diff src/share/vm/adlc/dfa.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 284d0af00d53
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/adlc/dfa.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1021 @@
+/*
+ * Copyright 1997-2004 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// DFA.CPP - Method definitions for outputting the matcher DFA from ADLC
+#include "adlc.hpp"
+
+//---------------------------Switches for debugging output---------------------
+static bool debug_output   = false;
+static bool debug_output1  = false;    // top level chain rules
+
+//---------------------------Access to internals of class State----------------
+static const char *sLeft   = "_kids[0]";
+static const char *sRight  = "_kids[1]";
+
+//---------------------------DFA productions-----------------------------------
+static const char *dfa_production           = "DFA_PRODUCTION";
+static const char *dfa_production_set_valid = "DFA_PRODUCTION__SET_VALID";
+
+//---------------------------Production State----------------------------------
+static const char *knownInvalid = "knownInvalid";    // The result does NOT have a rule defined
+static const char *knownValid   = "knownValid";      // The result must be produced by a rule
+static const char *unknownValid = "unknownValid";    // Unknown (probably due to a child or predicate constraint)
+
+static const char *noConstraint  = "noConstraint";   // No constraints seen so far
+static const char *hasConstraint = "hasConstraint";  // Within the first constraint
+
+
+//------------------------------Production------------------------------------
+// Track the status of productions for a particular result
+class Production {
+public:
+  const char *_result;
+  const char *_constraint;
+  const char *_valid;
+  Expr       *_cost_lb;            // Cost lower bound for this production
+  Expr       *_cost_ub;            // Cost upper bound for this production
+
+public:
+  Production(const char *result, const char *constraint, const char *valid);
+  ~Production() {};
+
+  void        initialize();        // reset to be an empty container
+
+  const char   *valid()  const { return _valid; }
+  Expr       *cost_lb()  const { return (Expr *)_cost_lb;  }
+  Expr       *cost_ub()  const { return (Expr *)_cost_ub;  }
+
+  void print();
+};
+
+
+//------------------------------ProductionState--------------------------------
+// Track the status of all production rule results
+// Reset for each root opcode (e.g., Op_RegI, Op_AddI, ...)
+class ProductionState {
+private:
+  Dict _production;    // map result of production, char*, to information or NULL
+  const char *_constraint;
+
+public:
+  // cmpstr does string comparisions.  hashstr computes a key.
+  ProductionState(Arena *arena) : _production(cmpstr, hashstr, arena) { initialize(); };
+  ~ProductionState() { };
+
+  void        initialize();                // reset local and dictionary state
+
+  const char *constraint();
+  void    set_constraint(const char *constraint); // currently working inside of constraints
+
+  const char *valid(const char *result);   // unknownValid, or status for this production
+  void    set_valid(const char *result);   // if not constrained, set status to knownValid
+
+  Expr           *cost_lb(const char *result);
+  Expr           *cost_ub(const char *result);
+  void    set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check);
+
+  // Return the Production associated with the result,
+  // or create a new Production and insert it into the dictionary.
+  Production *getProduction(const char *result);
+
+  void print();
+
+private:
+    // Disable public use of constructor, copy-ctor,  ...
+  ProductionState( )                         : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  };
+  ProductionState( const ProductionState & ) : _production(cmpstr, hashstr, Form::arena) {  assert( false, "NotImplemented");  }; // Deep-copy
+};
+
+
+//---------------------------Helper Functions----------------------------------
+// cost_check template:
+// 1)      if (STATE__NOT_YET_VALID(EBXREGI) || _cost[EBXREGI] > c) {
+// 2)        DFA_PRODUCTION__SET_VALID(EBXREGI, cmovI_memu_rule, c)
+// 3)      }
+//
+static void cost_check(FILE *fp, const char *spaces,
+                       const char *arrayIdx, const Expr *cost, const char *rule, ProductionState &status) {
+  bool state_check               = false;  // true if this production needs to check validity
+  bool cost_check                = false;  // true if this production needs to check cost
+  bool cost_is_above_upper_bound = false;  // true if this production is unnecessary due to high cost
+  bool cost_is_below_lower_bound = false;  // true if this production replaces a higher cost production
+
+  // Get information about this production
+  const Expr *previous_ub = status.cost_ub(arrayIdx);
+  if( !previous_ub->is_unknown() ) {
+    if( previous_ub->less_than_or_equal(cost) ) {
+      cost_is_above_upper_bound = true;
+      if( debug_output ) { fprintf(fp, "// Previous rule with lower cost than: %s === %s_rule costs %s\n", arrayIdx, rule, cost->as_string()); }
+    }
+  }
+
+  const Expr *previous_lb = status.cost_lb(arrayIdx);
+  if( !previous_lb->is_unknown() ) {
+    if( cost->less_than_or_equal(previous_lb) ) {
+      cost_is_below_lower_bound = true;
+      if( debug_output ) { fprintf(fp, "// Previous rule with higher cost\n"); }
+    }
+  }
+
+  // line 1)
+  // Check for validity and compare to other match costs
+  const char *validity_check = status.valid(arrayIdx);
+  if( validity_check == unknownValid ) {
+    fprintf(fp, "%sif (STATE__NOT_YET_VALID(%s) || _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
+    state_check = true;
+    cost_check  = true;
+  }
+  else if( validity_check == knownInvalid ) {
+    if( debug_output ) { fprintf(fp, "%s// %s KNOWN_INVALID \n",  spaces, arrayIdx); }
+  }
+  else if( validity_check == knownValid ) {
+    if( cost_is_above_upper_bound ) {
+      // production cost is known to be too high.
+      return;
+    } else if( cost_is_below_lower_bound ) {
+      // production will unconditionally overwrite a previous production that had higher cost
+    } else {
+      fprintf(fp, "%sif ( /* %s KNOWN_VALID || */ _cost[%s] > %s) {\n",  spaces, arrayIdx, arrayIdx, cost->as_string());
+      cost_check  = true;
+    }
+  }
+
+  // line 2)
+  // no need to set State vector if our state is knownValid
+  const char *production = (validity_check == knownValid) ? dfa_production : dfa_production_set_valid;
+  fprintf(fp, "%s  %s(%s, %s_rule, %s)", spaces, production, arrayIdx, rule, cost->as_string() );
+  if( validity_check == knownValid ) {
+    if( cost_is_below_lower_bound ) { fprintf(fp, "\t  // overwrites higher cost rule"); }
+   }
+   fprintf(fp, "\n");
+
+  // line 3)
+  if( cost_check || state_check ) {
+    fprintf(fp, "%s}\n", spaces);
+  }
+
+  status.set_cost_bounds(arrayIdx, cost, state_check, cost_check);
+
+  // Update ProductionState
+  if( validity_check != knownValid ) {
+    // set State vector if not previously known
+    status.set_valid(arrayIdx);
+  }
+}
+
+
+//---------------------------child_test----------------------------------------
+// Example:
+//   STATE__VALID_CHILD(_kids[0], FOO) &&  STATE__VALID_CHILD(_kids[1], BAR)
+// Macro equivalent to: _kids[0]->valid(FOO) && _kids[1]->valid(BAR)
+//
+static void child_test(FILE *fp, MatchList &mList) {
+  if( mList._lchild )           // If left child, check it
+    fprintf(fp, "STATE__VALID_CHILD(_kids[0], %s)", ArchDesc::getMachOperEnum(mList._lchild));
+  if( mList._lchild && mList._rchild )      // If both, add the "&&"
+    fprintf(fp, " && " );
+  if( mList._rchild )           // If right child, check it
+    fprintf(fp, "STATE__VALID_CHILD(_kids[1], %s)", ArchDesc::getMachOperEnum(mList._rchild));
+}
+
+//---------------------------calc_cost-----------------------------------------
+// Example:
+//           unsigned int c = _kids[0]->_cost[FOO] + _kids[1]->_cost[BAR] + 5;
+//
+Expr *ArchDesc::calc_cost(FILE *fp, const char *spaces, MatchList &mList, ProductionState &status) {
+  fprintf(fp, "%sunsigned int c = ", spaces);
+  Expr *c = new Expr("0");
+  if (mList._lchild ) {                   // If left child, add it in
+    sprintf(Expr::buffer(), "_kids[0]->_cost[%s]", ArchDesc::getMachOperEnum(mList._lchild));
+    c->add(Expr::buffer());
+}
+  if (mList._rchild) {                    // If right child, add it in
+    sprintf(Expr::buffer(), "_kids[1]->_cost[%s]", ArchDesc::getMachOperEnum(mList._rchild));
+    c->add(Expr::buffer());
+  }
+  // Add in cost of this rule
+  const char *mList_cost = mList.get_cost();
+  c->add(mList_cost, *this);
+
+  fprintf(fp, "%s;\n", c->as_string());
+  c->set_external_name("c");
+  return c;
+}
+
+
+//---------------------------gen_match-----------------------------------------
+void ArchDesc::gen_match(FILE *fp, MatchList &mList, ProductionState &status, Dict &operands_chained_from) {
+  const char *spaces4 = "    ";
+  const char *spaces6 = "      ";
+
+  fprintf(fp, "%s", spaces4);
+  // Only generate child tests if this is not a leaf node
+  bool has_child_constraints = mList._lchild || mList._rchild;
+  const char *predicate_test        = mList.get_pred();
+  if( has_child_constraints || predicate_test ) {
+    // Open the child-and-predicate-test braces
+    fprintf(fp, "if( ");
+    status.set_constraint(hasConstraint);
+    child_test(fp, mList);
+    // Only generate predicate test if one exists for this match
+    if( predicate_test ) {
+      if( has_child_constraints ) { fprintf(fp," &&\n"); }
+      fprintf(fp, "%s  %s", spaces6, predicate_test);
+    }
+    // End of outer tests
+    fprintf(fp," ) ");
+  } else {
+    // No child or predicate test needed
+    status.set_constraint(noConstraint);
+  }
+
+  // End of outer tests
+  fprintf(fp,"{\n");
+
+  // Calculate cost of this match
+  const Expr *cost = calc_cost(fp, spaces6, mList, status);
+  // Check against other match costs, and update cost & rule vectors
+  cost_check(fp, spaces6, ArchDesc::getMachOperEnum(mList._resultStr), cost, mList._opcode, status);
+
+  // If this is a member of an operand class, update the class cost & rule
+  expand_opclass( fp, spaces6, cost, mList._resultStr, status);
+
+  // Check if this rule should be used to generate the chains as well.
+  const char *rule = /* set rule to "Invalid" for internal operands */
+    strcmp(mList._opcode,mList._resultStr) ? mList._opcode : "Invalid";
+
+  // If this rule produces an operand which has associated chain rules,
+  // update the operands with the chain rule + this rule cost & this rule.
+  chain_rule(fp, spaces6, mList._resultStr, cost, rule, operands_chained_from, status);
+
+  // Close the child-and-predicate-test braces
+  fprintf(fp, "    }\n");
+
+}
+
+
+//---------------------------expand_opclass------------------------------------
+// Chain from one result_type to all other members of its operand class
+void ArchDesc::expand_opclass(FILE *fp, const char *indent, const Expr *cost,
+                              const char *result_type, ProductionState &status) {
+  const Form *form = _globalNames[result_type];
+  OperandForm *op = form ? form->is_operand() : NULL;
+  if( op && op->_classes.count() > 0 ) {
+    if( debug_output ) { fprintf(fp, "// expand operand classes for operand: %s \n", (char *)op->_ident  ); } // %%%%% Explanation
+    // Iterate through all operand classes which include this operand
+    op->_classes.reset();
+    const char *oclass;
+    // Expr *cCost = new Expr(cost);
+    while( (oclass = op->_classes.iter()) != NULL )
+      // Check against other match costs, and update cost & rule vectors
+      cost_check(fp, indent, ArchDesc::getMachOperEnum(oclass), cost, result_type, status);
+  }
+}
+
+//---------------------------chain_rule----------------------------------------
+// Starting at 'operand', check if we know how to automatically generate other results
+void ArchDesc::chain_rule(FILE *fp, const char *indent, const char *operand,
+     const Expr *icost, const char *irule, Dict &operands_chained_from,  ProductionState &status) {
+
+  // Check if we have already generated chains from this starting point
+  if( operands_chained_from[operand] != NULL ) {
+    return;
+  } else {
+    operands_chained_from.Insert( operand, operand);
+  }
+  if( debug_output ) { fprintf(fp, "// chain rules starting from: %s  and  %s \n", (char *)operand, (char *)irule); } // %%%%% Explanation
+
+  ChainList *lst = (ChainList *)_chainRules[operand];
+  if (lst) {
+    // printf("\nChain from <%s> at cost #%s\n",operand, icost ? icost : "_");
+    const char *result, *cost, *rule;
+    for(lst->reset(); (lst->iter(result,cost,rule)) == true; ) {
+      // Do not generate operands that are already available
+      if( operands_chained_from[result] != NULL ) {
+        continue;
+      } else {
+        // Compute the cost for previous match + chain_rule_cost
+        // total_cost = icost + cost;
+        Expr *total_cost = icost->clone();  // icost + cost
+        total_cost->add(cost, *this);
+
+        // Check for transitive chain rules
+        Form *form = (Form *)_globalNames[rule];
+        if ( ! form->is_instruction()) {
+          // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
+          // Check against other match costs, and update cost & rule vectors
+          const char *reduce_rule = strcmp(irule,"Invalid") ? irule : rule;
+          cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, reduce_rule, status);
+          chain_rule(fp, indent, result, total_cost, irule, operands_chained_from, status);
+        } else {
+          // printf("   result=%s cost=%s rule=%s\n", result, total_cost, rule);
+          // Check against other match costs, and update cost & rule vectors
+          cost_check(fp, indent, ArchDesc::getMachOperEnum(result), total_cost, rule, status);
+          chain_rule(fp, indent, result, total_cost, rule, operands_chained_from, status);
+        }
+
+        // If this is a member of an operand class, update class cost & rule
+        expand_opclass( fp, indent, total_cost, result, status );
+      }
+    }
+  }
+}
+
+//---------------------------prune_matchlist-----------------------------------
+// Check for duplicate entries in a matchlist, and prune out the higher cost
+// entry.
+void ArchDesc::prune_matchlist(Dict &minimize, MatchList &mlist) {
+
+}
+
+//---------------------------buildDFA------------------------------------------
+// DFA is a large switch with case statements for each ideal opcode encountered
+// in any match rule in the ad file.  Each case has a series of if's to handle
+// the match or fail decisions.  The matches test the cost function of that
+// rule, and prune any cases which are higher cost for the same reduction.
+// In order to generate the DFA we walk the table of ideal opcode/MatchList
+// pairs generated by the ADLC front end to build the contents of the case
+// statements (a series of if statements).
+void ArchDesc::buildDFA(FILE* fp) {
+  int i;
+  // Remember operands that are the starting points for chain rules.
+  // Prevent cycles by checking if we have already generated chain.
+  Dict operands_chained_from(cmpstr, hashstr, Form::arena);
+
+  // Hash inputs to match rules so that final DFA contains only one entry for
+  // each match pattern which is the low cost entry.
+  Dict minimize(cmpstr, hashstr, Form::arena);
+
+  // Track status of dfa for each resulting production
+  // reset for each ideal root.
+  ProductionState status(Form::arena);
+
+  // Output the start of the DFA method into the output file
+
+  fprintf(fp, "\n");
+  fprintf(fp, "//------------------------- Source -----------------------------------------\n");
+  // Do not put random source code into the DFA.
+  // If there are constants which need sharing, put them in "source_hpp" forms.
+  // _source.output(fp);
+  fprintf(fp, "\n");
+  fprintf(fp, "//------------------------- Attributes -------------------------------------\n");
+  _attributes.output(fp);
+  fprintf(fp, "\n");
+  fprintf(fp, "//------------------------- Macros -----------------------------------------\n");
+  // #define DFA_PRODUCTION(result, rule, cost)\
+  //   _cost[ (result) ] = cost; _rule[ (result) ] = rule;
+  fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production);
+  fprintf(fp, "  _cost[ (result) ] = cost; _rule[ (result) ] = rule;\n");
+  fprintf(fp, "\n");
+
+  // #define DFA_PRODUCTION__SET_VALID(result, rule, cost)\
+  //     DFA_PRODUCTION( (result), (rule), (cost) ); STATE__SET_VALID( (result) );
+  fprintf(fp, "#define %s(result, rule, cost)\\\n", dfa_production_set_valid);
+  fprintf(fp, "  %s( (result), (rule), (cost) ); STATE__SET_VALID( (result) );\n", dfa_production);
+  fprintf(fp, "\n");
+
+  fprintf(fp, "//------------------------- DFA --------------------------------------------\n");
+
+  fprintf(fp,
+"// DFA is a large switch with case statements for each ideal opcode encountered\n"
+"// in any match rule in the ad file.  Each case has a series of if's to handle\n"
+"// the match or fail decisions.  The matches test the cost function of that\n"
+"// rule, and prune any cases which are higher cost for the same reduction.\n"
+"// In order to generate the DFA we walk the table of ideal opcode/MatchList\n"
+"// pairs generated by the ADLC front end to build the contents of the case\n"
+"// statements (a series of if statements).\n"
+);
+  fprintf(fp, "\n");
+  fprintf(fp, "\n");
+  if (_dfa_small) {
+    // Now build the individual routines just like the switch entries in large version
+    // Iterate over the table of MatchLists, start at first valid opcode of 1
+    for (i = 1; i < _last_opcode; i++) {
+      if (_mlistab[i] == NULL) continue;
+      // Generate the routine header statement for this opcode
+      fprintf(fp, "void  State::_sub_Op_%s(const Node *n){\n", NodeClassNames[i]);
+      // Generate body. Shared for both inline and out-of-line version
+      gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
+      // End of routine
+      fprintf(fp, "}\n");
+    }
+  }
+  fprintf(fp, "bool State::DFA");
+  fprintf(fp, "(int opcode, const Node *n) {\n");
+  fprintf(fp, "  switch(opcode) {\n");
+
+  // Iterate over the table of MatchLists, start at first valid opcode of 1
+  for (i = 1; i < _last_opcode; i++) {
+    if (_mlistab[i] == NULL) continue;
+    // Generate the case statement for this opcode
+    if (_dfa_small) {
+      fprintf(fp, "  case Op_%s: { _sub_Op_%s(n);\n", NodeClassNames[i], NodeClassNames[i]);
+    } else {
+      fprintf(fp, "  case Op_%s: {\n", NodeClassNames[i]);
+      // Walk the list, compacting it
+      gen_dfa_state_body(fp, minimize, status, operands_chained_from, i);
+    }
+    // Print the "break"
+    fprintf(fp, "    break;\n");
+    fprintf(fp, "  }\n");
+  }
+
+  // Generate the default case for switch(opcode)
+  fprintf(fp, "  \n");
+  fprintf(fp, "  default:\n");
+  fprintf(fp, "    tty->print(\"Default case invoked for: \\n\");\n");
+  fprintf(fp, "    tty->print(\"   opcode  = %cd, \\\"%cs\\\"\\n\", opcode, NodeClassNames[opcode]);\n", '%', '%');
+  fprintf(fp, "    return false;\n");
+  fprintf(fp, "  }\n");
+
+  // Return status, indicating a successful match.
+  fprintf(fp, "  return true;\n");
+  // Generate the closing brace for method Matcher::DFA
+  fprintf(fp, "}\n");
+  Expr::check_buffers();
+}
+
+
+class dfa_shared_preds {
+  enum { count = 2 };
+
+  static bool        _found[count];
+  static const char* _type [count];
+  static const char* _var  [count];
+  static const char* _pred [count];
+
+  static void check_index(int index) { assert( 0 <= index && index < count, "Invalid index"); }
+
+  // Confirm that this is a separate sub-expression.
+  // Only need to catch common cases like " ... && shared ..."
+  // and avoid hazardous ones like "...->shared"
+  static bool valid_loc(char *pred, char *shared) {
+    // start of predicate is valid
+    if( shared == pred ) return true;
+
+    // Check previous character and recurse if needed
+    char *prev = shared - 1;
+    char c  = *prev;
+    switch( c ) {
+    case ' ':
+      return dfa_shared_preds::valid_loc(pred, prev);
+    case '!':
+    case '(':
+    case '<':
+    case '=':
+      return true;
+    case '|':
+      if( prev != pred && *(prev-1) == '|' ) return true;
+    case '&':
+      if( prev != pred && *(prev-1) == '&' ) return true;
+    default:
+      return false;
+    }
+
+    return false;
+  }
+
+public:
+
+  static bool        found(int index){ check_index(index); return _found[index]; }
+  static void    set_found(int index, bool val) { check_index(index); _found[index] = val; }
+  static void  reset_found() {
+    for( int i = 0; i < count; ++i ) { _found[i] = false; }
+  };
+
+  static const char* type(int index) { check_index(index); return _type[index]; }
+  static const char* var (int index) { check_index(index); return _var [index];  }
+  static const char* pred(int index) { check_index(index); return _pred[index]; }
+
+  // Check each predicate in the MatchList for common sub-expressions
+  static void cse_matchlist(MatchList *matchList) {
+    for( MatchList *mList = matchList; mList != NULL; mList = mList->get_next() ) {
+      Predicate* predicate = mList->get_pred_obj();
+      char*      pred      = mList->get_pred();
+      if( pred != NULL ) {
+        for(int index = 0; index < count; ++index ) {
+          const char *shared_pred      = dfa_shared_preds::pred(index);
+          const char *shared_pred_var  = dfa_shared_preds::var(index);
+          bool result = dfa_shared_preds::cse_predicate(predicate, shared_pred, shared_pred_var);
+          if( result ) dfa_shared_preds::set_found(index, true);
+        }
+      }
+    }
+  }
+
+  // If the Predicate contains a common sub-expression, replace the Predicate's
+  // string with one that uses the variable name.
+  static bool cse_predicate(Predicate* predicate, const char *shared_pred, const char *shared_pred_var) {
+    bool result = false;
+    char *pred = predicate->_pred;
+    if( pred != NULL ) {
+      char *new_pred = pred;
+      for( char *shared_pred_loc = strstr(new_pred, shared_pred);
+      shared_pred_loc != NULL && dfa_shared_preds::valid_loc(new_pred,shared_pred_loc);
+      shared_pred_loc = strstr(new_pred, shared_pred) ) {
+        // Do not modify the original predicate string, it is shared
+        if( new_pred == pred ) {
+          new_pred = strdup(pred);
+          shared_pred_loc = strstr(new_pred, shared_pred);
+        }
+        // Replace shared_pred with variable name
+        strncpy(shared_pred_loc, shared_pred_var, strlen(shared_pred_var));
+      }
+      // Install new predicate
+      if( new_pred != pred ) {
+        predicate->_pred = new_pred;
+        result = true;
+      }
+    }
+    return result;
+  }
+
+  // Output the hoisted common sub-expression if we found it in predicates
+  static void generate_cse(FILE *fp) {
+    for(int j = 0; j < count; ++j ) {
+      if( dfa_shared_preds::found(j) ) {
+        const char *shared_pred_type = dfa_shared_preds::type(j);
+        const char *shared_pred_var  = dfa_shared_preds::var(j);
+        const char *shared_pred      = dfa_shared_preds::pred(j);
+        fprintf(fp, "    %s %s = %s;\n", shared_pred_type, shared_pred_var, shared_pred);
+      }
+    }
+  }
+};
+// shared predicates, _var and _pred entry should be the same length
+bool         dfa_shared_preds::_found[dfa_shared_preds::count] = { false, false };
+const char*  dfa_shared_preds::_type[dfa_shared_preds::count]  = { "int", "bool" };
+const char*  dfa_shared_preds::_var [dfa_shared_preds::count]  = { "_n_get_int__", "Compile__current____select_24_bit_instr__" };
+const char*  dfa_shared_preds::_pred[dfa_shared_preds::count]  = { "n->get_int()", "Compile::current()->select_24_bit_instr()" };
+
+
+void ArchDesc::gen_dfa_state_body(FILE* fp, Dict &minimize, ProductionState &status, Dict &operands_chained_from, int i) {
+  // Start the body of each Op_XXX sub-dfa with a clean state.
+  status.initialize();
+
+  // Walk the list, compacting it
+  MatchList* mList = _mlistab[i];
+  do {
+    // Hash each entry using inputs as key and pointer as data.
+    // If there is already an entry, keep the one with lower cost, and
+    // remove the other one from the list.
+    prune_matchlist(minimize, *mList);
+    // Iterate
+    mList = mList->get_next();
+  } while(mList != NULL);
+
+  // Hoist previously specified common sub-expressions out of predicates
+  dfa_shared_preds::reset_found();
+  dfa_shared_preds::cse_matchlist(_mlistab[i]);
+  dfa_shared_preds::generate_cse(fp);
+
+  mList = _mlistab[i];
+
+  // Walk the list again, generating code
+  do {
+    // Each match can generate its own chains
+    operands_chained_from.Clear();
+    gen_match(fp, *mList, status, operands_chained_from);
+    mList = mList->get_next();
+  } while(mList != NULL);
+  // Fill in any chain rules which add instructions
+  // These can generate their own chains as well.
+  operands_chained_from.Clear();  //
+  if( debug_output1 ) { fprintf(fp, "// top level chain rules for: %s \n", (char *)NodeClassNames[i]); } // %%%%% Explanation
+  const Expr *zeroCost = new Expr("0");
+  chain_rule(fp, "   ", (char *)NodeClassNames[i], zeroCost, "Invalid",
+             operands_chained_from, status);
+}
+
+
+
+//------------------------------Expr------------------------------------------
+Expr *Expr::_unknown_expr = NULL;
+char  Expr::string_buffer[STRING_BUFFER_LENGTH];
+char  Expr::external_buffer[STRING_BUFFER_LENGTH];
+bool  Expr::_init_buffers = Expr::init_buffers();
+
+Expr::Expr() {
+  _external_name = NULL;
+  _expr          = "Invalid_Expr";
+  _min_value     = Expr::Max;
+  _max_value     = Expr::Zero;
+}
+Expr::Expr(const char *cost) {
+  _external_name = NULL;
+
+  int intval = 0;
+  if( cost == NULL ) {
+    _expr = "0";
+    _min_value = Expr::Zero;
+    _max_value = Expr::Zero;
+  }
+  else if( ADLParser::is_int_token(cost, intval) ) {
+    _expr = cost;
+    _min_value = intval;
+    _max_value = intval;
+  }
+  else {
+    assert( strcmp(cost,"0") != 0, "Recognize string zero as an int");
+    _expr = cost;
+    _min_value = Expr::Zero;
+    _max_value = Expr::Max;
+  }
+}
+
+Expr::Expr(const char *name, const char *expression, int min_value, int max_value) {
+  _external_name = name;
+  _expr          = expression ? expression : name;
+  _min_value     = min_value;
+  _max_value     = max_value;
+  assert(_min_value >= 0 && _min_value <= Expr::Max, "value out of range");
+  assert(_max_value >= 0 && _max_value <= Expr::Max, "value out of range");
+}
+
+Expr *Expr::clone() const {
+  Expr *cost = new Expr();
+  cost->_external_name = _external_name;
+  cost->_expr          = _expr;
+  cost->_min_value     = _min_value;
+  cost->_max_value     = _max_value;
+
+  return cost;
+}
+
+void Expr::add(const Expr *c) {
+  // Do not update fields until all computation is complete
+  const char *external  = compute_external(this, c);
+  const char *expr      = compute_expr(this, c);
+  int         min_value = compute_min (this, c);
+  int         max_value = compute_max (this, c);
+
+  _external_name = external;
+  _expr      = expr;
+  _min_value = min_value;
+  _max_value = max_value;
+}
+
+void Expr::add(const char *c) {
+  Expr *cost = new Expr(c);
+  add(cost);
+}
+
+void Expr::add(const char *c, ArchDesc &AD) {
+  const Expr *e = AD.globalDefs()[c];
+  if( e != NULL ) {
+    // use the value of 'c' defined in <arch>.ad
+    add(e);
+  } else {
+    Expr *cost = new Expr(c);
+    add(cost);
+  }
+}
+
+const char *Expr::compute_external(const Expr *c1, const Expr *c2) {
+  const char * result = NULL;
+
+  // Preserve use of external name which has a zero value
+  if( c1->_external_name != NULL ) {
+    sprintf( string_buffer, "%s", c1->as_string());
+    if( !c2->is_zero() ) {
+      strcat( string_buffer, "+");
+      strcat( string_buffer, c2->as_string());
+    }
+    result = strdup(string_buffer);
+  }
+  else if( c2->_external_name != NULL ) {
+    if( !c1->is_zero() ) {
+      sprintf( string_buffer, "%s", c1->as_string());
+      strcat( string_buffer, " + ");
+    } else {
+      string_buffer[0] = '\0';
+    }
+    strcat( string_buffer, c2->_external_name );
+    result = strdup(string_buffer);
+  }
+  return result;
+}
+
+const char *Expr::compute_expr(const Expr *c1, const Expr *c2) {
+  if( !c1->is_zero() ) {
+    sprintf( string_buffer, "%s", c1->_expr);
+    if( !c2->is_zero() ) {
+      strcat( string_buffer, "+");
+      strcat( string_buffer, c2->_expr);
+    }
+  }
+  else if( !c2->is_zero() ) {
+    sprintf( string_buffer, "%s", c2->_expr);
+  }
+  else {
+    sprintf( string_buffer, "0");
+  }
+  char *cost = strdup(string_buffer);
+
+  return cost;
+}
+
+int Expr::compute_min(const Expr *c1, const Expr *c2) {
+  int result = c1->_min_value + c2->_min_value;
+  assert( result >= 0, "Invalid cost computation");
+
+  return result;
+}
+
+int Expr::compute_max(const Expr *c1, const Expr *c2) {
+  int result = c1->_max_value + c2->_max_value;
+  if( result < 0 ) {  // check for overflow
+    result = Expr::Max;
+  }
+
+  return result;
+}
+
+void Expr::print() const {
+  if( _external_name != NULL ) {
+    printf("  %s == (%s) === [%d, %d]\n", _external_name, _expr, _min_value, _max_value);
+  } else {
+    printf("  %s === [%d, %d]\n", _expr, _min_value, _max_value);
+  }
+}
+
+void Expr::print_define(FILE *fp) const {
+  assert( _external_name != NULL, "definition does not have a name");
+  assert( _min_value == _max_value, "Expect user definitions to have constant value");
+  fprintf(fp, "#define  %s  (%s)  \n", _external_name, _expr);
+  fprintf(fp, "// value == %d \n", _min_value);
+}
+
+void Expr::print_assert(FILE *fp) const {
+  assert( _external_name != NULL, "definition does not have a name");
+  assert( _min_value == _max_value, "Expect user definitions to have constant value");
+  fprintf(fp, "  assert( %s == %d, \"Expect (%s) to equal %d\");\n", _external_name, _min_value, _expr, _min_value);
+}
+
+Expr *Expr::get_unknown() {
+  if( Expr::_unknown_expr == NULL ) {
+    Expr::_unknown_expr = new Expr();
+  }
+
+  return Expr::_unknown_expr;
+}
+
+bool Expr::init_buffers() {
+  // Fill buffers with 0
+  for( int i = 0; i < STRING_BUFFER_LENGTH; ++i ) {
+    external_buffer[i] = '\0';
+    string_buffer[i]   = '\0';
+  }
+
+  return true;
+}
+
+bool Expr::check_buffers() {
+  // returns 'true' if buffer use may have overflowed
+  bool ok = true;
+  for( int i = STRING_BUFFER_LENGTH - 100; i < STRING_BUFFER_LENGTH; ++i) {
+    if( external_buffer[i] != '\0' || string_buffer[i]   != '\0' ) {
+      ok = false;
+      assert( false, "Expr:: Buffer overflow");
+    }
+  }
+
+  return ok;
+}
+
+
+//------------------------------ExprDict---------------------------------------
+// Constructor
+ExprDict::ExprDict( CmpKey cmp, Hash hash, Arena *arena )
+  : _expr(cmp, hash, arena), _defines()  {
+}
+ExprDict::~ExprDict() {
+}
+
+// Return # of name-Expr pairs in dict
+int ExprDict::Size(void) const {
+  return _expr.Size();
+}
+
+// define inserts the given key-value pair into the dictionary,
+// and records the name in order for later output, ...
+const Expr  *ExprDict::define(const char *name, Expr *expr) {
+  const Expr *old_expr = (*this)[name];
+  assert(old_expr == NULL, "Implementation does not support redefinition");
+
+  _expr.Insert(name, expr);
+  _defines.addName(name);
+
+  return old_expr;
+}
+
+// Insert inserts the given key-value pair into the dictionary.  The prior
+// value of the key is returned; NULL if the key was not previously defined.
+const Expr  *ExprDict::Insert(const char *name, Expr *expr) {
+  return (Expr*)_expr.Insert((void*)name, (void*)expr);
+}
+
+// Finds the value of a given key; or NULL if not found.
+// The dictionary is NOT changed.
+const Expr  *ExprDict::operator [](const char *name) const {
+  return (Expr*)_expr[name];
+}
+
+void ExprDict::print_defines(FILE *fp) {
+  fprintf(fp, "\n");
+  const char *name = NULL;
+  for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
+    const Expr *expr = (const Expr*)_expr[name];
+    assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
+    expr->print_define(fp);
+  }
+}
+void ExprDict::print_asserts(FILE *fp) {
+  fprintf(fp, "\n");
+  fprintf(fp, "  // Following assertions generated from definition section\n");
+  const char *name = NULL;
+  for( _defines.reset(); (name = _defines.iter()) != NULL; ) {
+    const Expr *expr = (const Expr*)_expr[name];
+    assert( expr != NULL, "name in ExprDict without matching Expr in dictionary");
+    expr->print_assert(fp);
+  }
+}
+
+// Print out the dictionary contents as key-value pairs
+static void dumpekey(const void* key)  { fprintf(stdout, "%s", key); }
+static void dumpexpr(const void* expr) { fflush(stdout); ((Expr*)expr)->print(); }
+
+void ExprDict::dump() {
+  _expr.print(dumpekey, dumpexpr);
+}
+
+
+//------------------------------ExprDict::private------------------------------
+// Disable public use of constructor, copy-ctor, operator =, operator ==
+ExprDict::ExprDict( ) : _expr(cmpkey,hashkey), _defines()  {
+  assert( false, "NotImplemented");
+}
+ExprDict::ExprDict( const ExprDict & ) : _expr(cmpkey,hashkey), _defines() {
+  assert( false, "NotImplemented");
+}
+ExprDict &ExprDict::operator =( const ExprDict &rhs) {
+  assert( false, "NotImplemented");
+  _expr = rhs._expr;
+  return *this;
+}
+// == compares two dictionaries; they must have the same keys (their keys
+// must match using CmpKey) and they must have the same values (pointer
+// comparison).  If so 1 is returned, if not 0 is returned.
+bool ExprDict::operator ==(const ExprDict &d) const {
+  assert( false, "NotImplemented");
+  return false;
+}
+
+
+//------------------------------Production-------------------------------------
+Production::Production(const char *result, const char *constraint, const char *valid) {
+  initialize();
+  _result     = result;
+  _constraint = constraint;
+  _valid      = valid;
+}
+
+void Production::initialize() {
+  _result     = NULL;
+  _constraint = NULL;
+  _valid      = knownInvalid;
+  _cost_lb    = Expr::get_unknown();
+  _cost_ub    = Expr::get_unknown();
+}
+
+void Production::print() {
+  printf("%s", (_result     == NULL ? "NULL" : _result ) );
+  printf("%s", (_constraint == NULL ? "NULL" : _constraint ) );
+  printf("%s", (_valid      == NULL ? "NULL" : _valid ) );
+  _cost_lb->print();
+  _cost_ub->print();
+}
+
+
+//------------------------------ProductionState--------------------------------
+void ProductionState::initialize() {
+  _constraint = noConstraint;
+
+  // reset each Production currently in the dictionary
+  DictI iter( &_production );
+  const void *x, *y = NULL;
+  for( ; iter.test(); ++iter) {
+    x = iter._key;
+    y = iter._value;
+    Production *p = (Production*)y;
+    if( p != NULL ) {
+      p->initialize();
+    }
+  }
+}
+
+Production *ProductionState::getProduction(const char *result) {
+  Production *p = (Production *)_production[result];
+  if( p == NULL ) {
+    p = new Production(result, _constraint, knownInvalid);
+    _production.Insert(result, p);
+  }
+
+  return p;
+}
+
+void ProductionState::set_constraint(const char *constraint) {
+  _constraint = constraint;
+}
+
+const char *ProductionState::valid(const char *result) {
+  return getProduction(result)->valid();
+}
+
+void ProductionState::set_valid(const char *result) {
+  Production *p = getProduction(result);
+
+  // Update valid as allowed by current constraints
+  if( _constraint == noConstraint ) {
+    p->_valid = knownValid;
+  } else {
+    if( p->_valid != knownValid ) {
+      p->_valid = unknownValid;
+    }
+  }
+}
+
+Expr *ProductionState::cost_lb(const char *result) {
+  return getProduction(result)->cost_lb();
+}
+
+Expr *ProductionState::cost_ub(const char *result) {
+  return getProduction(result)->cost_ub();
+}
+
+void ProductionState::set_cost_bounds(const char *result, const Expr *cost, bool has_state_check, bool has_cost_check) {
+  Production *p = getProduction(result);
+
+  if( p->_valid == knownInvalid ) {
+    // Our cost bounds are not unknown, just not defined.
+    p->_cost_lb = cost->clone();
+    p->_cost_ub = cost->clone();
+  } else if (has_state_check || _constraint != noConstraint) {
+    // The production is protected by a condition, so
+    // the cost bounds may expand.
+    // _cost_lb = min(cost, _cost_lb)
+    if( cost->less_than_or_equal(p->_cost_lb) ) {
+      p->_cost_lb = cost->clone();
+    }
+    // _cost_ub = max(cost, _cost_ub)
+    if( p->_cost_ub->less_than_or_equal(cost) ) {
+      p->_cost_ub = cost->clone();
+    }
+  } else if (has_cost_check) {
+    // The production has no condition check, but does
+    // have a cost check that could reduce the upper
+    // and/or lower bound.
+    // _cost_lb = min(cost, _cost_lb)
+    if( cost->less_than_or_equal(p->_cost_lb) ) {
+      p->_cost_lb = cost->clone();
+    }
+    // _cost_ub = min(cost, _cost_ub)
+    if( cost->less_than_or_equal(p->_cost_ub) ) {
+      p->_cost_ub = cost->clone();
+    }
+  } else {
+    // The costs are unconditionally set.
+    p->_cost_lb = cost->clone();
+    p->_cost_ub = cost->clone();
+  }
+
+}
+
+// Print out the dictionary contents as key-value pairs
+static void print_key (const void* key)              { fprintf(stdout, "%s", key); }
+static void print_production(const void* production) { fflush(stdout); ((Production*)production)->print(); }
+
+void ProductionState::print() {
+  _production.print(print_key, print_production);
+}