diff src/share/vm/asm/codeBuffer.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children c7c777385a15
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/asm/codeBuffer.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1023 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_codeBuffer.cpp.incl"
+
+// The structure of a CodeSection:
+//
+//    _start ->           +----------------+
+//                        | machine code...|
+//    _end ->             |----------------|
+//                        |                |
+//                        |    (empty)     |
+//                        |                |
+//                        |                |
+//                        +----------------+
+//    _limit ->           |                |
+//
+//    _locs_start ->      +----------------+
+//                        |reloc records...|
+//                        |----------------|
+//    _locs_end ->        |                |
+//                        |                |
+//                        |    (empty)     |
+//                        |                |
+//                        |                |
+//                        +----------------+
+//    _locs_limit ->      |                |
+// The _end (resp. _limit) pointer refers to the first
+// unused (resp. unallocated) byte.
+
+// The structure of the CodeBuffer while code is being accumulated:
+//
+//    _total_start ->    \
+//    _insts._start ->              +----------------+
+//                                  |                |
+//                                  |     Code       |
+//                                  |                |
+//    _stubs._start ->              |----------------|
+//                                  |                |
+//                                  |    Stubs       | (also handlers for deopt/exception)
+//                                  |                |
+//    _consts._start ->             |----------------|
+//                                  |                |
+//                                  |   Constants    |
+//                                  |                |
+//                                  +----------------+
+//    + _total_size ->              |                |
+//
+// When the code and relocations are copied to the code cache,
+// the empty parts of each section are removed, and everything
+// is copied into contiguous locations.
+
+typedef CodeBuffer::csize_t csize_t;  // file-local definition
+
+// external buffer, in a predefined CodeBlob or other buffer area
+// Important: The code_start must be taken exactly, and not realigned.
+CodeBuffer::CodeBuffer(address code_start, csize_t code_size) {
+  assert(code_start != NULL, "sanity");
+  initialize_misc("static buffer");
+  initialize(code_start, code_size);
+  assert(verify_section_allocation(), "initial use of buffer OK");
+}
+
+void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
+  // Compute maximal alignment.
+  int align = _insts.alignment();
+  // Always allow for empty slop around each section.
+  int slop = (int) CodeSection::end_slop();
+
+  assert(blob() == NULL, "only once");
+  set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
+  if (blob() == NULL) {
+    // The assembler constructor will throw a fatal on an empty CodeBuffer.
+    return;  // caller must test this
+  }
+
+  // Set up various pointers into the blob.
+  initialize(_total_start, _total_size);
+
+  assert((uintptr_t)code_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
+
+  pd_initialize();
+
+  if (locs_size != 0) {
+    _insts.initialize_locs(locs_size / sizeof(relocInfo));
+  }
+
+  assert(verify_section_allocation(), "initial use of blob is OK");
+}
+
+
+CodeBuffer::~CodeBuffer() {
+  // If we allocate our code buffer from the CodeCache
+  // via a BufferBlob, and it's not permanent, then
+  // free the BufferBlob.
+  // The rest of the memory will be freed when the ResourceObj
+  // is released.
+  assert(verify_section_allocation(), "final storage configuration still OK");
+  for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
+    // Previous incarnations of this buffer are held live, so that internal
+    // addresses constructed before expansions will not be confused.
+    cb->free_blob();
+  }
+#ifdef ASSERT
+  Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
+#endif
+}
+
+void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
+  assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
+  DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
+  _oop_recorder = r;
+}
+
+void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
+  assert(cs != &_insts, "insts is the memory provider, not the consumer");
+#ifdef ASSERT
+  for (int n = (int)SECT_INSTS+1; n < (int)SECT_LIMIT; n++) {
+    CodeSection* prevCS = code_section(n);
+    if (prevCS == cs)  break;
+    assert(!prevCS->is_allocated(), "section allocation must be in reverse order");
+  }
+#endif
+  csize_t slop = CodeSection::end_slop();  // margin between sections
+  int align = cs->alignment();
+  assert(is_power_of_2(align), "sanity");
+  address start  = _insts._start;
+  address limit  = _insts._limit;
+  address middle = limit - size;
+  middle -= (intptr_t)middle & (align-1);  // align the division point downward
+  guarantee(middle - slop > start, "need enough space to divide up");
+  _insts._limit = middle - slop;  // subtract desired space, plus slop
+  cs->initialize(middle, limit - middle);
+  assert(cs->start() == middle, "sanity");
+  assert(cs->limit() == limit,  "sanity");
+  // give it some relocations to start with, if the main section has them
+  if (_insts.has_locs())  cs->initialize_locs(1);
+}
+
+void CodeBuffer::freeze_section(CodeSection* cs) {
+  CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
+  csize_t frozen_size = cs->size();
+  if (next_cs != NULL) {
+    frozen_size = next_cs->align_at_start(frozen_size);
+  }
+  address old_limit = cs->limit();
+  address new_limit = cs->start() + frozen_size;
+  relocInfo* old_locs_limit = cs->locs_limit();
+  relocInfo* new_locs_limit = cs->locs_end();
+  // Patch the limits.
+  cs->_limit = new_limit;
+  cs->_locs_limit = new_locs_limit;
+  cs->_frozen = true;
+  if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
+    // Give remaining buffer space to the following section.
+    next_cs->initialize(new_limit, old_limit - new_limit);
+    next_cs->initialize_shared_locs(new_locs_limit,
+                                    old_locs_limit - new_locs_limit);
+  }
+}
+
+void CodeBuffer::set_blob(BufferBlob* blob) {
+  _blob = blob;
+  if (blob != NULL) {
+    address start = blob->instructions_begin();
+    address end   = blob->instructions_end();
+    // Round up the starting address.
+    int align = _insts.alignment();
+    start += (-(intptr_t)start) & (align-1);
+    _total_start = start;
+    _total_size  = end - start;
+  } else {
+    #ifdef ASSERT
+    // Clean out dangling pointers.
+    _total_start    = badAddress;
+    _insts._start   = _insts._end   = badAddress;
+    _stubs._start   = _stubs._end   = badAddress;
+    _consts._start  = _consts._end  = badAddress;
+    #endif //ASSERT
+  }
+}
+
+void CodeBuffer::free_blob() {
+  if (_blob != NULL) {
+    BufferBlob::free(_blob);
+    set_blob(NULL);
+  }
+}
+
+const char* CodeBuffer::code_section_name(int n) {
+#ifdef PRODUCT
+  return NULL;
+#else //PRODUCT
+  switch (n) {
+  case SECT_INSTS:             return "insts";
+  case SECT_STUBS:             return "stubs";
+  case SECT_CONSTS:            return "consts";
+  default:                     return NULL;
+  }
+#endif //PRODUCT
+}
+
+int CodeBuffer::section_index_of(address addr) const {
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    const CodeSection* cs = code_section(n);
+    if (cs->allocates(addr))  return n;
+  }
+  return SECT_NONE;
+}
+
+int CodeBuffer::locator(address addr) const {
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    const CodeSection* cs = code_section(n);
+    if (cs->allocates(addr)) {
+      return locator(addr - cs->start(), n);
+    }
+  }
+  return -1;
+}
+
+address CodeBuffer::locator_address(int locator) const {
+  if (locator < 0)  return NULL;
+  address start = code_section(locator_sect(locator))->start();
+  return start + locator_pos(locator);
+}
+
+address CodeBuffer::decode_begin() {
+  address begin = _insts.start();
+  if (_decode_begin != NULL && _decode_begin > begin)
+    begin = _decode_begin;
+  return begin;
+}
+
+
+GrowableArray<int>* CodeBuffer::create_patch_overflow() {
+  if (_overflow_arena == NULL) {
+    _overflow_arena = new Arena();
+  }
+  return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
+}
+
+
+// Helper function for managing labels and their target addresses.
+// Returns a sensible address, and if it is not the label's final
+// address, notes the dependency (at 'branch_pc') on the label.
+address CodeSection::target(Label& L, address branch_pc) {
+  if (L.is_bound()) {
+    int loc = L.loc();
+    if (index() == CodeBuffer::locator_sect(loc)) {
+      return start() + CodeBuffer::locator_pos(loc);
+    } else {
+      return outer()->locator_address(loc);
+    }
+  } else {
+    assert(allocates2(branch_pc), "sanity");
+    address base = start();
+    int patch_loc = CodeBuffer::locator(branch_pc - base, index());
+    L.add_patch_at(outer(), patch_loc);
+
+    // Need to return a pc, doesn't matter what it is since it will be
+    // replaced during resolution later.
+    // (Don't return NULL or badAddress, since branches shouldn't overflow.)
+    return base;
+  }
+}
+
+void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
+  Relocation* reloc = spec.reloc();
+  relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
+  if (rtype == relocInfo::none)  return;
+
+  // The assertion below has been adjusted, to also work for
+  // relocation for fixup.  Sometimes we want to put relocation
+  // information for the next instruction, since it will be patched
+  // with a call.
+  assert(start() <= at && at <= end()+1,
+         "cannot relocate data outside code boundaries");
+
+  if (!has_locs()) {
+    // no space for relocation information provided => code cannot be
+    // relocated.  Make sure that relocate is only called with rtypes
+    // that can be ignored for this kind of code.
+    assert(rtype == relocInfo::none              ||
+           rtype == relocInfo::runtime_call_type ||
+           rtype == relocInfo::internal_word_type||
+           rtype == relocInfo::section_word_type ||
+           rtype == relocInfo::external_word_type,
+           "code needs relocation information");
+    // leave behind an indication that we attempted a relocation
+    DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
+    return;
+  }
+
+  // Advance the point, noting the offset we'll have to record.
+  csize_t offset = at - locs_point();
+  set_locs_point(at);
+
+  // Test for a couple of overflow conditions; maybe expand the buffer.
+  relocInfo* end = locs_end();
+  relocInfo* req = end + relocInfo::length_limit;
+  // Check for (potential) overflow
+  if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
+    req += (uint)offset / (uint)relocInfo::offset_limit();
+    if (req >= locs_limit()) {
+      // Allocate or reallocate.
+      expand_locs(locs_count() + (req - end));
+      // reload pointer
+      end = locs_end();
+    }
+  }
+
+  // If the offset is giant, emit filler relocs, of type 'none', but
+  // each carrying the largest possible offset, to advance the locs_point.
+  while (offset >= relocInfo::offset_limit()) {
+    assert(end < locs_limit(), "adjust previous paragraph of code");
+    *end++ = filler_relocInfo();
+    offset -= filler_relocInfo().addr_offset();
+  }
+
+  // If it's a simple reloc with no data, we'll just write (rtype | offset).
+  (*end) = relocInfo(rtype, offset, format);
+
+  // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
+  end->initialize(this, reloc);
+}
+
+void CodeSection::initialize_locs(int locs_capacity) {
+  assert(_locs_start == NULL, "only one locs init step, please");
+  // Apply a priori lower limits to relocation size:
+  csize_t min_locs = MAX2(size() / 16, (csize_t)4);
+  if (locs_capacity < min_locs)  locs_capacity = min_locs;
+  relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
+  _locs_start    = locs_start;
+  _locs_end      = locs_start;
+  _locs_limit    = locs_start + locs_capacity;
+  _locs_own      = true;
+}
+
+void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
+  assert(_locs_start == NULL, "do this before locs are allocated");
+  // Internal invariant:  locs buf must be fully aligned.
+  // See copy_relocations_to() below.
+  while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
+    ++buf; --length;
+  }
+  if (length > 0) {
+    _locs_start = buf;
+    _locs_end   = buf;
+    _locs_limit = buf + length;
+    _locs_own   = false;
+  }
+}
+
+void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
+  int lcount = source_cs->locs_count();
+  if (lcount != 0) {
+    initialize_shared_locs(source_cs->locs_start(), lcount);
+    _locs_end = _locs_limit = _locs_start + lcount;
+    assert(is_allocated(), "must have copied code already");
+    set_locs_point(start() + source_cs->locs_point_off());
+  }
+  assert(this->locs_count() == source_cs->locs_count(), "sanity");
+}
+
+void CodeSection::expand_locs(int new_capacity) {
+  if (_locs_start == NULL) {
+    initialize_locs(new_capacity);
+    return;
+  } else {
+    int old_count    = locs_count();
+    int old_capacity = locs_capacity();
+    if (new_capacity < old_capacity * 2)
+      new_capacity = old_capacity * 2;
+    relocInfo* locs_start;
+    if (_locs_own) {
+      locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
+    } else {
+      locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
+      Copy::conjoint_bytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
+      _locs_own = true;
+    }
+    _locs_start    = locs_start;
+    _locs_end      = locs_start + old_count;
+    _locs_limit    = locs_start + new_capacity;
+  }
+}
+
+
+/// Support for emitting the code to its final location.
+/// The pattern is the same for all functions.
+/// We iterate over all the sections, padding each to alignment.
+
+csize_t CodeBuffer::total_code_size() const {
+  csize_t code_size_so_far = 0;
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    const CodeSection* cs = code_section(n);
+    if (cs->is_empty())  continue;  // skip trivial section
+    code_size_so_far = cs->align_at_start(code_size_so_far);
+    code_size_so_far += cs->size();
+  }
+  return code_size_so_far;
+}
+
+void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
+  address buf = dest->_total_start;
+  csize_t buf_offset = 0;
+  assert(dest->_total_size >= total_code_size(), "must be big enough");
+
+  {
+    // not sure why this is here, but why not...
+    int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
+    assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
+  }
+
+  const CodeSection* prev_cs      = NULL;
+  CodeSection*       prev_dest_cs = NULL;
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    // figure compact layout of each section
+    const CodeSection* cs = code_section(n);
+    address cstart = cs->start();
+    address cend   = cs->end();
+    csize_t csize  = cend - cstart;
+
+    CodeSection* dest_cs = dest->code_section(n);
+    if (!cs->is_empty()) {
+      // Compute initial padding; assign it to the previous non-empty guy.
+      // Cf. figure_expanded_capacities.
+      csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
+      if (padding != 0) {
+        buf_offset += padding;
+        assert(prev_dest_cs != NULL, "sanity");
+        prev_dest_cs->_limit += padding;
+      }
+      #ifdef ASSERT
+      if (prev_cs != NULL && prev_cs->is_frozen() && n < SECT_CONSTS) {
+        // Make sure the ends still match up.
+        // This is important because a branch in a frozen section
+        // might target code in a following section, via a Label,
+        // and without a relocation record.  See Label::patch_instructions.
+        address dest_start = buf+buf_offset;
+        csize_t start2start = cs->start() - prev_cs->start();
+        csize_t dest_start2start = dest_start - prev_dest_cs->start();
+        assert(start2start == dest_start2start, "cannot stretch frozen sect");
+      }
+      #endif //ASSERT
+      prev_dest_cs = dest_cs;
+      prev_cs      = cs;
+    }
+
+    debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
+    dest_cs->initialize(buf+buf_offset, csize);
+    dest_cs->set_end(buf+buf_offset+csize);
+    assert(dest_cs->is_allocated(), "must always be allocated");
+    assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
+
+    buf_offset += csize;
+  }
+
+  // Done calculating sections; did it come out to the right end?
+  assert(buf_offset == total_code_size(), "sanity");
+  assert(dest->verify_section_allocation(), "final configuration works");
+}
+
+csize_t CodeBuffer::total_offset_of(address addr) const {
+  csize_t code_size_so_far = 0;
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    const CodeSection* cs = code_section(n);
+    if (!cs->is_empty()) {
+      code_size_so_far = cs->align_at_start(code_size_so_far);
+    }
+    if (cs->contains2(addr)) {
+      return code_size_so_far + (addr - cs->start());
+    }
+    code_size_so_far += cs->size();
+  }
+#ifndef PRODUCT
+  tty->print_cr("Dangling address " PTR_FORMAT " in:", addr);
+  ((CodeBuffer*)this)->print();
+#endif
+  ShouldNotReachHere();
+  return -1;
+}
+
+csize_t CodeBuffer::total_relocation_size() const {
+  csize_t lsize = copy_relocations_to(NULL);  // dry run only
+  csize_t csize = total_code_size();
+  csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
+  return (csize_t) align_size_up(total, HeapWordSize);
+}
+
+csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
+  address buf = NULL;
+  csize_t buf_offset = 0;
+  csize_t buf_limit = 0;
+  if (dest != NULL) {
+    buf = (address)dest->relocation_begin();
+    buf_limit = (address)dest->relocation_end() - buf;
+    assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
+    assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
+  }
+  // if dest == NULL, this is just the sizing pass
+
+  csize_t code_end_so_far = 0;
+  csize_t code_point_so_far = 0;
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    // pull relocs out of each section
+    const CodeSection* cs = code_section(n);
+    assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
+    if (cs->is_empty())  continue;  // skip trivial section
+    relocInfo* lstart = cs->locs_start();
+    relocInfo* lend   = cs->locs_end();
+    csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
+    csize_t    csize  = cs->size();
+    code_end_so_far = cs->align_at_start(code_end_so_far);
+
+    if (lsize > 0) {
+      // Figure out how to advance the combined relocation point
+      // first to the beginning of this section.
+      // We'll insert one or more filler relocs to span that gap.
+      // (Don't bother to improve this by editing the first reloc's offset.)
+      csize_t new_code_point = code_end_so_far;
+      for (csize_t jump;
+           code_point_so_far < new_code_point;
+           code_point_so_far += jump) {
+        jump = new_code_point - code_point_so_far;
+        relocInfo filler = filler_relocInfo();
+        if (jump >= filler.addr_offset()) {
+          jump = filler.addr_offset();
+        } else {  // else shrink the filler to fit
+          filler = relocInfo(relocInfo::none, jump);
+        }
+        if (buf != NULL) {
+          assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
+          *(relocInfo*)(buf+buf_offset) = filler;
+        }
+        buf_offset += sizeof(filler);
+      }
+
+      // Update code point and end to skip past this section:
+      csize_t last_code_point = code_end_so_far + cs->locs_point_off();
+      assert(code_point_so_far <= last_code_point, "sanity");
+      code_point_so_far = last_code_point; // advance past this guy's relocs
+    }
+    code_end_so_far += csize;  // advance past this guy's instructions too
+
+    // Done with filler; emit the real relocations:
+    if (buf != NULL && lsize != 0) {
+      assert(buf_offset + lsize <= buf_limit, "target in bounds");
+      assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
+      if (buf_offset % HeapWordSize == 0) {
+        // Use wordwise copies if possible:
+        Copy::disjoint_words((HeapWord*)lstart,
+                             (HeapWord*)(buf+buf_offset),
+                             (lsize + HeapWordSize-1) / HeapWordSize);
+      } else {
+        Copy::conjoint_bytes(lstart, buf+buf_offset, lsize);
+      }
+    }
+    buf_offset += lsize;
+  }
+
+  // Align end of relocation info in target.
+  while (buf_offset % HeapWordSize != 0) {
+    if (buf != NULL) {
+      relocInfo padding = relocInfo(relocInfo::none, 0);
+      assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
+      *(relocInfo*)(buf+buf_offset) = padding;
+    }
+    buf_offset += sizeof(relocInfo);
+  }
+
+  assert(code_end_so_far == total_code_size(), "sanity");
+
+  // Account for index:
+  if (buf != NULL) {
+    RelocIterator::create_index(dest->relocation_begin(),
+                                buf_offset / sizeof(relocInfo),
+                                dest->relocation_end());
+  }
+
+  return buf_offset;
+}
+
+void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
+#ifndef PRODUCT
+  if (PrintNMethods && (WizardMode || Verbose)) {
+    tty->print("done with CodeBuffer:");
+    ((CodeBuffer*)this)->print();
+  }
+#endif //PRODUCT
+
+  CodeBuffer dest(dest_blob->instructions_begin(),
+                  dest_blob->instructions_size());
+  assert(dest_blob->instructions_size() >= total_code_size(), "good sizing");
+  this->compute_final_layout(&dest);
+  relocate_code_to(&dest);
+
+  // transfer comments from buffer to blob
+  dest_blob->set_comments(_comments);
+
+  // Done moving code bytes; were they the right size?
+  assert(round_to(dest.total_code_size(), oopSize) == dest_blob->instructions_size(), "sanity");
+
+  // Flush generated code
+  ICache::invalidate_range(dest_blob->instructions_begin(),
+                           dest_blob->instructions_size());
+}
+
+// Move all my code into another code buffer.
+// Consult applicable relocs to repair embedded addresses.
+void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
+  DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    // pull code out of each section
+    const CodeSection* cs = code_section(n);
+    if (cs->is_empty())  continue;  // skip trivial section
+    CodeSection* dest_cs = dest->code_section(n);
+    assert(cs->size() == dest_cs->size(), "sanity");
+    csize_t usize = dest_cs->size();
+    csize_t wsize = align_size_up(usize, HeapWordSize);
+    assert(dest_cs->start() + wsize <= dest_end, "no overflow");
+    // Copy the code as aligned machine words.
+    // This may also include an uninitialized partial word at the end.
+    Copy::disjoint_words((HeapWord*)cs->start(),
+                         (HeapWord*)dest_cs->start(),
+                         wsize / HeapWordSize);
+
+    if (dest->blob() == NULL) {
+      // Destination is a final resting place, not just another buffer.
+      // Normalize uninitialized bytes in the final padding.
+      Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
+                          Assembler::code_fill_byte());
+    }
+
+    assert(cs->locs_start() != (relocInfo*)badAddress,
+           "this section carries no reloc storage, but reloc was attempted");
+
+    // Make the new code copy use the old copy's relocations:
+    dest_cs->initialize_locs_from(cs);
+
+    { // Repair the pc relative information in the code after the move
+      RelocIterator iter(dest_cs);
+      while (iter.next()) {
+        iter.reloc()->fix_relocation_after_move(this, dest);
+      }
+    }
+  }
+}
+
+csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
+                                               csize_t amount,
+                                               csize_t* new_capacity) {
+  csize_t new_total_cap = 0;
+
+  int prev_n = -1;
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    const CodeSection* sect = code_section(n);
+
+    if (!sect->is_empty()) {
+      // Compute initial padding; assign it to the previous non-empty guy.
+      // Cf. compute_final_layout.
+      csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
+      if (padding != 0) {
+        new_total_cap += padding;
+        assert(prev_n >= 0, "sanity");
+        new_capacity[prev_n] += padding;
+      }
+      prev_n = n;
+    }
+
+    csize_t exp = sect->size();  // 100% increase
+    if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
+    if (sect == which_cs) {
+      if (exp < amount)  exp = amount;
+      if (StressCodeBuffers)  exp = amount;  // expand only slightly
+    } else if (n == SECT_INSTS) {
+      // scale down inst increases to a more modest 25%
+      exp = 4*K + ((exp - 4*K) >> 2);
+      if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
+    } else if (sect->is_empty()) {
+      // do not grow an empty secondary section
+      exp = 0;
+    }
+    // Allow for inter-section slop:
+    exp += CodeSection::end_slop();
+    csize_t new_cap = sect->size() + exp;
+    if (new_cap < sect->capacity()) {
+      // No need to expand after all.
+      new_cap = sect->capacity();
+    }
+    new_capacity[n] = new_cap;
+    new_total_cap += new_cap;
+  }
+
+  return new_total_cap;
+}
+
+void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
+#ifndef PRODUCT
+  if (PrintNMethods && (WizardMode || Verbose)) {
+    tty->print("expanding CodeBuffer:");
+    this->print();
+  }
+
+  if (StressCodeBuffers && blob() != NULL) {
+    static int expand_count = 0;
+    if (expand_count >= 0)  expand_count += 1;
+    if (expand_count > 100 && is_power_of_2(expand_count)) {
+      tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
+      // simulate an occasional allocation failure:
+      free_blob();
+    }
+  }
+#endif //PRODUCT
+
+  // Resizing must be allowed
+  {
+    if (blob() == NULL)  return;  // caller must check for blob == NULL
+    for (int n = 0; n < (int)SECT_LIMIT; n++) {
+      guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
+    }
+  }
+
+  // Figure new capacity for each section.
+  csize_t new_capacity[SECT_LIMIT];
+  csize_t new_total_cap
+    = figure_expanded_capacities(which_cs, amount, new_capacity);
+
+  // Create a new (temporary) code buffer to hold all the new data
+  CodeBuffer cb(name(), new_total_cap, 0);
+  if (cb.blob() == NULL) {
+    // Failed to allocate in code cache.
+    free_blob();
+    return;
+  }
+
+  // Create an old code buffer to remember which addresses used to go where.
+  // This will be useful when we do final assembly into the code cache,
+  // because we will need to know how to warp any internal address that
+  // has been created at any time in this CodeBuffer's past.
+  CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
+  bxp->take_over_code_from(this);  // remember the old undersized blob
+  DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
+  bxp->_before_expand = this->_before_expand;
+  this->_before_expand = bxp;
+
+  // Give each section its required (expanded) capacity.
+  for (int n = (int)SECT_LIMIT-1; n >= SECT_INSTS; n--) {
+    CodeSection* cb_sect   = cb.code_section(n);
+    CodeSection* this_sect = code_section(n);
+    if (new_capacity[n] == 0)  continue;  // already nulled out
+    if (n > SECT_INSTS) {
+      cb.initialize_section_size(cb_sect, new_capacity[n]);
+    }
+    assert(cb_sect->capacity() >= new_capacity[n], "big enough");
+    address cb_start = cb_sect->start();
+    cb_sect->set_end(cb_start + this_sect->size());
+    if (this_sect->mark() == NULL) {
+      cb_sect->clear_mark();
+    } else {
+      cb_sect->set_mark(cb_start + this_sect->mark_off());
+    }
+  }
+
+  // Move all the code and relocations to the new blob:
+  relocate_code_to(&cb);
+
+  // Copy the temporary code buffer into the current code buffer.
+  // Basically, do {*this = cb}, except for some control information.
+  this->take_over_code_from(&cb);
+  cb.set_blob(NULL);
+
+  // Zap the old code buffer contents, to avoid mistakenly using them.
+  debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
+                                 badCodeHeapFreeVal));
+
+  _decode_begin = NULL;  // sanity
+
+  // Make certain that the new sections are all snugly inside the new blob.
+  assert(verify_section_allocation(), "expanded allocation is ship-shape");
+
+#ifndef PRODUCT
+  if (PrintNMethods && (WizardMode || Verbose)) {
+    tty->print("expanded CodeBuffer:");
+    this->print();
+  }
+#endif //PRODUCT
+}
+
+void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
+  // Must already have disposed of the old blob somehow.
+  assert(blob() == NULL, "must be empty");
+#ifdef ASSERT
+
+#endif
+  // Take the new blob away from cb.
+  set_blob(cb->blob());
+  // Take over all the section pointers.
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    CodeSection* cb_sect   = cb->code_section(n);
+    CodeSection* this_sect = code_section(n);
+    this_sect->take_over_code_from(cb_sect);
+  }
+  _overflow_arena = cb->_overflow_arena;
+  // Make sure the old cb won't try to use it or free it.
+  DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
+}
+
+#ifdef ASSERT
+bool CodeBuffer::verify_section_allocation() {
+  address tstart = _total_start;
+  if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
+  address tend   = tstart + _total_size;
+  if (_blob != NULL) {
+    assert(tstart >= _blob->instructions_begin(), "sanity");
+    assert(tend   <= _blob->instructions_end(),   "sanity");
+  }
+  address tcheck = tstart;  // advancing pointer to verify disjointness
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    CodeSection* sect = code_section(n);
+    if (!sect->is_allocated())  continue;
+    assert(sect->start() >= tcheck, "sanity");
+    tcheck = sect->start();
+    assert((intptr_t)tcheck % sect->alignment() == 0
+           || sect->is_empty() || _blob == NULL,
+           "start is aligned");
+    assert(sect->end()   >= tcheck, "sanity");
+    assert(sect->end()   <= tend,   "sanity");
+  }
+  return true;
+}
+#endif //ASSERT
+
+#ifndef PRODUCT
+
+void CodeSection::dump() {
+  address ptr = start();
+  for (csize_t step; ptr < end(); ptr += step) {
+    step = end() - ptr;
+    if (step > jintSize * 4)  step = jintSize * 4;
+    tty->print(PTR_FORMAT ": ", ptr);
+    while (step > 0) {
+      tty->print(" " PTR32_FORMAT, *(jint*)ptr);
+      ptr += jintSize;
+    }
+    tty->cr();
+  }
+}
+
+
+void CodeSection::decode() {
+  Disassembler::decode(start(), end());
+}
+
+
+void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
+  _comments.add_comment(offset, comment);
+}
+
+
+class CodeComment: public CHeapObj {
+ private:
+  friend class CodeComments;
+  intptr_t     _offset;
+  const char * _comment;
+  CodeComment* _next;
+
+  ~CodeComment() {
+    assert(_next == NULL, "wrong interface for freeing list");
+    os::free((void*)_comment);
+  }
+
+ public:
+  CodeComment(intptr_t offset, const char * comment) {
+    _offset = offset;
+    _comment = os::strdup(comment);
+    _next = NULL;
+  }
+
+  intptr_t     offset()  const { return _offset;  }
+  const char * comment() const { return _comment; }
+  CodeComment* next()          { return _next; }
+
+  void set_next(CodeComment* next) { _next = next; }
+
+  CodeComment* find(intptr_t offset) {
+    CodeComment* a = this;
+    while (a != NULL && a->_offset != offset) {
+      a = a->_next;
+    }
+    return a;
+  }
+};
+
+
+void CodeComments::add_comment(intptr_t offset, const char * comment) {
+  CodeComment* c = new CodeComment(offset, comment);
+  CodeComment* insert = NULL;
+  if (_comments != NULL) {
+    CodeComment* c = _comments->find(offset);
+    insert = c;
+    while (c && c->offset() == offset) {
+      insert = c;
+      c = c->next();
+    }
+  }
+  if (insert) {
+    // insert after comments with same offset
+    c->set_next(insert->next());
+    insert->set_next(c);
+  } else {
+    c->set_next(_comments);
+    _comments = c;
+  }
+}
+
+
+void CodeComments::assign(CodeComments& other) {
+  assert(_comments == NULL, "don't overwrite old value");
+  _comments = other._comments;
+}
+
+
+void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
+  if (_comments != NULL) {
+    CodeComment* c = _comments->find(offset);
+    while (c && c->offset() == offset) {
+      stream->print("  ;; ");
+      stream->print_cr(c->comment());
+      c = c->next();
+    }
+  }
+}
+
+
+void CodeComments::free() {
+  CodeComment* n = _comments;
+  while (n) {
+    // unlink the node from the list saving a pointer to the next
+    CodeComment* p = n->_next;
+    n->_next = NULL;
+    delete n;
+    n = p;
+  }
+  _comments = NULL;
+}
+
+
+
+void CodeBuffer::decode() {
+  Disassembler::decode(decode_begin(), code_end());
+  _decode_begin = code_end();
+}
+
+
+void CodeBuffer::skip_decode() {
+  _decode_begin = code_end();
+}
+
+
+void CodeBuffer::decode_all() {
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    // dump contents of each section
+    CodeSection* cs = code_section(n);
+    tty->print_cr("! %s:", code_section_name(n));
+    if (cs != consts())
+      cs->decode();
+    else
+      cs->dump();
+  }
+}
+
+
+void CodeSection::print(const char* name) {
+  csize_t locs_size = locs_end() - locs_start();
+  tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
+                name, start(), end(), limit(), size(), capacity(),
+                is_frozen()? " [frozen]": "");
+  tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
+                name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
+  if (PrintRelocations) {
+    RelocIterator iter(this);
+    iter.print();
+  }
+}
+
+void CodeBuffer::print() {
+  if (this == NULL) {
+    tty->print_cr("NULL CodeBuffer pointer");
+    return;
+  }
+
+  tty->print_cr("CodeBuffer:");
+  for (int n = 0; n < (int)SECT_LIMIT; n++) {
+    // print each section
+    CodeSection* cs = code_section(n);
+    cs->print(code_section_name(n));
+  }
+}
+
+#endif // PRODUCT