction_count(3);
+    src1   : S3(read);
+    src2   : S3(read);
+    dst    : S4(read);
+    D0     : S0(3);     // big decoder only
+    FPU    : S4;
+    MEM    : S3(3);     // any mem
+%}
+
+pipe_class fpu_mem_reg_con(memory mem, regD src1)
+%{
+    instruction_count(3);
+    src1   : S4(read);
+    mem    : S4(read);
+    DECODE : S0;        // any decoder for FPU PUSH
+    D0     : S0(2);     // big decoder only
+    FPU    : S4;
+    MEM    : S3(2);     // any mem
+%}
+
+// Float load constant
+pipe_class fpu_reg_con(regD dst)
+%{
+    instruction_count(2);
+    dst    : S5(write);
+    D0     : S0;        // big decoder only for the load
+    DECODE : S1;        // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// Float load constant
+pipe_class fpu_reg_reg_con(regD dst, regD src)
+%{
+    instruction_count(3);
+    dst    : S5(write);
+    src    : S3(read);
+    D0     : S0;        // big decoder only for the load
+    DECODE : S1(2);     // any decoder for FPU POP
+    FPU    : S4;
+    MEM    : S3;        // any mem
+%}
+
+// UnConditional branch
+pipe_class pipe_jmp(label labl)
+%{
+    single_instruction;
+    BR   : S3;
+%}
+
+// Conditional branch
+pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
+%{
+    single_instruction;
+    cr    : S1(read);
+    BR    : S3;
+%}
+
+// Allocation idiom
+pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
+%{
+    instruction_count(1); force_serialization;
+    fixed_latency(6);
+    heap_ptr : S3(read);
+    DECODE   : S0(3);
+    D0       : S2;
+    MEM      : S3;
+    ALU      : S3(2);
+    dst      : S5(write);
+    BR       : S5;
+%}
+
+// Generic big/slow expanded idiom
+pipe_class pipe_slow()
+%{
+    instruction_count(10); multiple_bundles; force_serialization;
+    fixed_latency(100);
+    D0  : S0(2);
+    MEM : S3(2);
+%}
+
+// The real do-nothing guy
+pipe_class empty()
+%{
+    instruction_count(0);
+%}
+
+// Define the class for the Nop node
+define
+%{
+   MachNop = empty;
+%}
+
+%}
+
+//----------INSTRUCTIONS-------------------------------------------------------
+//
+// match      -- States which machine-independent subtree may be replaced
+//               by this instruction.
+// ins_cost   -- The estimated cost of this instruction is used by instruction
+//               selection to identify a minimum cost tree of machine
+//               instructions that matches a tree of machine-independent
+//               instructions.
+// format     -- A string providing the disassembly for this instruction.
+//               The value of an instruction's operand may be inserted
+//               by referring to it with a '$' prefix.
+// opcode     -- Three instruction opcodes may be provided.  These are referred
+//               to within an encode class as $primary, $secondary, and $tertiary
+//               rrspectively.  The primary opcode is commonly used to
+//               indicate the type of machine instruction, while secondary
+//               and tertiary are often used for prefix options or addressing
+//               modes.
+// ins_encode -- A list of encode classes with parameters. The encode class
+//               name must have been defined in an 'enc_class' specification
+//               in the encode section of the architecture description.
+
+
+//----------Load/Store/Move Instructions---------------------------------------
+//----------Load Instructions--------------------------------------------------
+
+// Load Byte (8 bit signed)
+instruct loadB(rRegI dst, memory mem)
+%{
+  match(Set dst (LoadB mem));
+
+  ins_cost(125);
+  format %{ "movsbl  $dst, $mem\t# byte" %}
+  opcode(0x0F, 0xBE);
+  ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Load Byte (8 bit signed) into long
+// instruct loadB2L(rRegL dst, memory mem)
+// %{
+//   match(Set dst (ConvI2L (LoadB mem)));
+
+//   ins_cost(125);
+//   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
+//   opcode(0x0F, 0xBE);
+//   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+//   ins_pipe(ialu_reg_mem);
+// %}
+
+// Load Byte (8 bit UNsigned)
+instruct loadUB(rRegI dst, memory mem, immI_255 bytemask)
+%{
+  match(Set dst (AndI (LoadB mem) bytemask));
+
+  ins_cost(125);
+  format %{ "movzbl  $dst, $mem\t# ubyte" %}
+  opcode(0x0F, 0xB6);
+  ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Load Byte (8 bit UNsigned) into long
+// instruct loadUB2L(rRegL dst, memory mem, immI_255 bytemask)
+// %{
+//   match(Set dst (ConvI2L (AndI (LoadB mem) bytemask)));
+
+//   ins_cost(125);
+//   format %{ "movzbl  $dst, $mem\t# ubyte -> long" %}
+//   opcode(0x0F, 0xB6);
+//   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+//   ins_pipe(ialu_reg_mem);
+// %}
+
+// Load Short (16 bit signed)
+instruct loadS(rRegI dst, memory mem)
+%{
+  match(Set dst (LoadS mem));
+
+  ins_cost(125); // XXX
+  format %{ "movswl $dst, $mem\t# short" %}
+  opcode(0x0F, 0xBF);
+  ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Load Short (16 bit signed) into long
+// instruct loadS2L(rRegL dst, memory mem)
+// %{
+//   match(Set dst (ConvI2L (LoadS mem)));
+
+//   ins_cost(125); // XXX
+//   format %{ "movswq $dst, $mem\t# short -> long" %}
+//   opcode(0x0F, 0xBF);
+//   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+//   ins_pipe(ialu_reg_mem);
+// %}
+
+// Load Char (16 bit UNsigned)
+instruct loadC(rRegI dst, memory mem)
+%{
+  match(Set dst (LoadC mem));
+
+  ins_cost(125);
+  format %{ "movzwl  $dst, $mem\t# char" %}
+  opcode(0x0F, 0xB7);
+  ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Load Char (16 bit UNsigned) into long
+// instruct loadC2L(rRegL dst, memory mem)
+// %{
+//   match(Set dst (ConvI2L (LoadC mem)));
+
+//   ins_cost(125);
+//   format %{ "movzwl  $dst, $mem\t# char -> long" %}
+//   opcode(0x0F, 0xB7);
+//   ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
+//   ins_pipe(ialu_reg_mem);
+// %}
+
+// Load Integer
+instruct loadI(rRegI dst, memory mem)
+%{
+  match(Set dst (LoadI mem));
+
+  ins_cost(125); // XXX
+  format %{ "movl    $dst, $mem\t# int" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Load Long
+instruct loadL(rRegL dst, memory mem)
+%{
+  match(Set dst (LoadL mem));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $dst, $mem\t# long" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem); // XXX
+%}
+
+// Load Range
+instruct loadRange(rRegI dst, memory mem)
+%{
+  match(Set dst (LoadRange mem));
+
+  ins_cost(125); // XXX
+  format %{ "movl    $dst, $mem\t# range" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Load Pointer
+instruct loadP(rRegP dst, memory mem)
+%{
+  match(Set dst (LoadP mem));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $dst, $mem\t# ptr" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem); // XXX
+%}
+
+// Load Klass Pointer
+instruct loadKlass(rRegP dst, memory mem)
+%{
+  match(Set dst (LoadKlass mem));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $dst, $mem\t# class" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem); // XXX
+%}
+
+// Load Float
+instruct loadF(regF dst, memory mem)
+%{
+  match(Set dst (LoadF mem));
+
+  ins_cost(145); // XXX
+  format %{ "movss   $dst, $mem\t# float" %}
+  opcode(0xF3, 0x0F, 0x10);
+  ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// Load Double
+instruct loadD_partial(regD dst, memory mem)
+%{
+  predicate(!UseXmmLoadAndClearUpper);
+  match(Set dst (LoadD mem));
+
+  ins_cost(145); // XXX
+  format %{ "movlpd  $dst, $mem\t# double" %}
+  opcode(0x66, 0x0F, 0x12);
+  ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct loadD(regD dst, memory mem)
+%{
+  predicate(UseXmmLoadAndClearUpper);
+  match(Set dst (LoadD mem));
+
+  ins_cost(145); // XXX
+  format %{ "movsd   $dst, $mem\t# double" %}
+  opcode(0xF2, 0x0F, 0x10);
+  ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// Load Aligned Packed Byte to XMM register
+instruct loadA8B(regD dst, memory mem) %{
+  match(Set dst (Load8B mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed8B" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Short to XMM register
+instruct loadA4S(regD dst, memory mem) %{
+  match(Set dst (Load4S mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed4S" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Char to XMM register
+instruct loadA4C(regD dst, memory mem) %{
+  match(Set dst (Load4C mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed4C" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Integer to XMM register
+instruct load2IU(regD dst, memory mem) %{
+  match(Set dst (Load2I mem));
+  ins_cost(125);
+  format %{ "MOVQ  $dst,$mem\t! packed2I" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Aligned Packed Single to XMM
+instruct loadA2F(regD dst, memory mem) %{
+  match(Set dst (Load2F mem));
+  ins_cost(145);
+  format %{ "MOVQ  $dst,$mem\t! packed2F" %}
+  ins_encode( movq_ld(dst, mem));
+  ins_pipe( pipe_slow );
+%}
+
+// Load Effective Address
+instruct leaP8(rRegP dst, indOffset8 mem)
+%{
+  match(Set dst mem);
+
+  ins_cost(110); // XXX
+  format %{ "leaq    $dst, $mem\t# ptr 8" %}
+  opcode(0x8D);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_reg_fat);
+%}
+
+instruct leaP32(rRegP dst, indOffset32 mem)
+%{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "leaq    $dst, $mem\t# ptr 32" %}
+  opcode(0x8D);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_reg_fat);
+%}
+
+// instruct leaPIdx(rRegP dst, indIndex mem)
+// %{
+//   match(Set dst mem);
+
+//   ins_cost(110);
+//   format %{ "leaq    $dst, $mem\t# ptr idx" %}
+//   opcode(0x8D);
+//   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+//   ins_pipe(ialu_reg_reg_fat);
+// %}
+
+instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
+%{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
+  opcode(0x8D);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_reg_fat);
+%}
+
+instruct leaPIdxScale(rRegP dst, indIndexScale mem)
+%{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
+  opcode(0x8D);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_reg_fat);
+%}
+
+instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
+%{
+  match(Set dst mem);
+
+  ins_cost(110);
+  format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
+  opcode(0x8D);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_reg_fat);
+%}
+
+instruct loadConI(rRegI dst, immI src)
+%{
+  match(Set dst src);
+
+  format %{ "movl    $dst, $src\t# int" %}
+  ins_encode(load_immI(dst, src));
+  ins_pipe(ialu_reg_fat); // XXX
+%}
+
+instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
+%{
+  match(Set dst src);
+  effect(KILL cr);
+
+  ins_cost(50);
+  format %{ "xorl    $dst, $dst\t# int" %}
+  opcode(0x33); /* + rd */
+  ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct loadConL(rRegL dst, immL src)
+%{
+  match(Set dst src);
+
+  ins_cost(150);
+  format %{ "movq    $dst, $src\t# long" %}
+  ins_encode(load_immL(dst, src));
+  ins_pipe(ialu_reg);
+%}
+
+instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
+%{
+  match(Set dst src);
+  effect(KILL cr);
+
+  ins_cost(50);
+  format %{ "xorl    $dst, $dst\t# long" %}
+  opcode(0x33); /* + rd */
+  ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
+  ins_pipe(ialu_reg); // XXX
+%}
+
+instruct loadConUL32(rRegL dst, immUL32 src)
+%{
+  match(Set dst src);
+
+  ins_cost(60);
+  format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
+  ins_encode(load_immUL32(dst, src));
+  ins_pipe(ialu_reg);
+%}
+
+instruct loadConL32(rRegL dst, immL32 src)
+%{
+  match(Set dst src);
+
+  ins_cost(70);
+  format %{ "movq    $dst, $src\t# long (32-bit)" %}
+  ins_encode(load_immL32(dst, src));
+  ins_pipe(ialu_reg);
+%}
+
+instruct loadConP(rRegP dst, immP src)
+%{
+  match(Set dst src);
+
+  format %{ "movq    $dst, $src\t# ptr" %}
+  ins_encode(load_immP(dst, src));
+  ins_pipe(ialu_reg_fat); // XXX
+%}
+
+instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
+%{
+  match(Set dst src);
+  effect(KILL cr);
+
+  ins_cost(50);
+  format %{ "xorl    $dst, $dst\t# ptr" %}
+  opcode(0x33); /* + rd */
+  ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
+%{
+  match(Set dst src);
+  effect(KILL cr);
+
+  ins_cost(60);
+  format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
+  ins_encode(load_immP31(dst, src));
+  ins_pipe(ialu_reg);
+%}
+
+instruct loadConF(regF dst, immF src)
+%{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "movss   $dst, [$src]" %}
+  ins_encode(load_conF(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct loadConF0(regF dst, immF0 src)
+%{
+  match(Set dst src);
+  ins_cost(100);
+
+  format %{ "xorps   $dst, $dst\t# float 0.0" %}
+  opcode(0x0F, 0x57);
+  ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
+  ins_pipe(pipe_slow);
+%}
+
+// Use the same format since predicate() can not be used here.
+instruct loadConD(regD dst, immD src)
+%{
+  match(Set dst src);
+  ins_cost(125);
+
+  format %{ "movsd   $dst, [$src]" %}
+  ins_encode(load_conD(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct loadConD0(regD dst, immD0 src)
+%{
+  match(Set dst src);
+  ins_cost(100);
+
+  format %{ "xorpd   $dst, $dst\t# double 0.0" %}
+  opcode(0x66, 0x0F, 0x57);
+  ins_encode(OpcP, REX_reg_reg(dst, dst), OpcS, OpcT, reg_reg(dst, dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct loadSSI(rRegI dst, stackSlotI src)
+%{
+  match(Set dst src);
+
+  ins_cost(125);
+  format %{ "movl    $dst, $src\t# int stk" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct loadSSL(rRegL dst, stackSlotL src)
+%{
+  match(Set dst src);
+
+  ins_cost(125);
+  format %{ "movq    $dst, $src\t# long stk" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct loadSSP(rRegP dst, stackSlotP src)
+%{
+  match(Set dst src);
+
+  ins_cost(125);
+  format %{ "movq    $dst, $src\t# ptr stk" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct loadSSF(regF dst, stackSlotF src)
+%{
+  match(Set dst src);
+
+  ins_cost(125);
+  format %{ "movss   $dst, $src\t# float stk" %}
+  opcode(0xF3, 0x0F, 0x10);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// Use the same format since predicate() can not be used here.
+instruct loadSSD(regD dst, stackSlotD src)
+%{
+  match(Set dst src);
+
+  ins_cost(125);
+  format %{ "movsd   $dst, $src\t# double stk" %}
+  ins_encode  %{
+    __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
+  %}
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// Prefetch instructions.
+// Must be safe to execute with invalid address (cannot fault).
+
+instruct prefetchr( memory mem ) %{
+  predicate(ReadPrefetchInstr==3);
+  match(PrefetchRead mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
+  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /0 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchrNTA( memory mem ) %{
+  predicate(ReadPrefetchInstr==0);
+  match(PrefetchRead mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchrT0( memory mem ) %{
+  predicate(ReadPrefetchInstr==1);
+  match(PrefetchRead mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
+  opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchrT2( memory mem ) %{
+  predicate(ReadPrefetchInstr==2);
+  match(PrefetchRead mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
+  opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchw( memory mem ) %{
+  predicate(AllocatePrefetchInstr==3);
+  match(PrefetchWrite mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHW $mem\t# Prefetch into level 1 cache and mark modified" %}
+  opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchwNTA( memory mem ) %{
+  predicate(AllocatePrefetchInstr==0);
+  match(PrefetchWrite mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchwT0( memory mem ) %{
+  predicate(AllocatePrefetchInstr==1);
+  match(PrefetchWrite mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHT0 $mem\t# Prefetch to level 1 and 2 caches for write" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
+  ins_pipe(ialu_mem);
+%}
+
+instruct prefetchwT2( memory mem ) %{
+  predicate(AllocatePrefetchInstr==2);
+  match(PrefetchWrite mem);
+  ins_cost(125);
+
+  format %{ "PREFETCHT2 $mem\t# Prefetch to level 2 cache for write" %}
+  opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
+  ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
+  ins_pipe(ialu_mem);
+%}
+
+//----------Store Instructions-------------------------------------------------
+
+// Store Byte
+instruct storeB(memory mem, rRegI src)
+%{
+  match(Set mem (StoreB mem src));
+
+  ins_cost(125); // XXX
+  format %{ "movb    $mem, $src\t# byte" %}
+  opcode(0x88);
+  ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Store Char/Short
+instruct storeC(memory mem, rRegI src)
+%{
+  match(Set mem (StoreC mem src));
+
+  ins_cost(125); // XXX
+  format %{ "movw    $mem, $src\t# char/short" %}
+  opcode(0x89);
+  ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Store Integer
+instruct storeI(memory mem, rRegI src)
+%{
+  match(Set mem (StoreI mem src));
+
+  ins_cost(125); // XXX
+  format %{ "movl    $mem, $src\t# int" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Store Long
+instruct storeL(memory mem, rRegL src)
+%{
+  match(Set mem (StoreL mem src));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $mem, $src\t# long" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
+  ins_pipe(ialu_mem_reg); // XXX
+%}
+
+// Store Pointer
+instruct storeP(memory mem, any_RegP src)
+%{
+  match(Set mem (StoreP mem src));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $mem, $src\t# ptr" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Store NULL Pointer, mark word, or other simple pointer constant.
+instruct storeImmP(memory mem, immP31 src)
+%{
+  match(Set mem (StoreP mem src));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $mem, $src\t# ptr" %}
+  opcode(0xC7); /* C7 /0 */
+  ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Store Integer Immediate
+instruct storeImmI(memory mem, immI src)
+%{
+  match(Set mem (StoreI mem src));
+
+  ins_cost(150);
+  format %{ "movl    $mem, $src\t# int" %}
+  opcode(0xC7); /* C7 /0 */
+  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Store Long Immediate
+instruct storeImmL(memory mem, immL32 src)
+%{
+  match(Set mem (StoreL mem src));
+
+  ins_cost(150);
+  format %{ "movq    $mem, $src\t# long" %}
+  opcode(0xC7); /* C7 /0 */
+  ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Store Short/Char Immediate
+instruct storeImmI16(memory mem, immI16 src)
+%{
+  predicate(UseStoreImmI16);
+  match(Set mem (StoreC mem src));
+
+  ins_cost(150);
+  format %{ "movw    $mem, $src\t# short/char" %}
+  opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
+  ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Store Byte Immediate
+instruct storeImmB(memory mem, immI8 src)
+%{
+  match(Set mem (StoreB mem src));
+
+  ins_cost(150); // XXX
+  format %{ "movb    $mem, $src\t# byte" %}
+  opcode(0xC6); /* C6 /0 */
+  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Store Aligned Packed Byte XMM register to memory
+instruct storeA8B(memory mem, regD src) %{
+  match(Set mem (Store8B mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed8B" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Aligned Packed Char/Short XMM register to memory
+instruct storeA4C(memory mem, regD src) %{
+  match(Set mem (Store4C mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed4C" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Aligned Packed Integer XMM register to memory
+instruct storeA2I(memory mem, regD src) %{
+  match(Set mem (Store2I mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed2I" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store CMS card-mark Immediate
+instruct storeImmCM0(memory mem, immI0 src)
+%{
+  match(Set mem (StoreCM mem src));
+
+  ins_cost(150); // XXX
+  format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
+  opcode(0xC6); /* C6 /0 */
+  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Store Aligned Packed Single Float XMM register to memory
+instruct storeA2F(memory mem, regD src) %{
+  match(Set mem (Store2F mem src));
+  ins_cost(145);
+  format %{ "MOVQ  $mem,$src\t! packed2F" %}
+  ins_encode( movq_st(mem, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Store Float
+instruct storeF(memory mem, regF src)
+%{
+  match(Set mem (StoreF mem src));
+
+  ins_cost(95); // XXX
+  format %{ "movss   $mem, $src\t# float" %}
+  opcode(0xF3, 0x0F, 0x11);
+  ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// Store immediate Float value (it is faster than store from XMM register)
+instruct storeF_imm(memory mem, immF src)
+%{
+  match(Set mem (StoreF mem src));
+
+  ins_cost(50);
+  format %{ "movl    $mem, $src\t# float" %}
+  opcode(0xC7); /* C7 /0 */
+  ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Store Double
+instruct storeD(memory mem, regD src)
+%{
+  match(Set mem (StoreD mem src));
+
+  ins_cost(95); // XXX
+  format %{ "movsd   $mem, $src\t# double" %}
+  opcode(0xF2, 0x0F, 0x11);
+  ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// Store immediate double 0.0 (it is faster than store from XMM register)
+instruct storeD0_imm(memory mem, immD0 src)
+%{
+  match(Set mem (StoreD mem src));
+
+  ins_cost(50);
+  format %{ "movq    $mem, $src\t# double 0." %}
+  opcode(0xC7); /* C7 /0 */
+  ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+instruct storeSSI(stackSlotI dst, rRegI src)
+%{
+  match(Set dst src);
+
+  ins_cost(100);
+  format %{ "movl    $dst, $src\t# int stk" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe( ialu_mem_reg );
+%}
+
+instruct storeSSL(stackSlotL dst, rRegL src)
+%{
+  match(Set dst src);
+
+  ins_cost(100);
+  format %{ "movq    $dst, $src\t# long stk" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+instruct storeSSP(stackSlotP dst, rRegP src)
+%{
+  match(Set dst src);
+
+  ins_cost(100);
+  format %{ "movq    $dst, $src\t# ptr stk" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+instruct storeSSF(stackSlotF dst, regF src)
+%{
+  match(Set dst src);
+
+  ins_cost(95); // XXX
+  format %{ "movss   $dst, $src\t# float stk" %}
+  opcode(0xF3, 0x0F, 0x11);
+  ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct storeSSD(stackSlotD dst, regD src)
+%{
+  match(Set dst src);
+
+  ins_cost(95); // XXX
+  format %{ "movsd   $dst, $src\t# double stk" %}
+  opcode(0xF2, 0x0F, 0x11);
+  ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+//----------BSWAP Instructions-------------------------------------------------
+instruct bytes_reverse_int(rRegI dst) %{
+  match(Set dst (ReverseBytesI dst));
+
+  format %{ "bswapl  $dst" %}
+  opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
+  ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
+  ins_pipe( ialu_reg );
+%}
+
+instruct bytes_reverse_long(rRegL dst) %{
+  match(Set dst (ReverseBytesL dst));
+
+  format %{ "bswapq  $dst" %}
+
+  opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
+  ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
+  ins_pipe( ialu_reg);
+%}
+
+instruct loadI_reversed(rRegI dst, memory src) %{
+  match(Set dst (ReverseBytesI (LoadI src)));
+
+  format %{ "bswap_movl $dst, $src" %}
+  opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src), REX_reg(dst), OpcS, opc3_reg(dst));
+  ins_pipe( ialu_reg_mem );
+%}
+
+instruct loadL_reversed(rRegL dst, memory src) %{
+  match(Set dst (ReverseBytesL (LoadL src)));
+
+  format %{ "bswap_movq $dst, $src" %}
+  opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src), REX_reg_wide(dst), OpcS, opc3_reg(dst));
+  ins_pipe( ialu_reg_mem );
+%}
+
+instruct storeI_reversed(memory dst, rRegI src) %{
+  match(Set dst (StoreI dst (ReverseBytesI  src)));
+
+  format %{ "movl_bswap $dst, $src" %}
+  opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
+  ins_encode( REX_reg(src), OpcP, opc2_reg(src), REX_reg_mem(src, dst), OpcT, reg_mem(src, dst) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+instruct storeL_reversed(memory dst, rRegL src) %{
+  match(Set dst (StoreL dst (ReverseBytesL  src)));
+
+  format %{ "movq_bswap $dst, $src" %}
+  opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
+  ins_encode( REX_reg_wide(src), OpcP, opc2_reg(src), REX_reg_mem_wide(src, dst), OpcT, reg_mem(src, dst) );
+  ins_pipe( ialu_mem_reg );
+%}
+
+//----------MemBar Instructions-----------------------------------------------
+// Memory barrier flavors
+
+instruct membar_acquire()
+%{
+  match(MemBarAcquire);
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-acquire" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct membar_acquire_lock()
+%{
+  match(MemBarAcquire);
+  predicate(Matcher::prior_fast_lock(n));
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct membar_release()
+%{
+  match(MemBarRelease);
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-release" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct membar_release_lock()
+%{
+  match(MemBarRelease);
+  predicate(Matcher::post_fast_unlock(n));
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct membar_volatile()
+%{
+  match(MemBarVolatile);
+  ins_cost(400);
+
+  format %{ "MEMBAR-volatile" %}
+  ins_encode(enc_membar_volatile);
+  ins_pipe(pipe_slow);
+%}
+
+instruct unnecessary_membar_volatile()
+%{
+  match(MemBarVolatile);
+  predicate(Matcher::post_store_load_barrier(n));
+  ins_cost(0);
+
+  size(0);
+  format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+//----------Move Instructions--------------------------------------------------
+
+instruct castX2P(rRegP dst, rRegL src)
+%{
+  match(Set dst (CastX2P src));
+
+  format %{ "movq    $dst, $src\t# long->ptr" %}
+  ins_encode(enc_copy_wide(dst, src));
+  ins_pipe(ialu_reg_reg); // XXX
+%}
+
+instruct castP2X(rRegL dst, rRegP src)
+%{
+  match(Set dst (CastP2X src));
+
+  format %{ "movq    $dst, $src\t# ptr -> long" %}
+  ins_encode(enc_copy_wide(dst, src));
+  ins_pipe(ialu_reg_reg); // XXX
+%}
+
+//----------Conditional Move---------------------------------------------------
+// Jump
+// dummy instruction for generating temp registers
+instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
+  match(Jump (LShiftL switch_val shift));
+  ins_cost(350);
+  predicate(false);
+  effect(TEMP dest);
+
+  format %{ "leaq    $dest, table_base\n\t"
+            "jmp     [$dest + $switch_val << $shift]\n\t" %}
+  ins_encode(jump_enc_offset(switch_val, shift, dest));
+  ins_pipe(pipe_jmp);
+  ins_pc_relative(1);
+%}
+
+instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
+  match(Jump (AddL (LShiftL switch_val shift) offset));
+  ins_cost(350);
+  effect(TEMP dest);
+
+  format %{ "leaq    $dest, table_base\n\t"
+            "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
+  ins_encode(jump_enc_addr(switch_val, shift, offset, dest));
+  ins_pipe(pipe_jmp);
+  ins_pc_relative(1);
+%}
+
+instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
+  match(Jump switch_val);
+  ins_cost(350);
+  effect(TEMP dest);
+
+  format %{ "leaq    $dest, table_base\n\t"
+            "jmp     [$dest + $switch_val]\n\t" %}
+  ins_encode(jump_enc(switch_val, dest));
+  ins_pipe(pipe_jmp);
+  ins_pc_relative(1);
+%}
+
+// Conditional move
+instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
+%{
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "cmovl$cop $dst, $src\t# signed, int" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg);
+%}
+
+instruct cmovI_regU(rRegI dst, rRegI src, rFlagsRegU cr, cmpOpU cop)
+%{
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg);
+%}
+
+// Conditional move
+instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src)
+%{
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
+
+  ins_cost(250); // XXX
+  format %{ "cmovl$cop $dst, $src\t# signed, int" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
+  ins_pipe(pipe_cmov_mem);
+%}
+
+// Conditional move
+instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
+%{
+  match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
+
+  ins_cost(250); // XXX
+  format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
+  ins_pipe(pipe_cmov_mem);
+%}
+
+// Conditional move
+instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
+%{
+  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg);  // XXX
+%}
+
+// Conditional move
+instruct cmovP_regU(rRegP dst, rRegP src, rFlagsRegU cr, cmpOpU cop)
+%{
+  match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg); // XXX
+%}
+
+// DISABLED: Requires the ADLC to emit a bottom_type call that
+// correctly meets the two pointer arguments; one is an incoming
+// register but the other is a memory operand.  ALSO appears to
+// be buggy with implicit null checks.
+//
+//// Conditional move
+//instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
+//%{
+//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
+//  ins_cost(250);
+//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
+//  opcode(0x0F,0x40);
+//  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
+//  ins_pipe( pipe_cmov_mem );
+//%}
+//
+//// Conditional move
+//instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
+//%{
+//  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
+//  ins_cost(250);
+//  format %{ "CMOV$cop $dst,$src\t# ptr" %}
+//  opcode(0x0F,0x40);
+//  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
+//  ins_pipe( pipe_cmov_mem );
+//%}
+
+instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
+%{
+  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "cmovq$cop $dst, $src\t# signed, long" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg);  // XXX
+%}
+
+instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
+%{
+  match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
+
+  ins_cost(200); // XXX
+  format %{ "cmovq$cop $dst, $src\t# signed, long" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
+  ins_pipe(pipe_cmov_mem);  // XXX
+%}
+
+instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
+%{
+  match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg); // XXX
+%}
+
+instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
+%{
+  match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
+
+  ins_cost(200); // XXX
+  format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
+  opcode(0x0F, 0x40);
+  ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
+  ins_pipe(pipe_cmov_mem); // XXX
+%}
+
+instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
+%{
+  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "jn$cop    skip\t# signed cmove float\n\t"
+            "movss     $dst, $src\n"
+    "skip:" %}
+  ins_encode(enc_cmovf_branch(cop, dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+// instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
+// %{
+//   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
+
+//   ins_cost(200); // XXX
+//   format %{ "jn$cop    skip\t# signed cmove float\n\t"
+//             "movss     $dst, $src\n"
+//     "skip:" %}
+//   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
+//   ins_pipe(pipe_slow);
+// %}
+
+instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
+%{
+  match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
+            "movss     $dst, $src\n"
+    "skip:" %}
+  ins_encode(enc_cmovf_branch(cop, dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
+%{
+  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "jn$cop    skip\t# signed cmove double\n\t"
+            "movsd     $dst, $src\n"
+    "skip:" %}
+  ins_encode(enc_cmovd_branch(cop, dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
+%{
+  match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
+
+  ins_cost(200); // XXX
+  format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
+            "movsd     $dst, $src\n"
+    "skip:" %}
+  ins_encode(enc_cmovd_branch(cop, dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+//----------Arithmetic Instructions--------------------------------------------
+//----------Addition Instructions----------------------------------------------
+
+instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  format %{ "addl    $dst, $src\t# int" %}
+  opcode(0x03);
+  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  format %{ "addl    $dst, $src\t# int" %}
+  opcode(0x81, 0x00); /* /0 id */
+  ins_encode(OpcSErm(dst, src), Con8or32(src));
+  ins_pipe( ialu_reg );
+%}
+
+instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (AddI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "addl    $dst, $src\t# int" %}
+  opcode(0x03);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150); // XXX
+  format %{ "addl    $dst, $src\t# int" %}
+  opcode(0x01); /* Opcode 01 /r */
+  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "addl    $dst, $src\t# int" %}
+  opcode(0x81); /* Opcode 81 /0 id */
+  ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  format %{ "incl    $dst\t# int" %}
+  opcode(0xFF, 0x00); // FF /0
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "incl    $dst\t# int" %}
+  opcode(0xFF); /* Opcode FF /0 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// XXX why does that use AddI
+instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (AddI dst src));
+  effect(KILL cr);
+
+  format %{ "decl    $dst\t# int" %}
+  opcode(0xFF, 0x01); // FF /1
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+// XXX why does that use AddI
+instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (StoreI dst (AddI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "decl    $dst\t# int" %}
+  opcode(0xFF); /* Opcode FF /1 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
+%{
+  match(Set dst (AddI src0 src1));
+
+  ins_cost(110);
+  format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
+  opcode(0x8D); /* 0x8D /r */
+  ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (AddL dst src));
+  effect(KILL cr);
+
+  format %{ "addq    $dst, $src\t# long" %}
+  opcode(0x03);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (AddL dst src));
+  effect(KILL cr);
+
+  format %{ "addq    $dst, $src\t# long" %}
+  opcode(0x81, 0x00); /* /0 id */
+  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
+  ins_pipe( ialu_reg );
+%}
+
+instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (AddL dst (LoadL src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "addq    $dst, $src\t# long" %}
+  opcode(0x03);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150); // XXX
+  format %{ "addq    $dst, $src\t# long" %}
+  opcode(0x01); /* Opcode 01 /r */
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "addq    $dst, $src\t# long" %}
+  opcode(0x81); /* Opcode 81 /0 id */
+  ins_encode(REX_mem_wide(dst),
+             OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (AddL dst src));
+  effect(KILL cr);
+
+  format %{ "incq    $dst\t# long" %}
+  opcode(0xFF, 0x00); // FF /0
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "incq    $dst\t# long" %}
+  opcode(0xFF); /* Opcode FF /0 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// XXX why does that use AddL
+instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (AddL dst src));
+  effect(KILL cr);
+
+  format %{ "decq    $dst\t# long" %}
+  opcode(0xFF, 0x01); // FF /1
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+// XXX why does that use AddL
+instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
+%{
+  predicate(UseIncDec);
+  match(Set dst (StoreL dst (AddL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "decq    $dst\t# long" %}
+  opcode(0xFF); /* Opcode FF /1 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
+%{
+  match(Set dst (AddL src0 src1));
+
+  ins_cost(110);
+  format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
+  opcode(0x8D); /* 0x8D /r */
+  ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (AddP dst src));
+  effect(KILL cr);
+
+  format %{ "addq    $dst, $src\t# ptr" %}
+  opcode(0x03);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (AddP dst src));
+  effect(KILL cr);
+
+  format %{ "addq    $dst, $src\t# ptr" %}
+  opcode(0x81, 0x00); /* /0 id */
+  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
+  ins_pipe( ialu_reg );
+%}
+
+// XXX addP mem ops ????
+
+instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
+%{
+  match(Set dst (AddP src0 src1));
+
+  ins_cost(110);
+  format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
+  opcode(0x8D); /* 0x8D /r */
+  ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct checkCastPP(rRegP dst)
+%{
+  match(Set dst (CheckCastPP dst));
+
+  size(0);
+  format %{ "# checkcastPP of $dst" %}
+  ins_encode(/* empty encoding */);
+  ins_pipe(empty);
+%}
+
+instruct castPP(rRegP dst)
+%{
+  match(Set dst (CastPP dst));
+
+  size(0);
+  format %{ "# castPP of $dst" %}
+  ins_encode(/* empty encoding */);
+  ins_pipe(empty);
+%}
+
+instruct castII(rRegI dst)
+%{
+  match(Set dst (CastII dst));
+
+  size(0);
+  format %{ "# castII of $dst" %}
+  ins_encode(/* empty encoding */);
+  ins_cost(0);
+  ins_pipe(empty);
+%}
+
+// LoadP-locked same as a regular LoadP when used with compare-swap
+instruct loadPLocked(rRegP dst, memory mem)
+%{
+  match(Set dst (LoadPLocked mem));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $dst, $mem\t# ptr locked" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem); // XXX
+%}
+
+// LoadL-locked - same as a regular LoadL when used with compare-swap
+instruct loadLLocked(rRegL dst, memory mem)
+%{
+  match(Set dst (LoadLLocked mem));
+
+  ins_cost(125); // XXX
+  format %{ "movq    $dst, $mem\t# long locked" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
+  ins_pipe(ialu_reg_mem); // XXX
+%}
+
+// Conditional-store of the updated heap-top.
+// Used during allocation of the shared heap.
+// Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
+
+instruct storePConditional(memory heap_top_ptr,
+                           rax_RegP oldval, rRegP newval,
+                           rFlagsReg cr)
+%{
+  match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
+
+  format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
+            "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
+  opcode(0x0F, 0xB1);
+  ins_encode(lock_prefix,
+             REX_reg_mem_wide(newval, heap_top_ptr),
+             OpcP, OpcS,
+             reg_mem(newval, heap_top_ptr));
+  ins_pipe(pipe_cmpxchg);
+%}
+
+// Conditional-store of a long value
+// Returns a boolean value (0/1) on success.  Implemented with a
+// CMPXCHG8 on Intel.  mem_ptr can actually be in either RSI or RDI
+
+instruct storeLConditional(rRegI res,
+                           memory mem_ptr,
+                           rax_RegL oldval, rRegL newval,
+                           rFlagsReg cr)
+%{
+  match(Set res (StoreLConditional mem_ptr (Binary oldval newval)));
+  effect(KILL cr);
+
+  format %{ "cmpxchgq $mem_ptr, $newval\t# (long) "
+            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
+            "sete    $res\n\t"
+            "movzbl  $res, $res" %}
+  opcode(0x0F, 0xB1);
+  ins_encode(lock_prefix,
+             REX_reg_mem_wide(newval, mem_ptr),
+             OpcP, OpcS,
+             reg_mem(newval, mem_ptr),
+             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
+             REX_reg_breg(res, res), // movzbl
+             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
+  ins_pipe(pipe_cmpxchg);
+%}
+
+// Conditional-store of a long value
+// ZF flag is set on success, reset otherwise. Implemented with a
+// CMPXCHG8 on Intel.  mem_ptr can actually be in either RSI or RDI
+instruct storeLConditional_flags(memory mem_ptr,
+                                 rax_RegL oldval, rRegL newval,
+                                 rFlagsReg cr,
+                                 immI0 zero)
+%{
+  match(Set cr (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero));
+
+  format %{ "cmpxchgq $mem_ptr, $newval\t# (long) "
+            "If rax == $mem_ptr then store $newval into $mem_ptr" %}
+  opcode(0x0F, 0xB1);
+  ins_encode(lock_prefix,
+             REX_reg_mem_wide(newval, mem_ptr),
+             OpcP, OpcS,
+             reg_mem(newval, mem_ptr));
+  ins_pipe(pipe_cmpxchg);
+%}
+
+instruct compareAndSwapP(rRegI res,
+                         memory mem_ptr,
+                         rax_RegP oldval, rRegP newval,
+                         rFlagsReg cr)
+%{
+  match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
+  effect(KILL cr, KILL oldval);
+
+  format %{ "cmpxchgq $mem_ptr,$newval\t# "
+            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
+            "sete    $res\n\t"
+            "movzbl  $res, $res" %}
+  opcode(0x0F, 0xB1);
+  ins_encode(lock_prefix,
+             REX_reg_mem_wide(newval, mem_ptr),
+             OpcP, OpcS,
+             reg_mem(newval, mem_ptr),
+             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
+             REX_reg_breg(res, res), // movzbl
+             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
+  ins_pipe( pipe_cmpxchg );
+%}
+
+// XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
+instruct compareAndSwapL(rRegI res,
+                         memory mem_ptr,
+                         rax_RegL oldval, rRegL newval,
+                         rFlagsReg cr)
+%{
+  match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
+  effect(KILL cr, KILL oldval);
+
+  format %{ "cmpxchgq $mem_ptr,$newval\t# "
+            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
+            "sete    $res\n\t"
+            "movzbl  $res, $res" %}
+  opcode(0x0F, 0xB1);
+  ins_encode(lock_prefix,
+             REX_reg_mem_wide(newval, mem_ptr),
+             OpcP, OpcS,
+             reg_mem(newval, mem_ptr),
+             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
+             REX_reg_breg(res, res), // movzbl
+             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
+  ins_pipe( pipe_cmpxchg );
+%}
+
+instruct compareAndSwapI(rRegI res,
+                         memory mem_ptr,
+                         rax_RegI oldval, rRegI newval,
+                         rFlagsReg cr)
+%{
+  match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
+  effect(KILL cr, KILL oldval);
+
+  format %{ "cmpxchgl $mem_ptr,$newval\t# "
+            "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
+            "sete    $res\n\t"
+            "movzbl  $res, $res" %}
+  opcode(0x0F, 0xB1);
+  ins_encode(lock_prefix,
+             REX_reg_mem(newval, mem_ptr),
+             OpcP, OpcS,
+             reg_mem(newval, mem_ptr),
+             REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
+             REX_reg_breg(res, res), // movzbl
+             Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
+  ins_pipe( pipe_cmpxchg );
+%}
+
+
+//----------Subtraction Instructions-------------------------------------------
+
+// Integer Subtraction Instructions
+instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (SubI dst src));
+  effect(KILL cr);
+
+  format %{ "subl    $dst, $src\t# int" %}
+  opcode(0x2B);
+  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (SubI dst src));
+  effect(KILL cr);
+
+  format %{ "subl    $dst, $src\t# int" %}
+  opcode(0x81, 0x05);  /* Opcode 81 /5 */
+  ins_encode(OpcSErm(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (SubI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "subl    $dst, $src\t# int" %}
+  opcode(0x2B);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "subl    $dst, $src\t# int" %}
+  opcode(0x29); /* Opcode 29 /r */
+  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (SubI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "subl    $dst, $src\t# int" %}
+  opcode(0x81); /* Opcode 81 /5 id */
+  ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (SubL dst src));
+  effect(KILL cr);
+
+  format %{ "subq    $dst, $src\t# long" %}
+  opcode(0x2B);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (SubL dst src));
+  effect(KILL cr);
+
+  format %{ "subq    $dst, $src\t# long" %}
+  opcode(0x81, 0x05);  /* Opcode 81 /5 */
+  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (SubL dst (LoadL src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "subq    $dst, $src\t# long" %}
+  opcode(0x2B);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (SubL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "subq    $dst, $src\t# long" %}
+  opcode(0x29); /* Opcode 29 /r */
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (SubL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125); // XXX
+  format %{ "subq    $dst, $src\t# long" %}
+  opcode(0x81); /* Opcode 81 /5 id */
+  ins_encode(REX_mem_wide(dst),
+             OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Subtract from a pointer
+// XXX hmpf???
+instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (AddP dst (SubI zero src)));
+  effect(KILL cr);
+
+  format %{ "subq    $dst, $src\t# ptr - int" %}
+  opcode(0x2B);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (SubI zero dst));
+  effect(KILL cr);
+
+  format %{ "negl    $dst\t# int" %}
+  opcode(0xF7, 0x03);  // Opcode F7 /3
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (SubI zero (LoadI dst))));
+  effect(KILL cr);
+
+  format %{ "negl    $dst\t# int" %}
+  opcode(0xF7, 0x03);  // Opcode F7 /3
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
+%{
+  match(Set dst (SubL zero dst));
+  effect(KILL cr);
+
+  format %{ "negq    $dst\t# long" %}
+  opcode(0xF7, 0x03);  // Opcode F7 /3
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (SubL zero (LoadL dst))));
+  effect(KILL cr);
+
+  format %{ "negq    $dst\t# long" %}
+  opcode(0xF7, 0x03);  // Opcode F7 /3
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_reg);
+%}
+
+
+//----------Multiplication/Division Instructions-------------------------------
+// Integer Multiplication Instructions
+// Multiply Register
+
+instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (MulI dst src));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "imull   $dst, $src\t# int" %}
+  opcode(0x0F, 0xAF);
+  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
+%{
+  match(Set dst (MulI src imm));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "imull   $dst, $src, $imm\t# int" %}
+  opcode(0x69); /* 69 /r id */
+  ins_encode(REX_reg_reg(dst, src),
+             OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (MulI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(350);
+  format %{ "imull   $dst, $src\t# int" %}
+  opcode(0x0F, 0xAF);
+  ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem_alu0);
+%}
+
+instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
+%{
+  match(Set dst (MulI (LoadI src) imm));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "imull   $dst, $src, $imm\t# int" %}
+  opcode(0x69); /* 69 /r id */
+  ins_encode(REX_reg_mem(dst, src),
+             OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
+  ins_pipe(ialu_reg_mem_alu0);
+%}
+
+instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (MulL dst src));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "imulq   $dst, $src\t# long" %}
+  opcode(0x0F, 0xAF);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
+%{
+  match(Set dst (MulL src imm));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "imulq   $dst, $src, $imm\t# long" %}
+  opcode(0x69); /* 69 /r id */
+  ins_encode(REX_reg_reg_wide(dst, src),
+             OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (MulL dst (LoadL src)));
+  effect(KILL cr);
+
+  ins_cost(350);
+  format %{ "imulq   $dst, $src\t# long" %}
+  opcode(0x0F, 0xAF);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem_alu0);
+%}
+
+instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
+%{
+  match(Set dst (MulL (LoadL src) imm));
+  effect(KILL cr);
+
+  ins_cost(300);
+  format %{ "imulq   $dst, $src, $imm\t# long" %}
+  opcode(0x69); /* 69 /r id */
+  ins_encode(REX_reg_mem_wide(dst, src),
+             OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
+  ins_pipe(ialu_reg_mem_alu0);
+%}
+
+instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
+                   rFlagsReg cr)
+%{
+  match(Set rax (DivI rax div));
+  effect(KILL rdx, KILL cr);
+
+  ins_cost(30*100+10*100); // XXX
+  format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
+            "jne,s   normal\n\t"
+            "xorl    rdx, rdx\n\t"
+            "cmpl    $div, -1\n\t"
+            "je,s    done\n"
+    "normal: cdql\n\t"
+            "idivl   $div\n"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
+                   rFlagsReg cr)
+%{
+  match(Set rax (DivL rax div));
+  effect(KILL rdx, KILL cr);
+
+  ins_cost(30*100+10*100); // XXX
+  format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
+            "cmpq    rax, rdx\n\t"
+            "jne,s   normal\n\t"
+            "xorl    rdx, rdx\n\t"
+            "cmpq    $div, -1\n\t"
+            "je,s    done\n"
+    "normal: cdqq\n\t"
+            "idivq   $div\n"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+// Integer DIVMOD with Register, both quotient and mod results
+instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
+                             rFlagsReg cr)
+%{
+  match(DivModI rax div);
+  effect(KILL cr);
+
+  ins_cost(30*100+10*100); // XXX
+  format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
+            "jne,s   normal\n\t"
+            "xorl    rdx, rdx\n\t"
+            "cmpl    $div, -1\n\t"
+            "je,s    done\n"
+    "normal: cdql\n\t"
+            "idivl   $div\n"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
+  ins_pipe(pipe_slow);
+%}
+
+// Long DIVMOD with Register, both quotient and mod results
+instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
+                             rFlagsReg cr)
+%{
+  match(DivModL rax div);
+  effect(KILL cr);
+
+  ins_cost(30*100+10*100); // XXX
+  format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
+            "cmpq    rax, rdx\n\t"
+            "jne,s   normal\n\t"
+            "xorl    rdx, rdx\n\t"
+            "cmpq    $div, -1\n\t"
+            "je,s    done\n"
+    "normal: cdqq\n\t"
+            "idivq   $div\n"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
+  ins_pipe(pipe_slow);
+%}
+
+//----------- DivL-By-Constant-Expansions--------------------------------------
+// DivI cases are handled by the compiler
+
+// Magic constant, reciprical of 10
+instruct loadConL_0x6666666666666667(rRegL dst)
+%{
+  effect(DEF dst);
+
+  format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
+  ins_encode(load_immL(dst, 0x6666666666666667));
+  ins_pipe(ialu_reg);
+%}
+
+instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
+%{
+  effect(DEF dst, USE src, USE_KILL rax, KILL cr);
+
+  format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
+  opcode(0xF7, 0x5); /* Opcode F7 /5 */
+  ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, KILL cr);
+
+  format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
+  opcode(0xC1, 0x7); /* C1 /7 ib */
+  ins_encode(reg_opc_imm_wide(dst, 0x3F));
+  ins_pipe(ialu_reg);
+%}
+
+instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, KILL cr);
+
+  format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
+  opcode(0xC1, 0x7); /* C1 /7 ib */
+  ins_encode(reg_opc_imm_wide(dst, 0x2));
+  ins_pipe(ialu_reg);
+%}
+
+instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
+%{
+  match(Set dst (DivL src div));
+
+  ins_cost((5+8)*100);
+  expand %{
+    rax_RegL rax;                     // Killed temp
+    rFlagsReg cr;                     // Killed
+    loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
+    mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
+    sarL_rReg_63(src, cr);            // sarq  src, 63
+    sarL_rReg_2(dst, cr);             // sarq  rdx, 2
+    subL_rReg(dst, src, cr);          // subl  rdx, src
+  %}
+%}
+
+//-----------------------------------------------------------------------------
+
+instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
+                   rFlagsReg cr)
+%{
+  match(Set rdx (ModI rax div));
+  effect(KILL rax, KILL cr);
+
+  ins_cost(300); // XXX
+  format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
+            "jne,s   normal\n\t"
+            "xorl    rdx, rdx\n\t"
+            "cmpl    $div, -1\n\t"
+            "je,s    done\n"
+    "normal: cdql\n\t"
+            "idivl   $div\n"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
+                   rFlagsReg cr)
+%{
+  match(Set rdx (ModL rax div));
+  effect(KILL rax, KILL cr);
+
+  ins_cost(300); // XXX
+  format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
+            "cmpq    rax, rdx\n\t"
+            "jne,s   normal\n\t"
+            "xorl    rdx, rdx\n\t"
+            "cmpq    $div, -1\n\t"
+            "je,s    done\n"
+    "normal: cdqq\n\t"
+            "idivq   $div\n"
+    "done:"        %}
+  opcode(0xF7, 0x7);  /* Opcode F7 /7 */
+  ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
+  ins_pipe(ialu_reg_reg_alu0);
+%}
+
+// Integer Shift Instructions
+// Shift Left by one
+instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (LShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "sall    $dst, $shift" %}
+  opcode(0xD1, 0x4); /* D1 /4 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+// Shift Left by one
+instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sall    $dst, $shift\t" %}
+  opcode(0xD1, 0x4); /* D1 /4 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Shift Left by 8-bit immediate
+instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (LShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "sall    $dst, $shift" %}
+  opcode(0xC1, 0x4); /* C1 /4 ib */
+  ins_encode(reg_opc_imm(dst, shift));
+  ins_pipe(ialu_reg);
+%}
+
+// Shift Left by 8-bit immediate
+instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sall    $dst, $shift" %}
+  opcode(0xC1, 0x4); /* C1 /4 ib */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Shift Left by variable
+instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (LShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "sall    $dst, $shift" %}
+  opcode(0xD3, 0x4); /* D3 /4 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Shift Left by variable
+instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sall    $dst, $shift" %}
+  opcode(0xD3, 0x4); /* D3 /4 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Arithmetic shift right by one
+instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (RShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "sarl    $dst, $shift" %}
+  opcode(0xD1, 0x7); /* D1 /7 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+// Arithmetic shift right by one
+instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sarl    $dst, $shift" %}
+  opcode(0xD1, 0x7); /* D1 /7 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Arithmetic Shift Right by 8-bit immediate
+instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (RShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "sarl    $dst, $shift" %}
+  opcode(0xC1, 0x7); /* C1 /7 ib */
+  ins_encode(reg_opc_imm(dst, shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Arithmetic Shift Right by 8-bit immediate
+instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sarl    $dst, $shift" %}
+  opcode(0xC1, 0x7); /* C1 /7 ib */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Arithmetic Shift Right by variable
+instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (RShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "sarl    $dst, $shift" %}
+  opcode(0xD3, 0x7); /* D3 /7 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Arithmetic Shift Right by variable
+instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sarl    $dst, $shift" %}
+  opcode(0xD3, 0x7); /* D3 /7 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Logical shift right by one
+instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (URShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "shrl    $dst, $shift" %}
+  opcode(0xD1, 0x5); /* D1 /5 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+// Logical shift right by one
+instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "shrl    $dst, $shift" %}
+  opcode(0xD1, 0x5); /* D1 /5 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Logical Shift Right by 8-bit immediate
+instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (URShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "shrl    $dst, $shift" %}
+  opcode(0xC1, 0x5); /* C1 /5 ib */
+  ins_encode(reg_opc_imm(dst, shift));
+  ins_pipe(ialu_reg);
+%}
+
+// Logical Shift Right by 8-bit immediate
+instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "shrl    $dst, $shift" %}
+  opcode(0xC1, 0x5); /* C1 /5 ib */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Logical Shift Right by variable
+instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (URShiftI dst shift));
+  effect(KILL cr);
+
+  format %{ "shrl    $dst, $shift" %}
+  opcode(0xD3, 0x5); /* D3 /5 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Logical Shift Right by variable
+instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
+  effect(KILL cr);
+
+  format %{ "shrl    $dst, $shift" %}
+  opcode(0xD3, 0x5); /* D3 /5 */
+  ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Long Shift Instructions
+// Shift Left by one
+instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (LShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "salq    $dst, $shift" %}
+  opcode(0xD1, 0x4); /* D1 /4 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+// Shift Left by one
+instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "salq    $dst, $shift" %}
+  opcode(0xD1, 0x4); /* D1 /4 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Shift Left by 8-bit immediate
+instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (LShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "salq    $dst, $shift" %}
+  opcode(0xC1, 0x4); /* C1 /4 ib */
+  ins_encode(reg_opc_imm_wide(dst, shift));
+  ins_pipe(ialu_reg);
+%}
+
+// Shift Left by 8-bit immediate
+instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "salq    $dst, $shift" %}
+  opcode(0xC1, 0x4); /* C1 /4 ib */
+  ins_encode(REX_mem_wide(dst), OpcP,
+             RM_opc_mem(secondary, dst), Con8or32(shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Shift Left by variable
+instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (LShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "salq    $dst, $shift" %}
+  opcode(0xD3, 0x4); /* D3 /4 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Shift Left by variable
+instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "salq    $dst, $shift" %}
+  opcode(0xD3, 0x4); /* D3 /4 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Arithmetic shift right by one
+instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (RShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "sarq    $dst, $shift" %}
+  opcode(0xD1, 0x7); /* D1 /7 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+// Arithmetic shift right by one
+instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sarq    $dst, $shift" %}
+  opcode(0xD1, 0x7); /* D1 /7 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Arithmetic Shift Right by 8-bit immediate
+instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (RShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "sarq    $dst, $shift" %}
+  opcode(0xC1, 0x7); /* C1 /7 ib */
+  ins_encode(reg_opc_imm_wide(dst, shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Arithmetic Shift Right by 8-bit immediate
+instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sarq    $dst, $shift" %}
+  opcode(0xC1, 0x7); /* C1 /7 ib */
+  ins_encode(REX_mem_wide(dst), OpcP,
+             RM_opc_mem(secondary, dst), Con8or32(shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Arithmetic Shift Right by variable
+instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (RShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "sarq    $dst, $shift" %}
+  opcode(0xD3, 0x7); /* D3 /7 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Arithmetic Shift Right by variable
+instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "sarq    $dst, $shift" %}
+  opcode(0xD3, 0x7); /* D3 /7 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Logical shift right by one
+instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (URShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "shrq    $dst, $shift" %}
+  opcode(0xD1, 0x5); /* D1 /5 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
+  ins_pipe(ialu_reg);
+%}
+
+// Logical shift right by one
+instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "shrq    $dst, $shift" %}
+  opcode(0xD1, 0x5); /* D1 /5 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Logical Shift Right by 8-bit immediate
+instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (URShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "shrq    $dst, $shift" %}
+  opcode(0xC1, 0x5); /* C1 /5 ib */
+  ins_encode(reg_opc_imm_wide(dst, shift));
+  ins_pipe(ialu_reg);
+%}
+
+// Logical Shift Right by 8-bit immediate
+instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "shrq    $dst, $shift" %}
+  opcode(0xC1, 0x5); /* C1 /5 ib */
+  ins_encode(REX_mem_wide(dst), OpcP,
+             RM_opc_mem(secondary, dst), Con8or32(shift));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Logical Shift Right by variable
+instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (URShiftL dst shift));
+  effect(KILL cr);
+
+  format %{ "shrq    $dst, $shift" %}
+  opcode(0xD3, 0x5); /* D3 /5 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Logical Shift Right by variable
+instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
+  effect(KILL cr);
+
+  format %{ "shrq    $dst, $shift" %}
+  opcode(0xD3, 0x5); /* D3 /5 */
+  ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
+// This idiom is used by the compiler for the i2b bytecode.
+instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
+%{
+  match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
+
+  format %{ "movsbl  $dst, $src\t# i2b" %}
+  opcode(0x0F, 0xBE);
+  ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
+// This idiom is used by the compiler the i2s bytecode.
+instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
+%{
+  match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
+
+  format %{ "movswl  $dst, $src\t# i2s" %}
+  opcode(0x0F, 0xBF);
+  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// ROL/ROR instructions
+
+// ROL expand
+instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
+  effect(KILL cr, USE_DEF dst);
+
+  format %{ "roll    $dst" %}
+  opcode(0xD1, 0x0); /* Opcode  D1 /0 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "roll    $dst, $shift" %}
+  opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
+  ins_encode( reg_opc_imm(dst, shift) );
+  ins_pipe(ialu_reg);
+%}
+
+instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "roll    $dst, $shift" %}
+  opcode(0xD3, 0x0); /* Opcode D3 /0 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+// end of ROL expand
+
+// Rotate Left by one
+instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
+%{
+  match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
+
+  expand %{
+    rolI_rReg_imm1(dst, cr);
+  %}
+%}
+
+// Rotate Left by 8-bit immediate
+instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
+%{
+  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
+  match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
+
+  expand %{
+    rolI_rReg_imm8(dst, lshift, cr);
+  %}
+%}
+
+// Rotate Left by variable
+instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
+
+  expand %{
+    rolI_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// Rotate Left by variable
+instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
+%{
+  match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
+
+  expand %{
+    rolI_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// ROR expand
+instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, KILL cr);
+
+  format %{ "rorl    $dst" %}
+  opcode(0xD1, 0x1); /* D1 /1 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "rorl    $dst, $shift" %}
+  opcode(0xC1, 0x1); /* C1 /1 ib */
+  ins_encode(reg_opc_imm(dst, shift));
+  ins_pipe(ialu_reg);
+%}
+
+instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "rorl    $dst, $shift" %}
+  opcode(0xD3, 0x1); /* D3 /1 */
+  ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+// end of ROR expand
+
+// Rotate Right by one
+instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
+%{
+  match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
+
+  expand %{
+    rorI_rReg_imm1(dst, cr);
+  %}
+%}
+
+// Rotate Right by 8-bit immediate
+instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
+%{
+  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
+  match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
+
+  expand %{
+    rorI_rReg_imm8(dst, rshift, cr);
+  %}
+%}
+
+// Rotate Right by variable
+instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
+
+  expand %{
+    rorI_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// Rotate Right by variable
+instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
+%{
+  match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
+
+  expand %{
+    rorI_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// for long rotate
+// ROL expand
+instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
+  effect(USE_DEF dst, KILL cr);
+
+  format %{ "rolq    $dst" %}
+  opcode(0xD1, 0x0); /* Opcode  D1 /0 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "rolq    $dst, $shift" %}
+  opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
+  ins_encode( reg_opc_imm_wide(dst, shift) );
+  ins_pipe(ialu_reg);
+%}
+
+instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "rolq    $dst, $shift" %}
+  opcode(0xD3, 0x0); /* Opcode D3 /0 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+// end of ROL expand
+
+// Rotate Left by one
+instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
+%{
+  match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
+
+  expand %{
+    rolL_rReg_imm1(dst, cr);
+  %}
+%}
+
+// Rotate Left by 8-bit immediate
+instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
+%{
+  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
+  match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
+
+  expand %{
+    rolL_rReg_imm8(dst, lshift, cr);
+  %}
+%}
+
+// Rotate Left by variable
+instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
+
+  expand %{
+    rolL_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// Rotate Left by variable
+instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
+%{
+  match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
+
+  expand %{
+    rolL_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// ROR expand
+instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, KILL cr);
+
+  format %{ "rorq    $dst" %}
+  opcode(0xD1, 0x1); /* D1 /1 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg);
+%}
+
+instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "rorq    $dst, $shift" %}
+  opcode(0xC1, 0x1); /* C1 /1 ib */
+  ins_encode(reg_opc_imm_wide(dst, shift));
+  ins_pipe(ialu_reg);
+%}
+
+instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE shift, KILL cr);
+
+  format %{ "rorq    $dst, $shift" %}
+  opcode(0xD3, 0x1); /* D3 /1 */
+  ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
+  ins_pipe(ialu_reg_reg);
+%}
+// end of ROR expand
+
+// Rotate Right by one
+instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
+%{
+  match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
+
+  expand %{
+    rorL_rReg_imm1(dst, cr);
+  %}
+%}
+
+// Rotate Right by 8-bit immediate
+instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
+%{
+  predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
+  match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
+
+  expand %{
+    rorL_rReg_imm8(dst, rshift, cr);
+  %}
+%}
+
+// Rotate Right by variable
+instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
+
+  expand %{
+    rorL_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// Rotate Right by variable
+instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
+%{
+  match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
+
+  expand %{
+    rorL_rReg_CL(dst, shift, cr);
+  %}
+%}
+
+// Logical Instructions
+
+// Integer Logical Instructions
+
+// And Instructions
+// And Register with Register
+instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (AndI dst src));
+  effect(KILL cr);
+
+  format %{ "andl    $dst, $src\t# int" %}
+  opcode(0x23);
+  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// And Register with Immediate 255
+instruct andI_rReg_imm255(rRegI dst, immI_255 src)
+%{
+  match(Set dst (AndI dst src));
+
+  format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
+  opcode(0x0F, 0xB6);
+  ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Immediate 255 and promote to long
+instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
+%{
+  match(Set dst (ConvI2L (AndI src mask)));
+
+  format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
+  opcode(0x0F, 0xB6);
+  ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Immediate 65535
+instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
+%{
+  match(Set dst (AndI dst src));
+
+  format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
+  opcode(0x0F, 0xB7);
+  ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Immediate 65535 and promote to long
+instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
+%{
+  match(Set dst (ConvI2L (AndI src mask)));
+
+  format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
+  opcode(0x0F, 0xB7);
+  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Immediate
+instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (AndI dst src));
+  effect(KILL cr);
+
+  format %{ "andl    $dst, $src\t# int" %}
+  opcode(0x81, 0x04); /* Opcode 81 /4 */
+  ins_encode(OpcSErm(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Memory
+instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (AndI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "andl    $dst, $src\t# int" %}
+  opcode(0x23);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// And Memory with Register
+instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "andl    $dst, $src\t# int" %}
+  opcode(0x21); /* Opcode 21 /r */
+  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// And Memory with Immediate
+instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (AndI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "andl    $dst, $src\t# int" %}
+  opcode(0x81, 0x4); /* Opcode 81 /4 id */
+  ins_encode(REX_mem(dst), OpcSE(src),
+             RM_opc_mem(secondary, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Or Instructions
+// Or Register with Register
+instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (OrI dst src));
+  effect(KILL cr);
+
+  format %{ "orl     $dst, $src\t# int" %}
+  opcode(0x0B);
+  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Or Register with Immediate
+instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (OrI dst src));
+  effect(KILL cr);
+
+  format %{ "orl     $dst, $src\t# int" %}
+  opcode(0x81, 0x01); /* Opcode 81 /1 id */
+  ins_encode(OpcSErm(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+// Or Register with Memory
+instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (OrI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "orl     $dst, $src\t# int" %}
+  opcode(0x0B);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Or Memory with Register
+instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "orl     $dst, $src\t# int" %}
+  opcode(0x09); /* Opcode 09 /r */
+  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Or Memory with Immediate
+instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (OrI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "orl     $dst, $src\t# int" %}
+  opcode(0x81, 0x1); /* Opcode 81 /1 id */
+  ins_encode(REX_mem(dst), OpcSE(src),
+             RM_opc_mem(secondary, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Xor Instructions
+// Xor Register with Register
+instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (XorI dst src));
+  effect(KILL cr);
+
+  format %{ "xorl    $dst, $src\t# int" %}
+  opcode(0x33);
+  ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Xor Register with Immediate
+instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (XorI dst src));
+  effect(KILL cr);
+
+  format %{ "xorl    $dst, $src\t# int" %}
+  opcode(0x81, 0x06); /* Opcode 81 /6 id */
+  ins_encode(OpcSErm(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+// Xor Register with Memory
+instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (XorI dst (LoadI src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "xorl    $dst, $src\t# int" %}
+  opcode(0x33);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Xor Memory with Register
+instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "xorl    $dst, $src\t# int" %}
+  opcode(0x31); /* Opcode 31 /r */
+  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Xor Memory with Immediate
+instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
+%{
+  match(Set dst (StoreI dst (XorI (LoadI dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "xorl    $dst, $src\t# int" %}
+  opcode(0x81, 0x6); /* Opcode 81 /6 id */
+  ins_encode(REX_mem(dst), OpcSE(src),
+             RM_opc_mem(secondary, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+
+// Long Logical Instructions
+
+// And Instructions
+// And Register with Register
+instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (AndL dst src));
+  effect(KILL cr);
+
+  format %{ "andq    $dst, $src\t# long" %}
+  opcode(0x23);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// And Register with Immediate 255
+instruct andL_rReg_imm255(rRegL dst, immL_255 src)
+%{
+  match(Set dst (AndL dst src));
+
+  format %{ "movzbq  $dst, $src\t# long & 0xFF" %}
+  opcode(0x0F, 0xB6);
+  ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Immediate 65535
+instruct andL_rReg_imm65535(rRegI dst, immL_65535 src)
+%{
+  match(Set dst (AndL dst src));
+
+  format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
+  opcode(0x0F, 0xB7);
+  ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Immediate
+instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (AndL dst src));
+  effect(KILL cr);
+
+  format %{ "andq    $dst, $src\t# long" %}
+  opcode(0x81, 0x04); /* Opcode 81 /4 */
+  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+// And Register with Memory
+instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (AndL dst (LoadL src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "andq    $dst, $src\t# long" %}
+  opcode(0x23);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// And Memory with Register
+instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (AndL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "andq    $dst, $src\t# long" %}
+  opcode(0x21); /* Opcode 21 /r */
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// And Memory with Immediate
+instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (AndL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "andq    $dst, $src\t# long" %}
+  opcode(0x81, 0x4); /* Opcode 81 /4 id */
+  ins_encode(REX_mem_wide(dst), OpcSE(src),
+             RM_opc_mem(secondary, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Or Instructions
+// Or Register with Register
+instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (OrL dst src));
+  effect(KILL cr);
+
+  format %{ "orq     $dst, $src\t# long" %}
+  opcode(0x0B);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Or Register with Immediate
+instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (OrL dst src));
+  effect(KILL cr);
+
+  format %{ "orq     $dst, $src\t# long" %}
+  opcode(0x81, 0x01); /* Opcode 81 /1 id */
+  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+// Or Register with Memory
+instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (OrL dst (LoadL src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "orq     $dst, $src\t# long" %}
+  opcode(0x0B);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Or Memory with Register
+instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (OrL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "orq     $dst, $src\t# long" %}
+  opcode(0x09); /* Opcode 09 /r */
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Or Memory with Immediate
+instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (OrL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "orq     $dst, $src\t# long" %}
+  opcode(0x81, 0x1); /* Opcode 81 /1 id */
+  ins_encode(REX_mem_wide(dst), OpcSE(src),
+             RM_opc_mem(secondary, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Xor Instructions
+// Xor Register with Register
+instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (XorL dst src));
+  effect(KILL cr);
+
+  format %{ "xorq    $dst, $src\t# long" %}
+  opcode(0x33);
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Xor Register with Immediate
+instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (XorL dst src));
+  effect(KILL cr);
+
+  format %{ "xorq    $dst, $src\t# long" %}
+  opcode(0x81, 0x06); /* Opcode 81 /6 id */
+  ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
+  ins_pipe(ialu_reg);
+%}
+
+// Xor Register with Memory
+instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
+%{
+  match(Set dst (XorL dst (LoadL src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "xorq    $dst, $src\t# long" %}
+  opcode(0x33);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Xor Memory with Register
+instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (XorL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(150);
+  format %{ "xorq    $dst, $src\t# long" %}
+  opcode(0x31); /* Opcode 31 /r */
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+// Xor Memory with Immediate
+instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
+%{
+  match(Set dst (StoreL dst (XorL (LoadL dst) src)));
+  effect(KILL cr);
+
+  ins_cost(125);
+  format %{ "xorq    $dst, $src\t# long" %}
+  opcode(0x81, 0x6); /* Opcode 81 /6 id */
+  ins_encode(REX_mem_wide(dst), OpcSE(src),
+             RM_opc_mem(secondary, dst), Con8or32(src));
+  ins_pipe(ialu_mem_imm);
+%}
+
+// Convert Int to Boolean
+instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  match(Set dst (Conv2B src));
+  effect(KILL cr);
+
+  format %{ "testl   $src, $src\t# ci2b\n\t"
+            "setnz   $dst\n\t"
+            "movzbl  $dst, $dst" %}
+  ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
+             setNZ_reg(dst),
+             REX_reg_breg(dst, dst), // movzbl
+             Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// Convert Pointer to Boolean
+instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
+%{
+  match(Set dst (Conv2B src));
+  effect(KILL cr);
+
+  format %{ "testq   $src, $src\t# cp2b\n\t"
+            "setnz   $dst\n\t"
+            "movzbl  $dst, $dst" %}
+  ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
+             setNZ_reg(dst),
+             REX_reg_breg(dst, dst), // movzbl
+             Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
+%{
+  match(Set dst (CmpLTMask p q));
+  effect(KILL cr);
+
+  ins_cost(400); // XXX
+  format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
+            "setlt   $dst\n\t"
+            "movzbl  $dst, $dst\n\t"
+            "negl    $dst" %}
+  ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
+             setLT_reg(dst),
+             REX_reg_breg(dst, dst), // movzbl
+             Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
+             neg_reg(dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
+%{
+  match(Set dst (CmpLTMask dst zero));
+  effect(KILL cr);
+
+  ins_cost(100); // XXX
+  format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
+  opcode(0xC1, 0x7);  /* C1 /7 ib */
+  ins_encode(reg_opc_imm(dst, 0x1F));
+  ins_pipe(ialu_reg);
+%}
+
+
+instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y,
+                         rRegI tmp,
+                         rFlagsReg cr)
+%{
+  match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
+  effect(TEMP tmp, KILL cr);
+
+  ins_cost(400); // XXX
+  format %{ "subl    $p, $q\t# cadd_cmpLTMask1\n\t"
+            "sbbl    $tmp, $tmp\n\t"
+            "andl    $tmp, $y\n\t"
+            "addl    $p, $tmp" %}
+  ins_encode(enc_cmpLTP(p, q, y, tmp));
+  ins_pipe(pipe_cmplt);
+%}
+
+/* If I enable this, I encourage spilling in the inner loop of compress.
+instruct cadd_cmpLTMask_mem( rRegI p, rRegI q, memory y, rRegI tmp, rFlagsReg cr )
+%{
+  match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
+  effect( TEMP tmp, KILL cr );
+  ins_cost(400);
+
+  format %{ "SUB    $p,$q\n\t"
+            "SBB    RCX,RCX\n\t"
+            "AND    RCX,$y\n\t"
+            "ADD    $p,RCX" %}
+  ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
+%}
+*/
+
+//---------- FP Instructions------------------------------------------------
+
+instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
+%{
+  match(Set cr (CmpF src1 src2));
+
+  ins_cost(145);
+  format %{ "ucomiss $src1, $src2\n\t"
+            "jnp,s   exit\n\t"
+            "pushfq\t# saw NaN, set CF\n\t"
+            "andq    [rsp], #0xffffff2b\n\t"
+            "popfq\n"
+    "exit:   nop\t# avoid branch to branch" %}
+  opcode(0x0F, 0x2E);
+  ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
+             cmpfp_fixup);
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
+%{
+  match(Set cr (CmpF src1 (LoadF src2)));
+
+  ins_cost(145);
+  format %{ "ucomiss $src1, $src2\n\t"
+            "jnp,s   exit\n\t"
+            "pushfq\t# saw NaN, set CF\n\t"
+            "andq    [rsp], #0xffffff2b\n\t"
+            "popfq\n"
+    "exit:   nop\t# avoid branch to branch" %}
+  opcode(0x0F, 0x2E);
+  ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
+             cmpfp_fixup);
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmpF_cc_imm(rFlagsRegU cr, regF src1, immF src2)
+%{
+  match(Set cr (CmpF src1 src2));
+
+  ins_cost(145);
+  format %{ "ucomiss $src1, $src2\n\t"
+            "jnp,s   exit\n\t"
+            "pushfq\t# saw NaN, set CF\n\t"
+            "andq    [rsp], #0xffffff2b\n\t"
+            "popfq\n"
+    "exit:   nop\t# avoid branch to branch" %}
+  opcode(0x0F, 0x2E);
+  ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
+             cmpfp_fixup);
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
+%{
+  match(Set cr (CmpD src1 src2));
+
+  ins_cost(145);
+  format %{ "ucomisd $src1, $src2\n\t"
+            "jnp,s   exit\n\t"
+            "pushfq\t# saw NaN, set CF\n\t"
+            "andq    [rsp], #0xffffff2b\n\t"
+            "popfq\n"
+    "exit:   nop\t# avoid branch to branch" %}
+  opcode(0x66, 0x0F, 0x2E);
+  ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
+             cmpfp_fixup);
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
+%{
+  match(Set cr (CmpD src1 (LoadD src2)));
+
+  ins_cost(145);
+  format %{ "ucomisd $src1, $src2\n\t"
+            "jnp,s   exit\n\t"
+            "pushfq\t# saw NaN, set CF\n\t"
+            "andq    [rsp], #0xffffff2b\n\t"
+            "popfq\n"
+    "exit:   nop\t# avoid branch to branch" %}
+  opcode(0x66, 0x0F, 0x2E);
+  ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
+             cmpfp_fixup);
+  ins_pipe(pipe_slow);
+%}
+
+instruct cmpD_cc_imm(rFlagsRegU cr, regD src1, immD src2)
+%{
+  match(Set cr (CmpD src1 src2));
+
+  ins_cost(145);
+  format %{ "ucomisd $src1, [$src2]\n\t"
+            "jnp,s   exit\n\t"
+            "pushfq\t# saw NaN, set CF\n\t"
+            "andq    [rsp], #0xffffff2b\n\t"
+            "popfq\n"
+    "exit:   nop\t# avoid branch to branch" %}
+  opcode(0x66, 0x0F, 0x2E);
+  ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
+             cmpfp_fixup);
+  ins_pipe(pipe_slow);
+%}
+
+// Compare into -1,0,1
+instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
+%{
+  match(Set dst (CmpF3 src1 src2));
+  effect(KILL cr);
+
+  ins_cost(275);
+  format %{ "ucomiss $src1, $src2\n\t"
+            "movl    $dst, #-1\n\t"
+            "jp,s    done\n\t"
+            "jb,s    done\n\t"
+            "setne   $dst\n\t"
+            "movzbl  $dst, $dst\n"
+    "done:" %}
+
+  opcode(0x0F, 0x2E);
+  ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
+             cmpfp3(dst));
+  ins_pipe(pipe_slow);
+%}
+
+// Compare into -1,0,1
+instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
+%{
+  match(Set dst (CmpF3 src1 (LoadF src2)));
+  effect(KILL cr);
+
+  ins_cost(275);
+  format %{ "ucomiss $src1, $src2\n\t"
+            "movl    $dst, #-1\n\t"
+            "jp,s    done\n\t"
+            "jb,s    done\n\t"
+            "setne   $dst\n\t"
+            "movzbl  $dst, $dst\n"
+    "done:" %}
+
+  opcode(0x0F, 0x2E);
+  ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
+             cmpfp3(dst));
+  ins_pipe(pipe_slow);
+%}
+
+// Compare into -1,0,1
+instruct cmpF_imm(rRegI dst, regF src1, immF src2, rFlagsReg cr)
+%{
+  match(Set dst (CmpF3 src1 src2));
+  effect(KILL cr);
+
+  ins_cost(275);
+  format %{ "ucomiss $src1, [$src2]\n\t"
+            "movl    $dst, #-1\n\t"
+            "jp,s    done\n\t"
+            "jb,s    done\n\t"
+            "setne   $dst\n\t"
+            "movzbl  $dst, $dst\n"
+    "done:" %}
+
+  opcode(0x0F, 0x2E);
+  ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
+             cmpfp3(dst));
+  ins_pipe(pipe_slow);
+%}
+
+// Compare into -1,0,1
+instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
+%{
+  match(Set dst (CmpD3 src1 src2));
+  effect(KILL cr);
+
+  ins_cost(275);
+  format %{ "ucomisd $src1, $src2\n\t"
+            "movl    $dst, #-1\n\t"
+            "jp,s    done\n\t"
+            "jb,s    done\n\t"
+            "setne   $dst\n\t"
+            "movzbl  $dst, $dst\n"
+    "done:" %}
+
+  opcode(0x66, 0x0F, 0x2E);
+  ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
+             cmpfp3(dst));
+  ins_pipe(pipe_slow);
+%}
+
+// Compare into -1,0,1
+instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
+%{
+  match(Set dst (CmpD3 src1 (LoadD src2)));
+  effect(KILL cr);
+
+  ins_cost(275);
+  format %{ "ucomisd $src1, $src2\n\t"
+            "movl    $dst, #-1\n\t"
+            "jp,s    done\n\t"
+            "jb,s    done\n\t"
+            "setne   $dst\n\t"
+            "movzbl  $dst, $dst\n"
+    "done:" %}
+
+  opcode(0x66, 0x0F, 0x2E);
+  ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
+             cmpfp3(dst));
+  ins_pipe(pipe_slow);
+%}
+
+// Compare into -1,0,1
+instruct cmpD_imm(rRegI dst, regD src1, immD src2, rFlagsReg cr)
+%{
+  match(Set dst (CmpD3 src1 src2));
+  effect(KILL cr);
+
+  ins_cost(275);
+  format %{ "ucomisd $src1, [$src2]\n\t"
+            "movl    $dst, #-1\n\t"
+            "jp,s    done\n\t"
+            "jb,s    done\n\t"
+            "setne   $dst\n\t"
+            "movzbl  $dst, $dst\n"
+    "done:" %}
+
+  opcode(0x66, 0x0F, 0x2E);
+  ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
+             cmpfp3(dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct addF_reg(regF dst, regF src)
+%{
+  match(Set dst (AddF dst src));
+
+  format %{ "addss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x58);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct addF_mem(regF dst, memory src)
+%{
+  match(Set dst (AddF dst (LoadF src)));
+
+  format %{ "addss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x58);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct addF_imm(regF dst, immF src)
+%{
+  match(Set dst (AddF dst src));
+
+  format %{ "addss   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x58);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct addD_reg(regD dst, regD src)
+%{
+  match(Set dst (AddD dst src));
+
+  format %{ "addsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x58);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct addD_mem(regD dst, memory src)
+%{
+  match(Set dst (AddD dst (LoadD src)));
+
+  format %{ "addsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x58);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct addD_imm(regD dst, immD src)
+%{
+  match(Set dst (AddD dst src));
+
+  format %{ "addsd   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x58);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct subF_reg(regF dst, regF src)
+%{
+  match(Set dst (SubF dst src));
+
+  format %{ "subss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x5C);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct subF_mem(regF dst, memory src)
+%{
+  match(Set dst (SubF dst (LoadF src)));
+
+  format %{ "subss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x5C);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct subF_imm(regF dst, immF src)
+%{
+  match(Set dst (SubF dst src));
+
+  format %{ "subss   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x5C);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct subD_reg(regD dst, regD src)
+%{
+  match(Set dst (SubD dst src));
+
+  format %{ "subsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x5C);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct subD_mem(regD dst, memory src)
+%{
+  match(Set dst (SubD dst (LoadD src)));
+
+  format %{ "subsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x5C);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct subD_imm(regD dst, immD src)
+%{
+  match(Set dst (SubD dst src));
+
+  format %{ "subsd   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x5C);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct mulF_reg(regF dst, regF src)
+%{
+  match(Set dst (MulF dst src));
+
+  format %{ "mulss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x59);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct mulF_mem(regF dst, memory src)
+%{
+  match(Set dst (MulF dst (LoadF src)));
+
+  format %{ "mulss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x59);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct mulF_imm(regF dst, immF src)
+%{
+  match(Set dst (MulF dst src));
+
+  format %{ "mulss   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x59);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct mulD_reg(regD dst, regD src)
+%{
+  match(Set dst (MulD dst src));
+
+  format %{ "mulsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x59);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct mulD_mem(regD dst, memory src)
+%{
+  match(Set dst (MulD dst (LoadD src)));
+
+  format %{ "mulsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x59);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct mulD_imm(regD dst, immD src)
+%{
+  match(Set dst (MulD dst src));
+
+  format %{ "mulsd   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x59);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct divF_reg(regF dst, regF src)
+%{
+  match(Set dst (DivF dst src));
+
+  format %{ "divss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x5E);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct divF_mem(regF dst, memory src)
+%{
+  match(Set dst (DivF dst (LoadF src)));
+
+  format %{ "divss   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x5E);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct divF_imm(regF dst, immF src)
+%{
+  match(Set dst (DivF dst src));
+
+  format %{ "divss   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x5E);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct divD_reg(regD dst, regD src)
+%{
+  match(Set dst (DivD dst src));
+
+  format %{ "divsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x5E);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct divD_mem(regD dst, memory src)
+%{
+  match(Set dst (DivD dst (LoadD src)));
+
+  format %{ "divsd   $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x5E);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct divD_imm(regD dst, immD src)
+%{
+  match(Set dst (DivD dst src));
+
+  format %{ "divsd   $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x5E);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct sqrtF_reg(regF dst, regF src)
+%{
+  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
+
+  format %{ "sqrtss  $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x51);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct sqrtF_mem(regF dst, memory src)
+%{
+  match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF src)))));
+
+  format %{ "sqrtss  $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x51);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct sqrtF_imm(regF dst, immF src)
+%{
+  match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
+
+  format %{ "sqrtss  $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF3, 0x0F, 0x51);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct sqrtD_reg(regD dst, regD src)
+%{
+  match(Set dst (SqrtD src));
+
+  format %{ "sqrtsd  $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x51);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct sqrtD_mem(regD dst, memory src)
+%{
+  match(Set dst (SqrtD (LoadD src)));
+
+  format %{ "sqrtsd  $dst, $src" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x51);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct sqrtD_imm(regD dst, immD src)
+%{
+  match(Set dst (SqrtD src));
+
+  format %{ "sqrtsd  $dst, [$src]" %}
+  ins_cost(150); // XXX
+  opcode(0xF2, 0x0F, 0x51);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct absF_reg(regF dst)
+%{
+  match(Set dst (AbsF dst));
+
+  format %{ "andps   $dst, [0x7fffffff]\t# abs float by sign masking" %}
+  ins_encode(absF_encoding(dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct absD_reg(regD dst)
+%{
+  match(Set dst (AbsD dst));
+
+  format %{ "andpd   $dst, [0x7fffffffffffffff]\t"
+            "# abs double by sign masking" %}
+  ins_encode(absD_encoding(dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct negF_reg(regF dst)
+%{
+  match(Set dst (NegF dst));
+
+  format %{ "xorps   $dst, [0x80000000]\t# neg float by sign flipping" %}
+  ins_encode(negF_encoding(dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct negD_reg(regD dst)
+%{
+  match(Set dst (NegD dst));
+
+  format %{ "xorpd   $dst, [0x8000000000000000]\t"
+            "# neg double by sign flipping" %}
+  ins_encode(negD_encoding(dst));
+  ins_pipe(pipe_slow);
+%}
+
+// -----------Trig and Trancendental Instructions------------------------------
+instruct cosD_reg(regD dst) %{
+  match(Set dst (CosD dst));
+
+  format %{ "dcos   $dst\n\t" %}
+  opcode(0xD9, 0xFF);
+  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct sinD_reg(regD dst) %{
+  match(Set dst (SinD dst));
+
+  format %{ "dsin   $dst\n\t" %}
+  opcode(0xD9, 0xFE);
+  ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct tanD_reg(regD dst) %{
+  match(Set dst (TanD dst));
+
+  format %{ "dtan   $dst\n\t" %}
+  ins_encode( Push_SrcXD(dst),
+              Opcode(0xD9), Opcode(0xF2),   //fptan
+              Opcode(0xDD), Opcode(0xD8),   //fstp st
+              Push_ResultXD(dst) );
+  ins_pipe( pipe_slow );
+%}
+
+instruct log10D_reg(regD dst) %{
+  // The source and result Double operands in XMM registers
+  match(Set dst (Log10D dst));
+  // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
+  // fyl2x        ; compute log_10(2) * log_2(x)
+  format %{ "fldlg2\t\t\t#Log10\n\t"
+            "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
+         %}
+   ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
+              Push_SrcXD(dst),
+              Opcode(0xD9), Opcode(0xF1),   // fyl2x
+              Push_ResultXD(dst));
+
+  ins_pipe( pipe_slow );
+%}
+
+instruct logD_reg(regD dst) %{
+  // The source and result Double operands in XMM registers
+  match(Set dst (LogD dst));
+  // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
+  // fyl2x        ; compute log_e(2) * log_2(x)
+  format %{ "fldln2\t\t\t#Log_e\n\t"
+            "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
+         %}
+  ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
+              Push_SrcXD(dst),
+              Opcode(0xD9), Opcode(0xF1),   // fyl2x
+              Push_ResultXD(dst));
+  ins_pipe( pipe_slow );
+%}
+
+
+
+//----------Arithmetic Conversion Instructions---------------------------------
+
+instruct roundFloat_nop(regF dst)
+%{
+  match(Set dst (RoundFloat dst));
+
+  ins_cost(0);
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct roundDouble_nop(regD dst)
+%{
+  match(Set dst (RoundDouble dst));
+
+  ins_cost(0);
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+instruct convF2D_reg_reg(regD dst, regF src)
+%{
+  match(Set dst (ConvF2D src));
+
+  format %{ "cvtss2sd $dst, $src" %}
+  opcode(0xF3, 0x0F, 0x5A);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convF2D_reg_mem(regD dst, memory src)
+%{
+  match(Set dst (ConvF2D (LoadF src)));
+
+  format %{ "cvtss2sd $dst, $src" %}
+  opcode(0xF3, 0x0F, 0x5A);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convD2F_reg_reg(regF dst, regD src)
+%{
+  match(Set dst (ConvD2F src));
+
+  format %{ "cvtsd2ss $dst, $src" %}
+  opcode(0xF2, 0x0F, 0x5A);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convD2F_reg_mem(regF dst, memory src)
+%{
+  match(Set dst (ConvD2F (LoadD src)));
+
+  format %{ "cvtsd2ss $dst, $src" %}
+  opcode(0xF2, 0x0F, 0x5A);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+// XXX do mem variants
+instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
+%{
+  match(Set dst (ConvF2I src));
+  effect(KILL cr);
+
+  format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
+            "cmpl    $dst, #0x80000000\n\t"
+            "jne,s   done\n\t"
+            "subq    rsp, #8\n\t"
+            "movss   [rsp], $src\n\t"
+            "call    f2i_fixup\n\t"
+            "popq    $dst\n"
+    "done:   "%}
+  opcode(0xF3, 0x0F, 0x2C);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
+             f2i_fixup(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
+%{
+  match(Set dst (ConvF2L src));
+  effect(KILL cr);
+
+  format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
+            "cmpq    $dst, [0x8000000000000000]\n\t"
+            "jne,s   done\n\t"
+            "subq    rsp, #8\n\t"
+            "movss   [rsp], $src\n\t"
+            "call    f2l_fixup\n\t"
+            "popq    $dst\n"
+    "done:   "%}
+  opcode(0xF3, 0x0F, 0x2C);
+  ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
+             f2l_fixup(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
+%{
+  match(Set dst (ConvD2I src));
+  effect(KILL cr);
+
+  format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
+            "cmpl    $dst, #0x80000000\n\t"
+            "jne,s   done\n\t"
+            "subq    rsp, #8\n\t"
+            "movsd   [rsp], $src\n\t"
+            "call    d2i_fixup\n\t"
+            "popq    $dst\n"
+    "done:   "%}
+  opcode(0xF2, 0x0F, 0x2C);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
+             d2i_fixup(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
+%{
+  match(Set dst (ConvD2L src));
+  effect(KILL cr);
+
+  format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
+            "cmpq    $dst, [0x8000000000000000]\n\t"
+            "jne,s   done\n\t"
+            "subq    rsp, #8\n\t"
+            "movsd   [rsp], $src\n\t"
+            "call    d2l_fixup\n\t"
+            "popq    $dst\n"
+    "done:   "%}
+  opcode(0xF2, 0x0F, 0x2C);
+  ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
+             d2l_fixup(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct convI2F_reg_reg(regF dst, rRegI src)
+%{
+  match(Set dst (ConvI2F src));
+
+  format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
+  opcode(0xF3, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convI2F_reg_mem(regF dst, memory src)
+%{
+  match(Set dst (ConvI2F (LoadI src)));
+
+  format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
+  opcode(0xF3, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convI2D_reg_reg(regD dst, rRegI src)
+%{
+  match(Set dst (ConvI2D src));
+
+  format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
+  opcode(0xF2, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convI2D_reg_mem(regD dst, memory src)
+%{
+  match(Set dst (ConvI2D (LoadI src)));
+
+  format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
+  opcode(0xF2, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convL2F_reg_reg(regF dst, rRegL src)
+%{
+  match(Set dst (ConvL2F src));
+
+  format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
+  opcode(0xF3, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convL2F_reg_mem(regF dst, memory src)
+%{
+  match(Set dst (ConvL2F (LoadL src)));
+
+  format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
+  opcode(0xF3, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convL2D_reg_reg(regD dst, rRegL src)
+%{
+  match(Set dst (ConvL2D src));
+
+  format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
+  opcode(0xF2, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convL2D_reg_mem(regD dst, memory src)
+%{
+  match(Set dst (ConvL2D (LoadL src)));
+
+  format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
+  opcode(0xF2, 0x0F, 0x2A);
+  ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow); // XXX
+%}
+
+instruct convI2L_reg_reg(rRegL dst, rRegI src)
+%{
+  match(Set dst (ConvI2L src));
+
+  ins_cost(125);
+  format %{ "movslq  $dst, $src\t# i2l" %}
+  opcode(0x63); // needs REX.W
+  ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
+// %{
+//   match(Set dst (ConvI2L src));
+// //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
+// //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
+//   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
+//             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
+//             ((const TypeNode*) n)->type()->is_long()->_lo ==
+//             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
+
+//   format %{ "movl    $dst, $src\t# unsigned i2l" %}
+//   ins_encode(enc_copy(dst, src));
+// //   opcode(0x63); // needs REX.W
+// //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
+//   ins_pipe(ialu_reg_reg);
+// %}
+
+instruct convI2L_reg_mem(rRegL dst, memory src)
+%{
+  match(Set dst (ConvI2L (LoadI src)));
+
+  format %{ "movslq  $dst, $src\t# i2l" %}
+  opcode(0x63); // needs REX.W
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst,src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+// Zero-extend convert int to long
+instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
+%{
+  match(Set dst (AndL (ConvI2L src) mask));
+
+  format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
+  ins_encode(enc_copy(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+// Zero-extend convert int to long
+instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
+%{
+  match(Set dst (AndL (ConvI2L (LoadI src)) mask));
+
+  format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
+%{
+  match(Set dst (AndL src mask));
+
+  format %{ "movl    $dst, $src\t# zero-extend long" %}
+  ins_encode(enc_copy_always(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+instruct convL2I_reg_reg(rRegI dst, rRegL src)
+%{
+  match(Set dst (ConvL2I src));
+
+  format %{ "movl    $dst, $src\t# l2i" %}
+  ins_encode(enc_copy_always(dst, src));
+  ins_pipe(ialu_reg_reg);
+%}
+
+
+instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
+  match(Set dst (MoveF2I src));
+  effect(DEF dst, USE src);
+
+  ins_cost(125);
+  format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
+  match(Set dst (MoveI2F src));
+  effect(DEF dst, USE src);
+
+  ins_cost(125);
+  format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
+  opcode(0xF3, 0x0F, 0x10);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
+  match(Set dst (MoveD2L src));
+  effect(DEF dst, USE src);
+
+  ins_cost(125);
+  format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
+  opcode(0x8B);
+  ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
+  ins_pipe(ialu_reg_mem);
+%}
+
+instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
+  predicate(!UseXmmLoadAndClearUpper);
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+
+  ins_cost(125);
+  format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
+  opcode(0x66, 0x0F, 0x12);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
+  predicate(UseXmmLoadAndClearUpper);
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+
+  ins_cost(125);
+  format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
+  opcode(0xF2, 0x0F, 0x10);
+  ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
+  ins_pipe(pipe_slow);
+%}
+
+
+instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
+  match(Set dst (MoveF2I src));
+  effect(DEF dst, USE src);
+
+  ins_cost(95); // XXX
+  format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
+  opcode(0xF3, 0x0F, 0x11);
+  ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
+  match(Set dst (MoveI2F src));
+  effect(DEF dst, USE src);
+
+  ins_cost(100);
+  format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe( ialu_mem_reg );
+%}
+
+instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
+  match(Set dst (MoveD2L src));
+  effect(DEF dst, USE src);
+
+  ins_cost(95); // XXX
+  format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
+  opcode(0xF2, 0x0F, 0x11);
+  ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
+  ins_pipe(pipe_slow);
+%}
+
+instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+
+  ins_cost(100);
+  format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
+  opcode(0x89);
+  ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
+  ins_pipe(ialu_mem_reg);
+%}
+
+instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
+  match(Set dst (MoveF2I src));
+  effect(DEF dst, USE src);
+  ins_cost(85);
+  format %{ "movd    $dst,$src\t# MoveF2I" %}
+  ins_encode %{ __ movdl($dst$$Register, $src$$XMMRegister); %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
+  match(Set dst (MoveD2L src));
+  effect(DEF dst, USE src);
+  ins_cost(85);
+  format %{ "movd    $dst,$src\t# MoveD2L" %}
+  ins_encode %{ __ movdq($dst$$Register, $src$$XMMRegister); %}
+  ins_pipe( pipe_slow );
+%}
+
+// The next instructions have long latency and use Int unit. Set high cost.
+instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
+  match(Set dst (MoveI2F src));
+  effect(DEF dst, USE src);
+  ins_cost(300);
+  format %{ "movd    $dst,$src\t# MoveI2F" %}
+  ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); %}
+  ins_pipe( pipe_slow );
+%}
+
+instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
+  match(Set dst (MoveL2D src));
+  effect(DEF dst, USE src);
+  ins_cost(300);
+  format %{ "movd    $dst,$src\t# MoveL2D" %}
+  ins_encode %{ __ movdq($dst$$XMMRegister, $src$$Register); %}
+  ins_pipe( pipe_slow );
+%}
+
+// Replicate scalar to packed byte (1 byte) values in xmm
+instruct Repl8B_reg(regD dst, regD src) %{
+  match(Set dst (Replicate8B src));
+  format %{ "MOVDQA  $dst,$src\n\t"
+            "PUNPCKLBW $dst,$dst\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
+  ins_encode( pshufd_8x8(dst, src));
+  ins_pipe( pipe_slow );
+%}
+
+// Replicate scalar to packed byte (1 byte) values in xmm
+instruct Repl8B_rRegI(regD dst, rRegI src) %{
+  match(Set dst (Replicate8B src));
+  format %{ "MOVD    $dst,$src\n\t"
+            "PUNPCKLBW $dst,$dst\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
+  ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
+  ins_pipe( pipe_slow );
+%}
+
+// Replicate scalar zero to packed byte (1 byte) values in xmm
+instruct Repl8B_immI0(regD dst, immI0 zero) %{
+  match(Set dst (Replicate8B zero));
+  format %{ "PXOR  $dst,$dst\t! replicate8B" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed shore (2 byte) values in xmm
+instruct Repl4S_reg(regD dst, regD src) %{
+  match(Set dst (Replicate4S src));
+  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
+  ins_encode( pshufd_4x16(dst, src));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed shore (2 byte) values in xmm
+instruct Repl4S_rRegI(regD dst, rRegI src) %{
+  match(Set dst (Replicate4S src));
+  format %{ "MOVD    $dst,$src\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
+  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar zero to packed short (2 byte) values in xmm
+instruct Repl4S_immI0(regD dst, immI0 zero) %{
+  match(Set dst (Replicate4S zero));
+  format %{ "PXOR  $dst,$dst\t! replicate4S" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed char (2 byte) values in xmm
+instruct Repl4C_reg(regD dst, regD src) %{
+  match(Set dst (Replicate4C src));
+  format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
+  ins_encode( pshufd_4x16(dst, src));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed char (2 byte) values in xmm
+instruct Repl4C_rRegI(regD dst, rRegI src) %{
+  match(Set dst (Replicate4C src));
+  format %{ "MOVD    $dst,$src\n\t"
+            "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
+  ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar zero to packed char (2 byte) values in xmm
+instruct Repl4C_immI0(regD dst, immI0 zero) %{
+  match(Set dst (Replicate4C zero));
+  format %{ "PXOR  $dst,$dst\t! replicate4C" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed integer (4 byte) values in xmm
+instruct Repl2I_reg(regD dst, regD src) %{
+  match(Set dst (Replicate2I src));
+  format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
+  ins_encode( pshufd(dst, src, 0x00));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed integer (4 byte) values in xmm
+instruct Repl2I_rRegI(regD dst, rRegI src) %{
+  match(Set dst (Replicate2I src));
+  format %{ "MOVD   $dst,$src\n\t"
+            "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
+  ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar zero to packed integer (2 byte) values in xmm
+instruct Repl2I_immI0(regD dst, immI0 zero) %{
+  match(Set dst (Replicate2I zero));
+  format %{ "PXOR  $dst,$dst\t! replicate2I" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed single precision floating point values in xmm
+instruct Repl2F_reg(regD dst, regD src) %{
+  match(Set dst (Replicate2F src));
+  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
+  ins_encode( pshufd(dst, src, 0xe0));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed single precision floating point values in xmm
+instruct Repl2F_regF(regD dst, regF src) %{
+  match(Set dst (Replicate2F src));
+  format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
+  ins_encode( pshufd(dst, src, 0xe0));
+  ins_pipe( fpu_reg_reg );
+%}
+
+// Replicate scalar to packed single precision floating point values in xmm
+instruct Repl2F_immF0(regD dst, immF0 zero) %{
+  match(Set dst (Replicate2F zero));
+  format %{ "PXOR  $dst,$dst\t! replicate2F" %}
+  ins_encode( pxor(dst, dst));
+  ins_pipe( fpu_reg_reg );
+%}
+
+
+// =======================================================================
+// fast clearing of an array
+instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
+                  rFlagsReg cr)
+%{
+  match(Set dummy (ClearArray cnt base));
+  effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
+
+  format %{ "xorl    rax, rax\t# ClearArray:\n\t"
+            "rep stosq\t# Store rax to *rdi++ while rcx--" %}
+  ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
+             Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
+  ins_pipe(pipe_slow);
+%}
+
+instruct string_compare(rdi_RegP str1, rsi_RegP str2, rax_RegI tmp1,
+                        rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr)
+%{
+  match(Set result (StrComp str1 str2));
+  effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
+  //ins_cost(300);
+
+  format %{ "String Compare $str1, $str2 -> $result    // XXX KILL RAX, RBX" %}
+  ins_encode( enc_String_Compare() );
+  ins_pipe( pipe_slow );
+%}
+
+//----------Control Flow Instructions------------------------------------------
+// Signed compare Instructions
+
+// XXX more variants!!
+instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
+%{
+  match(Set cr (CmpI op1 op2));
+  effect(DEF cr, USE op1, USE op2);
+
+  format %{ "cmpl    $op1, $op2" %}
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
+  ins_pipe(ialu_cr_reg_reg);
+%}
+
+instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
+%{
+  match(Set cr (CmpI op1 op2));
+
+  format %{ "cmpl    $op1, $op2" %}
+  opcode(0x81, 0x07); /* Opcode 81 /7 */
+  ins_encode(OpcSErm(op1, op2), Con8or32(op2));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
+%{
+  match(Set cr (CmpI op1 (LoadI op2)));
+
+  ins_cost(500); // XXX
+  format %{ "cmpl    $op1, $op2" %}
+  opcode(0x3B); /* Opcode 3B /r */
+  ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
+  ins_pipe(ialu_cr_reg_mem);
+%}
+
+instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
+%{
+  match(Set cr (CmpI src zero));
+
+  format %{ "testl   $src, $src" %}
+  opcode(0x85);
+  ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
+%{
+  match(Set cr (CmpI (AndI src con) zero));
+
+  format %{ "testl   $src, $con" %}
+  opcode(0xF7, 0x00);
+  ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
+%{
+  match(Set cr (CmpI (AndI src (LoadI mem)) zero));
+
+  format %{ "testl   $src, $mem" %}
+  opcode(0x85);
+  ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
+  ins_pipe(ialu_cr_reg_mem);
+%}
+
+// Unsigned compare Instructions; really, same as signed except they
+// produce an rFlagsRegU instead of rFlagsReg.
+instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
+%{
+  match(Set cr (CmpU op1 op2));
+
+  format %{ "cmpl    $op1, $op2\t# unsigned" %}
+  opcode(0x3B); /* Opcode 3B /r */
+  ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
+  ins_pipe(ialu_cr_reg_reg);
+%}
+
+instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
+%{
+  match(Set cr (CmpU op1 op2));
+
+  format %{ "cmpl    $op1, $op2\t# unsigned" %}
+  opcode(0x81,0x07); /* Opcode 81 /7 */
+  ins_encode(OpcSErm(op1, op2), Con8or32(op2));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
+%{
+  match(Set cr (CmpU op1 (LoadI op2)));
+
+  ins_cost(500); // XXX
+  format %{ "cmpl    $op1, $op2\t# unsigned" %}
+  opcode(0x3B); /* Opcode 3B /r */
+  ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
+  ins_pipe(ialu_cr_reg_mem);
+%}
+
+// // // Cisc-spilled version of cmpU_rReg
+// //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
+// //%{
+// //  match(Set cr (CmpU (LoadI op1) op2));
+// //
+// //  format %{ "CMPu   $op1,$op2" %}
+// //  ins_cost(500);
+// //  opcode(0x39);  /* Opcode 39 /r */
+// //  ins_encode( OpcP, reg_mem( op1, op2) );
+// //%}
+
+instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
+%{
+  match(Set cr (CmpU src zero));
+
+  format %{ "testl  $src, $src\t# unsigned" %}
+  opcode(0x85);
+  ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
+%{
+  match(Set cr (CmpP op1 op2));
+
+  format %{ "cmpq    $op1, $op2\t# ptr" %}
+  opcode(0x3B); /* Opcode 3B /r */
+  ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
+  ins_pipe(ialu_cr_reg_reg);
+%}
+
+instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
+%{
+  match(Set cr (CmpP op1 (LoadP op2)));
+
+  ins_cost(500); // XXX
+  format %{ "cmpq    $op1, $op2\t# ptr" %}
+  opcode(0x3B); /* Opcode 3B /r */
+  ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
+  ins_pipe(ialu_cr_reg_mem);
+%}
+
+// // // Cisc-spilled version of cmpP_rReg
+// //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
+// //%{
+// //  match(Set cr (CmpP (LoadP op1) op2));
+// //
+// //  format %{ "CMPu   $op1,$op2" %}
+// //  ins_cost(500);
+// //  opcode(0x39);  /* Opcode 39 /r */
+// //  ins_encode( OpcP, reg_mem( op1, op2) );
+// //%}
+
+// XXX this is generalized by compP_rReg_mem???
+// Compare raw pointer (used in out-of-heap check).
+// Only works because non-oop pointers must be raw pointers
+// and raw pointers have no anti-dependencies.
+instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
+%{
+  predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
+  match(Set cr (CmpP op1 (LoadP op2)));
+
+  format %{ "cmpq    $op1, $op2\t# raw ptr" %}
+  opcode(0x3B); /* Opcode 3B /r */
+  ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
+  ins_pipe(ialu_cr_reg_mem);
+%}
+
+// This will generate a signed flags result. This should be OK since
+// any compare to a zero should be eq/neq.
+instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
+%{
+  match(Set cr (CmpP src zero));
+
+  format %{ "testq   $src, $src\t# ptr" %}
+  opcode(0x85);
+  ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+// This will generate a signed flags result. This should be OK since
+// any compare to a zero should be eq/neq.
+instruct testP_reg_mem(rFlagsReg cr, memory op, immP0 zero)
+%{
+  match(Set cr (CmpP (LoadP op) zero));
+
+  ins_cost(500); // XXX
+  format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
+  opcode(0xF7); /* Opcode F7 /0 */
+  ins_encode(REX_mem_wide(op),
+             OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+// Yanked all unsigned pointer compare operations.
+// Pointer compares are done with CmpP which is already unsigned.
+
+instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
+%{
+  match(Set cr (CmpL op1 op2));
+
+  format %{ "cmpq    $op1, $op2" %}
+  opcode(0x3B);  /* Opcode 3B /r */
+  ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
+  ins_pipe(ialu_cr_reg_reg);
+%}
+
+instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
+%{
+  match(Set cr (CmpL op1 op2));
+
+  format %{ "cmpq    $op1, $op2" %}
+  opcode(0x81, 0x07); /* Opcode 81 /7 */
+  ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
+%{
+  match(Set cr (CmpL op1 (LoadL op2)));
+
+  ins_cost(500); // XXX
+  format %{ "cmpq    $op1, $op2" %}
+  opcode(0x3B); /* Opcode 3B /r */
+  ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
+  ins_pipe(ialu_cr_reg_mem);
+%}
+
+instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
+%{
+  match(Set cr (CmpL src zero));
+
+  format %{ "testq   $src, $src" %}
+  opcode(0x85);
+  ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
+%{
+  match(Set cr (CmpL (AndL src con) zero));
+
+  format %{ "testq   $src, $con\t# long" %}
+  opcode(0xF7, 0x00);
+  ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
+  ins_pipe(ialu_cr_reg_imm);
+%}
+
+instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
+%{
+  match(Set cr (CmpL (AndL src (LoadL mem)) zero));
+
+  format %{ "testq   $src, $mem" %}
+  opcode(0x85);
+  ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
+  ins_pipe(ialu_cr_reg_mem);
+%}
+
+// Manifest a CmpL result in an integer register.  Very painful.
+// This is the test to avoid.
+instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
+%{
+  match(Set dst (CmpL3 src1 src2));
+  effect(KILL flags);
+
+  ins_cost(275); // XXX
+  format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
+            "movl    $dst, -1\n\t"
+            "jl,s    done\n\t"
+            "setne   $dst\n\t"
+            "movzbl  $dst, $dst\n\t"
+    "done:" %}
+  ins_encode(cmpl3_flag(src1, src2, dst));
+  ins_pipe(pipe_slow);
+%}
+
+//----------Max and Min--------------------------------------------------------
+// Min Instructions
+
+instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE src, USE cr);
+
+  format %{ "cmovlgt $dst, $src\t# min" %}
+  opcode(0x0F, 0x4F);
+  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg);
+%}
+
+
+instruct minI_rReg(rRegI dst, rRegI src)
+%{
+  match(Set dst (MinI dst src));
+
+  ins_cost(200);
+  expand %{
+    rFlagsReg cr;
+    compI_rReg(cr, dst, src);
+    cmovI_reg_g(dst, src, cr);
+  %}
+%}
+
+instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
+%{
+  effect(USE_DEF dst, USE src, USE cr);
+
+  format %{ "cmovllt $dst, $src\t# max" %}
+  opcode(0x0F, 0x4C);
+  ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
+  ins_pipe(pipe_cmov_reg);
+%}
+
+
+instruct maxI_rReg(rRegI dst, rRegI src)
+%{
+  match(Set dst (MaxI dst src));
+
+  ins_cost(200);
+  expand %{
+    rFlagsReg cr;
+    compI_rReg(cr, dst, src);
+    cmovI_reg_l(dst, src, cr);
+  %}
+%}
+
+// ============================================================================
+// Branch Instructions
+
+// Jump Direct - Label defines a relative address from JMP+1
+instruct jmpDir(label labl)
+%{
+  match(Goto);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "jmp     $labl" %}
+  size(5);
+  opcode(0xE9);
+  ins_encode(OpcP, Lbl(labl));
+  ins_pipe(pipe_jmp);
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
+%{
+  match(If cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop     $labl" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode(Jcc(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
+%{
+  match(CountedLoopEnd cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop     $labl\t# loop end" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode(Jcc(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl)
+%{
+  match(CountedLoopEnd cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop,u   $labl\t# loop end" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode(Jcc(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+%}
+
+// Jump Direct Conditional - using unsigned comparison
+instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl)
+%{
+  match(If cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop,u   $labl" %}
+  size(6);
+  opcode(0x0F, 0x80);
+  ins_encode(Jcc(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+%}
+
+// ============================================================================
+// The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
+// superklass array for an instance of the superklass.  Set a hidden
+// internal cache on a hit (cache is checked with exposed code in
+// gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
+// encoding ALSO sets flags.
+
+instruct partialSubtypeCheck(rdi_RegP result,
+                             rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
+                             rFlagsReg cr)
+%{
+  match(Set result (PartialSubtypeCheck sub super));
+  effect(KILL rcx, KILL cr);
+
+  ins_cost(1100);  // slightly larger than the next version
+  format %{ "cmpq    rax, rsi\n\t"
+            "jeq,s   hit\n\t"
+            "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
+            "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
+            "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
+            "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
+            "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
+            "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
+    "hit:\n\t"
+            "xorq    $result, $result\t\t Hit: rdi zero\n\t"
+    "miss:\t" %}
+
+  opcode(0x1); // Force a XOR of RDI
+  ins_encode(enc_PartialSubtypeCheck());
+  ins_pipe(pipe_slow);
+%}
+
+instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
+                                     rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
+                                     immP0 zero,
+                                     rdi_RegP result)
+%{
+  match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
+  effect(KILL rcx, KILL result);
+
+  ins_cost(1000);
+  format %{ "cmpq    rax, rsi\n\t"
+            "jeq,s   miss\t# Actually a hit; we are done.\n\t"
+            "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
+            "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
+            "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
+            "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
+            "jne,s   miss\t\t# Missed: flags nz\n\t"
+            "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
+    "miss:\t" %}
+
+  opcode(0x0); // No need to XOR RDI
+  ins_encode(enc_PartialSubtypeCheck());
+  ins_pipe(pipe_slow);
+%}
+
+// ============================================================================
+// Branch Instructions -- short offset versions
+//
+// These instructions are used to replace jumps of a long offset (the default
+// match) with jumps of a shorter offset.  These instructions are all tagged
+// with the ins_short_branch attribute, which causes the ADLC to suppress the
+// match rules in general matching.  Instead, the ADLC generates a conversion
+// method in the MachNode which can be used to do in-place replacement of the
+// long variant with the shorter variant.  The compiler will determine if a
+// branch can be taken by the is_short_branch_offset() predicate in the machine
+// specific code section of the file.
+
+// Jump Direct - Label defines a relative address from JMP+1
+instruct jmpDir_short(label labl)
+%{
+  match(Goto);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "jmp,s   $labl" %}
+  size(2);
+  opcode(0xEB);
+  ins_encode(OpcP, LblShort(labl));
+  ins_pipe(pipe_jmp);
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl)
+%{
+  match(If cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop,s   $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode(JccShort(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl)
+%{
+  match(CountedLoopEnd cop cr);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop,s   $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode(JccShort(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - Label defines a relative address from Jcc+1
+instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl)
+%{
+  match(CountedLoopEnd cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop,us  $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode(JccShort(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// Jump Direct Conditional - using unsigned comparison
+instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl)
+%{
+  match(If cop cmp);
+  effect(USE labl);
+
+  ins_cost(300);
+  format %{ "j$cop,us  $labl" %}
+  size(2);
+  opcode(0x70);
+  ins_encode(JccShort(cop, labl));
+  ins_pipe(pipe_jcc);
+  ins_pc_relative(1);
+  ins_short_branch(1);
+%}
+
+// ============================================================================
+// inlined locking and unlocking
+
+instruct cmpFastLock(rFlagsReg cr,
+                     rRegP object, rRegP box, rax_RegI tmp, rRegP scr)
+%{
+  match(Set cr (FastLock object box));
+  effect(TEMP tmp, TEMP scr);
+
+  ins_cost(300);
+  format %{ "fastlock $object,$box,$tmp,$scr" %}
+  ins_encode(Fast_Lock(object, box, tmp, scr));
+  ins_pipe(pipe_slow);
+  ins_pc_relative(1);
+%}
+
+instruct cmpFastUnlock(rFlagsReg cr,
+                       rRegP object, rax_RegP box, rRegP tmp)
+%{
+  match(Set cr (FastUnlock object box));
+  effect(TEMP tmp);
+
+  ins_cost(300);
+  format %{ "fastunlock $object, $box, $tmp" %}
+  ins_encode(Fast_Unlock(object, box, tmp));
+  ins_pipe(pipe_slow);
+  ins_pc_relative(1);
+%}
+
+
+// ============================================================================
+// Safepoint Instructions
+instruct safePoint_poll(rFlagsReg cr)
+%{
+  match(SafePoint);
+  effect(KILL cr);
+
+  format %{ "testl   rax, [rip + #offset_to_poll_page]\t"
+            "# Safepoint: poll for GC" %}
+  size(6); // Opcode + ModRM + Disp32 == 6 bytes
+  ins_cost(125);
+  ins_encode(enc_safepoint_poll);
+  ins_pipe(ialu_reg_mem);
+%}
+
+// ============================================================================
+// Procedure Call/Return Instructions
+// Call Java Static Instruction
+// Note: If this code changes, the corresponding ret_addr_offset() and
+//       compute_padding() functions will have to be adjusted.
+instruct CallStaticJavaDirect(method meth)
+%{
+  match(CallStaticJava);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "call,static " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode(Java_Static_Call(meth), call_epilog);
+  ins_pipe(pipe_slow);
+  ins_pc_relative(1);
+  ins_alignment(4);
+%}
+
+// Call Java Dynamic Instruction
+// Note: If this code changes, the corresponding ret_addr_offset() and
+//       compute_padding() functions will have to be adjusted.
+instruct CallDynamicJavaDirect(method meth)
+%{
+  match(CallDynamicJava);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "movq    rax, #Universe::non_oop_word()\n\t"
+            "call,dynamic " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode(Java_Dynamic_Call(meth), call_epilog);
+  ins_pipe(pipe_slow);
+  ins_pc_relative(1);
+  ins_alignment(4);
+%}
+
+// Call Runtime Instruction
+instruct CallRuntimeDirect(method meth)
+%{
+  match(CallRuntime);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "call,runtime " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode(Java_To_Runtime(meth));
+  ins_pipe(pipe_slow);
+  ins_pc_relative(1);
+%}
+
+// Call runtime without safepoint
+instruct CallLeafDirect(method meth)
+%{
+  match(CallLeaf);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "call_leaf,runtime " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode(Java_To_Runtime(meth));
+  ins_pipe(pipe_slow);
+  ins_pc_relative(1);
+%}
+
+// Call runtime without safepoint
+instruct CallLeafNoFPDirect(method meth)
+%{
+  match(CallLeafNoFP);
+  effect(USE meth);
+
+  ins_cost(300);
+  format %{ "call_leaf_nofp,runtime " %}
+  opcode(0xE8); /* E8 cd */
+  ins_encode(Java_To_Runtime(meth));
+  ins_pipe(pipe_slow);
+  ins_pc_relative(1);
+%}
+
+// Return Instruction
+// Remove the return address & jump to it.
+// Notice: We always emit a nop after a ret to make sure there is room
+// for safepoint patching
+instruct Ret()
+%{
+  match(Return);
+
+  format %{ "ret" %}
+  opcode(0xC3);
+  ins_encode(OpcP);
+  ins_pipe(pipe_jmp);
+%}
+
+// Tail Call; Jump from runtime stub to Java code.
+// Also known as an 'interprocedural jump'.
+// Target of jump will eventually return to caller.
+// TailJump below removes the return address.
+instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
+%{
+  match(TailCall jump_target method_oop);
+
+  ins_cost(300);
+  format %{ "jmp     $jump_target\t# rbx holds method oop" %}
+  opcode(0xFF, 0x4); /* Opcode FF /4 */
+  ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
+  ins_pipe(pipe_jmp);
+%}
+
+// Tail Jump; remove the return address; jump to target.
+// TailCall above leaves the return address around.
+instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
+%{
+  match(TailJump jump_target ex_oop);
+
+  ins_cost(300);
+  format %{ "popq    rdx\t# pop return address\n\t"
+            "jmp     $jump_target" %}
+  opcode(0xFF, 0x4); /* Opcode FF /4 */
+  ins_encode(Opcode(0x5a), // popq rdx
+             REX_reg(jump_target), OpcP, reg_opc(jump_target));
+  ins_pipe(pipe_jmp);
+%}
+
+// Create exception oop: created by stack-crawling runtime code.
+// Created exception is now available to this handler, and is setup
+// just prior to jumping to this handler.  No code emitted.
+instruct CreateException(rax_RegP ex_oop)
+%{
+  match(Set ex_oop (CreateEx));
+
+  size(0);
+  // use the following format syntax
+  format %{ "# exception oop is in rax; no code emitted" %}
+  ins_encode();
+  ins_pipe(empty);
+%}
+
+// Rethrow exception:
+// The exception oop will come in the first argument position.
+// Then JUMP (not call) to the rethrow stub code.
+instruct RethrowException()
+%{
+  match(Rethrow);
+
+  // use the following format syntax
+  format %{ "jmp     rethrow_stub" %}
+  ins_encode(enc_rethrow);
+  ins_pipe(pipe_jmp);
+%}
+
+
+//----------PEEPHOLE RULES-----------------------------------------------------
+// These must follow all instruction definitions as they use the names
+// defined in the instructions definitions.
+//
+// peepmatch ( root_instr_name [precerding_instruction]* );
+//
+// peepconstraint %{
+// (instruction_number.operand_name relational_op instruction_number.operand_name
+//  [, ...] );
+// // instruction numbers are zero-based using left to right order in peepmatch
+//
+// peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
+// // provide an instruction_number.operand_name for each operand that appears
+// // in the replacement instruction's match rule
+//
+// ---------VM FLAGS---------------------------------------------------------
+//
+// All peephole optimizations can be turned off using -XX:-OptoPeephole
+//
+// Each peephole rule is given an identifying number starting with zero and
+// increasing by one in the order seen by the parser.  An individual peephole
+// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
+// on the command-line.
+//
+// ---------CURRENT LIMITATIONS----------------------------------------------
+//
+// Only match adjacent instructions in same basic block
+// Only equality constraints
+// Only constraints between operands, not (0.dest_reg == RAX_enc)
+// Only one replacement instruction
+//
+// ---------EXAMPLE----------------------------------------------------------
+//
+// // pertinent parts of existing instructions in architecture description
+// instruct movI(rRegI dst, rRegI src)
+// %{
+//   match(Set dst (CopyI src));
+// %}
+//
+// instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
+// %{
+//   match(Set dst (AddI dst src));
+//   effect(KILL cr);
+// %}
+//
+// // Change (inc mov) to lea
+// peephole %{
+//   // increment preceeded by register-register move
+//   peepmatch ( incI_rReg movI );
+//   // require that the destination register of the increment
+//   // match the destination register of the move
+//   peepconstraint ( 0.dst == 1.dst );
+//   // construct a replacement instruction that sets
+//   // the destination to ( move's source register + one )
+//   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
+// %}
+//
+
+// Implementation no longer uses movX instructions since
+// machine-independent system no longer uses CopyX nodes.
+//
+// peephole
+// %{
+//   peepmatch (incI_rReg movI);
+//   peepconstraint (0.dst == 1.dst);
+//   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
+// %}
+
+// peephole
+// %{
+//   peepmatch (decI_rReg movI);
+//   peepconstraint (0.dst == 1.dst);
+//   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
+// %}
+
+// peephole
+// %{
+//   peepmatch (addI_rReg_imm movI);
+//   peepconstraint (0.dst == 1.dst);
+//   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
+// %}
+
+// peephole
+// %{
+//   peepmatch (incL_rReg movL);
+//   peepconstraint (0.dst == 1.dst);
+//   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
+// %}
+
+// peephole
+// %{
+//   peepmatch (decL_rReg movL);
+//   peepconstraint (0.dst == 1.dst);
+//   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
+// %}
+
+// peephole
+// %{
+//   peepmatch (addL_rReg_imm movL);
+//   peepconstraint (0.dst == 1.dst);
+//   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
+// %}
+
+// peephole
+// %{
+//   peepmatch (addP_rReg_imm movP);
+//   peepconstraint (0.dst == 1.dst);
+//   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
+// %}
+
+// // Change load of spilled value to only a spill
+// instruct storeI(memory mem, rRegI src)
+// %{
+//   match(Set mem (StoreI mem src));
+// %}
+//
+// instruct loadI(rRegI dst, memory mem)
+// %{
+//   match(Set dst (LoadI mem));
+// %}
+//
+
+peephole
+%{
+  peepmatch (loadI storeI);
+  peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
+  peepreplace (storeI(1.mem 1.mem 1.src));
+%}
+
+peephole
+%{
+  peepmatch (loadL storeL);
+  peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
+  peepreplace (storeL(1.mem 1.mem 1.src));
+%}
+
+//----------SMARTSPILL RULES---------------------------------------------------
+// These must follow all instruction definitions as they use the names
+// defined in the instructions definitions.