diff src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 5f1f51edaff6
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1334 @@
+/*
+ * Copyright 2004-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+#include "incls/_precompiled.incl"
+#include "incls/_cmsAdaptiveSizePolicy.cpp.incl"
+
+elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
+elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
+
+// Defined if the granularity of the time measurements is potentially too large.
+#define CLOCK_GRANULARITY_TOO_LARGE
+
+CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
+                                             size_t init_promo_size,
+                                             size_t init_survivor_size,
+                                             double max_gc_minor_pause_sec,
+                                             double max_gc_pause_sec,
+                                             uint gc_cost_ratio) :
+  AdaptiveSizePolicy(init_eden_size,
+                     init_promo_size,
+                     init_survivor_size,
+                     max_gc_pause_sec,
+                     gc_cost_ratio) {
+
+  clear_internal_time_intervals();
+
+  _processor_count = os::active_processor_count();
+
+  if (CMSConcurrentMTEnabled && (ParallelCMSThreads > 1)) {
+    assert(_processor_count > 0, "Processor count is suspect");
+    _concurrent_processor_count = MIN2((uint) ParallelCMSThreads,
+                                       (uint) _processor_count);
+  } else {
+    _concurrent_processor_count = 1;
+  }
+
+  _avg_concurrent_time  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+
+  _avg_initial_pause    = new AdaptivePaddedAverage(AdaptiveTimeWeight,
+                                                    PausePadding);
+  _avg_remark_pause     = new AdaptivePaddedAverage(AdaptiveTimeWeight,
+                                                    PausePadding);
+
+  _avg_cms_STW_time     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_cms_STW_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+
+  _avg_cms_free         = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_cms_promo        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+
+  // Mark-sweep-compact
+  _avg_msc_pause        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_msc_interval     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_msc_gc_cost      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+
+  // Mark-sweep
+  _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_ms_interval      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+  _avg_ms_gc_cost       = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
+
+  // Variables that estimate pause times as a function of generation
+  // size.
+  _remark_pause_old_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _initial_pause_old_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _remark_pause_young_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+  _initial_pause_young_estimator =
+    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
+
+  // Alignment comes from that used in ReservedSpace.
+  _generation_alignment = os::vm_allocation_granularity();
+
+  // Start the concurrent timer here so that the first
+  // concurrent_phases_begin() measures a finite mutator
+  // time.  A finite mutator time is used to determine
+  // if a concurrent collection has been started.  If this
+  // proves to be a problem, use some explicit flag to
+  // signal that a concurrent collection has been started.
+  _concurrent_timer.start();
+  _STW_timer.start();
+}
+
+double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
+  // For now assume no other daemon threads are taking alway
+  // cpu's from the application.
+  return ((double) _concurrent_processor_count / (double) _processor_count);
+}
+
+double CMSAdaptiveSizePolicy::concurrent_collection_cost(
+                                                  double interval_in_seconds) {
+  //  When the precleaning and sweeping phases use multiple
+  // threads, change one_processor_fraction to
+  // concurrent_processor_fraction().
+  double one_processor_fraction = 1.0 / ((double) processor_count());
+  double concurrent_cost =
+    collection_cost(_latest_cms_concurrent_marking_time_secs,
+                interval_in_seconds) * concurrent_processor_fraction() +
+    collection_cost(_latest_cms_concurrent_precleaning_time_secs,
+                interval_in_seconds) * one_processor_fraction +
+    collection_cost(_latest_cms_concurrent_sweeping_time_secs,
+                interval_in_seconds) * one_processor_fraction;
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
+      "_latest_cms_concurrent_marking_cost %f "
+      "_latest_cms_concurrent_precleaning_cost %f "
+      "_latest_cms_concurrent_sweeping_cost %f "
+      "concurrent_processor_fraction %f "
+      "concurrent_cost %f ",
+      interval_in_seconds,
+      collection_cost(_latest_cms_concurrent_marking_time_secs,
+        interval_in_seconds),
+      collection_cost(_latest_cms_concurrent_precleaning_time_secs,
+        interval_in_seconds),
+      collection_cost(_latest_cms_concurrent_sweeping_time_secs,
+        interval_in_seconds),
+      concurrent_processor_fraction(),
+      concurrent_cost);
+  }
+  return concurrent_cost;
+}
+
+double CMSAdaptiveSizePolicy::concurrent_collection_time() {
+  double latest_cms_sum_concurrent_phases_time_secs =
+    _latest_cms_concurrent_marking_time_secs +
+    _latest_cms_concurrent_precleaning_time_secs +
+    _latest_cms_concurrent_sweeping_time_secs;
+  return latest_cms_sum_concurrent_phases_time_secs;
+}
+
+double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
+  //  When the precleaning and sweeping phases use multiple
+  // threads, change one_processor_fraction to
+  // concurrent_processor_fraction().
+  double one_processor_fraction = 1.0 / ((double) processor_count());
+  double latest_cms_sum_concurrent_phases_time_secs =
+    _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
+    _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
+    _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
+      "_latest_cms_concurrent_marking_time_secs %f "
+      "_latest_cms_concurrent_precleaning_time_secs %f "
+      "_latest_cms_concurrent_sweeping_time_secs %f "
+      "concurrent_processor_fraction %f "
+      "latest_cms_sum_concurrent_phases_time_secs %f ",
+      _latest_cms_concurrent_marking_time_secs,
+      _latest_cms_concurrent_precleaning_time_secs,
+      _latest_cms_concurrent_sweeping_time_secs,
+      concurrent_processor_fraction(),
+      latest_cms_sum_concurrent_phases_time_secs);
+  }
+  return latest_cms_sum_concurrent_phases_time_secs;
+}
+
+void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
+    double minor_pause_in_ms) {
+  // Get the equivalent of the free space
+  // that is available for promotions in the CMS generation
+  // and use that to update _minor_pause_old_estimator
+
+  // Don't implement this until it is needed. A warning is
+  // printed if _minor_pause_old_estimator is used.
+}
+
+void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print(" ");
+    gclog_or_tty->stamp();
+    gclog_or_tty->print(": concurrent_marking_begin ");
+  }
+  //  Update the interval time
+  _concurrent_timer.stop();
+  _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
+    "mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
+  }
+  _concurrent_timer.reset();
+  _concurrent_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::concurrent_marking_end() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->stamp();
+    gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
+  }
+
+  _concurrent_timer.stop();
+  _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
+      ":concurrent marking time (s) %f",
+      _latest_cms_concurrent_marking_time_secs);
+  }
+}
+
+void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->stamp();
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
+  }
+  _concurrent_timer.reset();
+  _concurrent_timer.start();
+}
+
+
+void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->stamp();
+    gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
+  }
+
+  _concurrent_timer.stop();
+  // May be set again by a second call during the same collection.
+  _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
+      ":concurrent precleaning time (s) %f",
+      _latest_cms_concurrent_precleaning_time_secs);
+  }
+}
+
+void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->stamp();
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
+  }
+  _concurrent_timer.reset();
+  _concurrent_timer.start();
+}
+
+
+void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->stamp();
+    gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
+  }
+
+  _concurrent_timer.stop();
+  _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
+      ":concurrent sweeping time (s) %f",
+      _latest_cms_concurrent_sweeping_time_secs);
+  }
+}
+
+void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
+                                                  size_t cur_eden,
+                                                  size_t cur_promo) {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print(" ");
+    gclog_or_tty->stamp();
+    gclog_or_tty->print(": concurrent_phases_end ");
+  }
+
+  // Update the concurrent timer
+  _concurrent_timer.stop();
+
+  if (gc_cause != GCCause::_java_lang_system_gc ||
+      UseAdaptiveSizePolicyWithSystemGC) {
+
+    avg_cms_free()->sample(cur_promo);
+    double latest_cms_sum_concurrent_phases_time_secs =
+      concurrent_collection_time();
+
+    _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
+
+    // Cost of collection (unit-less)
+
+    // Total interval for collection.  May not be valid.  Tests
+    // below determine whether to use this.
+    //
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
+      "_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
+      "_latest_cms_initial_mark_start_to_end_time_secs %f \n"
+      "_latest_cms_remark_start_to_end_time_secs %f \n"
+      "_latest_cms_concurrent_marking_time_secs %f \n"
+      "_latest_cms_concurrent_precleaning_time_secs %f \n"
+      "_latest_cms_concurrent_sweeping_time_secs %f \n"
+      "latest_cms_sum_concurrent_phases_time_secs %f \n"
+      "_latest_cms_collection_end_to_collection_start_secs %f \n"
+      "concurrent_processor_fraction %f",
+      _latest_cms_reset_end_to_initial_mark_start_secs,
+      _latest_cms_initial_mark_start_to_end_time_secs,
+      _latest_cms_remark_start_to_end_time_secs,
+      _latest_cms_concurrent_marking_time_secs,
+      _latest_cms_concurrent_precleaning_time_secs,
+      _latest_cms_concurrent_sweeping_time_secs,
+      latest_cms_sum_concurrent_phases_time_secs,
+      _latest_cms_collection_end_to_collection_start_secs,
+      concurrent_processor_fraction());
+  }
+    double interval_in_seconds =
+      _latest_cms_initial_mark_start_to_end_time_secs +
+      _latest_cms_remark_start_to_end_time_secs +
+      latest_cms_sum_concurrent_phases_time_secs +
+      _latest_cms_collection_end_to_collection_start_secs;
+    assert(interval_in_seconds >= 0.0,
+      "Bad interval between cms collections");
+
+    // Sample for performance counter
+    avg_concurrent_interval()->sample(interval_in_seconds);
+
+    // STW costs (initial and remark pauses)
+    // Cost of collection (unit-less)
+    assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
+      "Bad initial mark pause");
+    assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
+      "Bad remark pause");
+    double STW_time_in_seconds =
+      _latest_cms_initial_mark_start_to_end_time_secs +
+      _latest_cms_remark_start_to_end_time_secs;
+    double STW_collection_cost = 0.0;
+    if (interval_in_seconds > 0.0) {
+      // cost for the STW phases of the concurrent collection.
+      STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
+      avg_cms_STW_gc_cost()->sample(STW_collection_cost);
+    }
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
+        "STW gc cost: %f  average: %f", STW_collection_cost,
+        avg_cms_STW_gc_cost()->average());
+      gclog_or_tty->print_cr("  STW pause: %f (ms) STW period %f (ms)",
+        (double) STW_time_in_seconds * MILLIUNITS,
+        (double) interval_in_seconds * MILLIUNITS);
+    }
+
+    double concurrent_cost = 0.0;
+    if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
+      concurrent_cost = concurrent_collection_cost(interval_in_seconds);
+
+      avg_concurrent_gc_cost()->sample(concurrent_cost);
+      // Average this ms cost into all the other types gc costs
+
+      if (PrintAdaptiveSizePolicy && Verbose) {
+        gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
+          "concurrent gc cost: %f  average: %f",
+          concurrent_cost,
+          _avg_concurrent_gc_cost->average());
+        gclog_or_tty->print_cr("  concurrent time: %f (ms) cms period %f (ms)"
+          " processor fraction: %f",
+          latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
+          interval_in_seconds * MILLIUNITS,
+          concurrent_processor_fraction());
+      }
+    }
+    double total_collection_cost = STW_collection_cost + concurrent_cost;
+    avg_major_gc_cost()->sample(total_collection_cost);
+
+    // Gather information for estimating future behavior
+    double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
+    double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
+
+    double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
+    initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
+      initial_pause_in_ms);
+    remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
+      remark_pause_in_ms);
+    major_collection_estimator()->update(cur_promo_size_in_mbytes,
+      total_collection_cost);
+
+    // This estimate uses the average eden size.  It could also
+    // have used the latest eden size.  Which is better?
+    double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
+    initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
+      initial_pause_in_ms);
+    remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
+      remark_pause_in_ms);
+  }
+
+  clear_internal_time_intervals();
+
+  set_first_after_collection();
+
+  // The concurrent phases keeps track of it's own mutator interval
+  // with this timer.  This allows the stop-the-world phase to
+  // be included in the mutator time so that the stop-the-world time
+  // is not double counted.  Reset and start it.
+  _concurrent_timer.reset();
+  _concurrent_timer.start();
+
+  // The mutator time between STW phases does not include the
+  // concurrent collection time.
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
+  //  Update the interval time
+  _STW_timer.stop();
+  _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
+  // Reset for the initial mark
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
+    GCCause::Cause gc_cause) {
+  _STW_timer.stop();
+
+  if (gc_cause != GCCause::_java_lang_system_gc ||
+      UseAdaptiveSizePolicyWithSystemGC) {
+    _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
+    avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
+
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print(
+        "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
+        "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
+    }
+  }
+
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
+  _STW_timer.stop();
+  _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
+  // Start accumumlating time for the remark in the STW timer.
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
+    GCCause::Cause gc_cause) {
+  _STW_timer.stop();
+  if (gc_cause != GCCause::_java_lang_system_gc ||
+      UseAdaptiveSizePolicyWithSystemGC) {
+    // Total initial mark pause + remark pause.
+    _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
+    double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
+      _latest_cms_remark_start_to_end_time_secs;
+    double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
+
+    avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
+
+    // Sample total for initial mark + remark
+    avg_cms_STW_time()->sample(STW_time_in_seconds);
+
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
+        "remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
+    }
+
+  }
+  // Don't start the STW times here because the concurrent
+  // sweep and reset has not happened.
+  //  Keep the old comment above in case I don't understand
+  // what is going on but now
+  // Start the STW timer because it is used by ms_collection_begin()
+  // and ms_collection_end() to get the sweep time if a MS is being
+  // done in the foreground.
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::msc_collection_begin() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print(" ");
+    gclog_or_tty->stamp();
+    gclog_or_tty->print(": msc_collection_begin ");
+  }
+  _STW_timer.stop();
+  _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
+      "mutator time %f",
+      _latest_cms_msc_end_to_msc_start_time_secs);
+  }
+  avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print(" ");
+    gclog_or_tty->stamp();
+    gclog_or_tty->print(": msc_collection_end ");
+  }
+  _STW_timer.stop();
+  if (gc_cause != GCCause::_java_lang_system_gc ||
+        UseAdaptiveSizePolicyWithSystemGC) {
+    double msc_pause_in_seconds = _STW_timer.seconds();
+    if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
+        (msc_pause_in_seconds > 0.0)) {
+      avg_msc_pause()->sample(msc_pause_in_seconds);
+      double mutator_time_in_seconds = 0.0;
+      if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
+        // This assertion may fail because of time stamp gradularity.
+        // Comment it out and investiage it at a later time.  The large
+        // time stamp granularity occurs on some older linux systems.
+#ifndef CLOCK_GRANULARITY_TOO_LARGE
+        assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
+               (_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
+               (_latest_cms_concurrent_sweeping_time_secs == 0.0),
+          "There should not be any concurrent time");
+#endif
+        // A concurrent collection did not start.  Mutator time
+        // between collections comes from the STW MSC timer.
+        mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
+      } else {
+        // The concurrent collection did start so count the mutator
+        // time to the start of the concurrent collection.  In this
+        // case the _latest_cms_msc_end_to_msc_start_time_secs measures
+        // the time between the initial mark or remark and the
+        // start of the MSC.  That has no real meaning.
+        mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
+      }
+
+      double latest_cms_sum_concurrent_phases_time_secs =
+        concurrent_collection_time();
+      double interval_in_seconds =
+        mutator_time_in_seconds +
+        _latest_cms_initial_mark_start_to_end_time_secs +
+        _latest_cms_remark_start_to_end_time_secs +
+        latest_cms_sum_concurrent_phases_time_secs +
+        msc_pause_in_seconds;
+
+      if (PrintAdaptiveSizePolicy && Verbose) {
+        gclog_or_tty->print_cr("  interval_in_seconds %f \n"
+          "     mutator_time_in_seconds %f \n"
+          "     _latest_cms_initial_mark_start_to_end_time_secs %f\n"
+          "     _latest_cms_remark_start_to_end_time_secs %f\n"
+          "     latest_cms_sum_concurrent_phases_time_secs %f\n"
+          "     msc_pause_in_seconds %f\n",
+          interval_in_seconds,
+          mutator_time_in_seconds,
+          _latest_cms_initial_mark_start_to_end_time_secs,
+          _latest_cms_remark_start_to_end_time_secs,
+          latest_cms_sum_concurrent_phases_time_secs,
+          msc_pause_in_seconds);
+      }
+
+      // The concurrent cost is wasted cost but it should be
+      // included.
+      double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
+
+      // Initial mark and remark, also wasted.
+      double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
+        _latest_cms_remark_start_to_end_time_secs;
+      double STW_collection_cost =
+        collection_cost(STW_time_in_seconds, interval_in_seconds) +
+        concurrent_cost;
+
+      if (PrintAdaptiveSizePolicy && Verbose) {
+        gclog_or_tty->print_cr(" msc_collection_end:\n"
+          "_latest_cms_collection_end_to_collection_start_secs %f\n"
+          "_latest_cms_msc_end_to_msc_start_time_secs %f\n"
+          "_latest_cms_initial_mark_start_to_end_time_secs %f\n"
+          "_latest_cms_remark_start_to_end_time_secs %f\n"
+          "latest_cms_sum_concurrent_phases_time_secs %f\n",
+          _latest_cms_collection_end_to_collection_start_secs,
+          _latest_cms_msc_end_to_msc_start_time_secs,
+          _latest_cms_initial_mark_start_to_end_time_secs,
+          _latest_cms_remark_start_to_end_time_secs,
+          latest_cms_sum_concurrent_phases_time_secs);
+
+        gclog_or_tty->print_cr(" msc_collection_end: \n"
+          "latest_cms_sum_concurrent_phases_time_secs %f\n"
+          "STW_time_in_seconds %f\n"
+          "msc_pause_in_seconds %f\n",
+          latest_cms_sum_concurrent_phases_time_secs,
+          STW_time_in_seconds,
+          msc_pause_in_seconds);
+      }
+
+      double cost = concurrent_cost + STW_collection_cost +
+        collection_cost(msc_pause_in_seconds, interval_in_seconds);
+
+      _avg_msc_gc_cost->sample(cost);
+
+      // Average this ms cost into all the other types gc costs
+      avg_major_gc_cost()->sample(cost);
+
+      // Sample for performance counter
+      _avg_msc_interval->sample(interval_in_seconds);
+      if (PrintAdaptiveSizePolicy && Verbose) {
+        gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
+          "MSC gc cost: %f  average: %f", cost,
+          _avg_msc_gc_cost->average());
+
+        double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
+        gclog_or_tty->print_cr("  MSC pause: %f (ms) MSC period %f (ms)",
+          msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
+      }
+    }
+  }
+
+  clear_internal_time_intervals();
+
+  // Can this call be put into the epilogue?
+  set_first_after_collection();
+
+  // The concurrent phases keeps track of it's own mutator interval
+  // with this timer.  This allows the stop-the-world phase to
+  // be included in the mutator time so that the stop-the-world time
+  // is not double counted.  Reset and start it.
+  _concurrent_timer.stop();
+  _concurrent_timer.reset();
+  _concurrent_timer.start();
+
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::ms_collection_begin() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print(" ");
+    gclog_or_tty->stamp();
+    gclog_or_tty->print(": ms_collection_begin ");
+  }
+  _STW_timer.stop();
+  _latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
+      "mutator time %f",
+      _latest_cms_ms_end_to_ms_start);
+  }
+  avg_ms_interval()->sample(_STW_timer.seconds());
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print(" ");
+    gclog_or_tty->stamp();
+    gclog_or_tty->print(": ms_collection_end ");
+  }
+  _STW_timer.stop();
+  if (gc_cause != GCCause::_java_lang_system_gc ||
+        UseAdaptiveSizePolicyWithSystemGC) {
+    // The MS collection is a foreground collection that does all
+    // the parts of a mostly concurrent collection.
+    //
+    // For this collection include the cost of the
+    //  initial mark
+    //  remark
+    //  all concurrent time (scaled down by the
+    //    concurrent_processor_fraction).  Some
+    //    may be zero if the baton was passed before
+    //    it was reached.
+    //    concurrent marking
+    //    sweeping
+    //    resetting
+    //  STW after baton was passed (STW_in_foreground_in_seconds)
+    double STW_in_foreground_in_seconds = _STW_timer.seconds();
+
+    double latest_cms_sum_concurrent_phases_time_secs =
+      concurrent_collection_time();
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
+        "STW_in_foreground_in_seconds %f "
+        "_latest_cms_initial_mark_start_to_end_time_secs %f "
+        "_latest_cms_remark_start_to_end_time_secs %f "
+        "latest_cms_sum_concurrent_phases_time_secs %f "
+        "_latest_cms_ms_marking_start_to_end_time_secs %f "
+        "_latest_cms_ms_end_to_ms_start %f",
+        STW_in_foreground_in_seconds,
+        _latest_cms_initial_mark_start_to_end_time_secs,
+        _latest_cms_remark_start_to_end_time_secs,
+        latest_cms_sum_concurrent_phases_time_secs,
+        _latest_cms_ms_marking_start_to_end_time_secs,
+        _latest_cms_ms_end_to_ms_start);
+    }
+
+    double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
+      _latest_cms_remark_start_to_end_time_secs;
+#ifndef CLOCK_GRANULARITY_TOO_LARGE
+    assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
+           latest_cms_sum_concurrent_phases_time_secs == 0.0,
+           "marking done twice?");
+#endif
+    double ms_time_in_seconds = STW_marking_in_seconds +
+      STW_in_foreground_in_seconds +
+      _latest_cms_ms_marking_start_to_end_time_secs +
+      scaled_concurrent_collection_time();
+    avg_ms_pause()->sample(ms_time_in_seconds);
+    // Use the STW costs from the initial mark and remark plus
+    // the cost of the concurrent phase to calculate a
+    // collection cost.
+    double cost = 0.0;
+    if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
+        (ms_time_in_seconds > 0.0)) {
+      double interval_in_seconds =
+        _latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
+
+      if (PrintAdaptiveSizePolicy && Verbose) {
+        gclog_or_tty->print_cr("\n ms_time_in_seconds  %f  "
+          "latest_cms_sum_concurrent_phases_time_secs %f  "
+          "interval_in_seconds %f",
+          ms_time_in_seconds,
+          latest_cms_sum_concurrent_phases_time_secs,
+          interval_in_seconds);
+      }
+
+      cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
+
+      _avg_ms_gc_cost->sample(cost);
+      // Average this ms cost into all the other types gc costs
+      avg_major_gc_cost()->sample(cost);
+
+      // Sample for performance counter
+      _avg_ms_interval->sample(interval_in_seconds);
+    }
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
+        "MS gc cost: %f  average: %f", cost, _avg_ms_gc_cost->average());
+
+      double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
+      gclog_or_tty->print_cr("  MS pause: %f (ms) MS period %f (ms)",
+        ms_time_in_ms,
+        _latest_cms_ms_end_to_ms_start * MILLIUNITS);
+    }
+  }
+
+  // Consider putting this code (here to end) into a
+  // method for convenience.
+  clear_internal_time_intervals();
+
+  set_first_after_collection();
+
+  // The concurrent phases keeps track of it's own mutator interval
+  // with this timer.  This allows the stop-the-world phase to
+  // be included in the mutator time so that the stop-the-world time
+  // is not double counted.  Reset and start it.
+  _concurrent_timer.stop();
+  _concurrent_timer.reset();
+  _concurrent_timer.start();
+
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
+  _latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
+  _latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
+  _latest_cms_collection_end_to_collection_start_secs = 0.0;
+  _latest_cms_concurrent_marking_time_secs = 0.0;
+  _latest_cms_concurrent_precleaning_time_secs = 0.0;
+  _latest_cms_concurrent_sweeping_time_secs = 0.0;
+  _latest_cms_msc_end_to_msc_start_time_secs = 0.0;
+  _latest_cms_ms_end_to_ms_start = 0.0;
+  _latest_cms_remark_start_to_end_time_secs = 0.0;
+  _latest_cms_initial_mark_start_to_end_time_secs = 0.0;
+  _latest_cms_ms_marking_start_to_end_time_secs = 0.0;
+}
+
+void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
+  AdaptiveSizePolicy::clear_generation_free_space_flags();
+
+  set_change_young_gen_for_maj_pauses(0);
+}
+
+void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->stamp();
+    gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
+  }
+  _concurrent_timer.start();
+}
+
+double CMSAdaptiveSizePolicy::time_since_major_gc() const {
+  _concurrent_timer.stop();
+  double time_since_cms_gc = _concurrent_timer.seconds();
+  _concurrent_timer.start();
+  _STW_timer.stop();
+  double time_since_STW_gc = _STW_timer.seconds();
+  _STW_timer.start();
+
+  return MIN2(time_since_cms_gc, time_since_STW_gc);
+}
+
+double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
+  double cms_interval = _avg_concurrent_interval->average();
+  double msc_interval = _avg_msc_interval->average();
+  double ms_interval = _avg_ms_interval->average();
+
+  return MAX3(cms_interval, msc_interval, ms_interval);
+}
+
+double CMSAdaptiveSizePolicy::cms_gc_cost() const {
+  return avg_major_gc_cost()->average();
+}
+
+void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
+  _STW_timer.stop();
+  // Start accumumlating time for the marking in the STW timer.
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+void CMSAdaptiveSizePolicy::ms_collection_marking_end(
+    GCCause::Cause gc_cause) {
+  _STW_timer.stop();
+  if (gc_cause != GCCause::_java_lang_system_gc ||
+      UseAdaptiveSizePolicyWithSystemGC) {
+    _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
+        "msc_collection_marking_end: mutator time %f",
+        _latest_cms_ms_marking_start_to_end_time_secs);
+    }
+  }
+  _STW_timer.reset();
+  _STW_timer.start();
+}
+
+double CMSAdaptiveSizePolicy::gc_cost() const {
+  double cms_gen_cost = cms_gc_cost();
+  double result =  MIN2(1.0, minor_gc_cost() + cms_gen_cost);
+  assert(result >= 0.0, "Both minor and major costs are non-negative");
+  return result;
+}
+
+// Cost of collection (unit-less)
+double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
+                                              double interval_in_seconds) {
+  // Cost of collection (unit-less)
+  double cost = 0.0;
+  if ((interval_in_seconds > 0.0) &&
+      (pause_in_seconds > 0.0)) {
+    cost =
+      pause_in_seconds / interval_in_seconds;
+  }
+  return cost;
+}
+
+size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
+  size_t change = 0;
+  size_t desired_eden = cur_eden;
+
+  // reduce eden size
+  change = eden_decrement_aligned_down(cur_eden);
+  desired_eden = cur_eden - change;
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
+      "adjusting eden for pause time. "
+      " starting eden size " SIZE_FORMAT
+      " reduced eden size " SIZE_FORMAT
+      " eden delta " SIZE_FORMAT,
+      cur_eden, desired_eden, change);
+  }
+
+  return desired_eden;
+}
+
+size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
+
+  size_t desired_eden = cur_eden;
+
+  set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
+
+  size_t change = eden_increment_aligned_up(cur_eden);
+  size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
+
+  if (cur_eden + scaled_change > cur_eden) {
+    desired_eden = cur_eden + scaled_change;
+  }
+
+  _young_gen_change_for_minor_throughput++;
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
+      "adjusting eden for throughput. "
+      " starting eden size " SIZE_FORMAT
+      " increased eden size " SIZE_FORMAT
+      " eden delta " SIZE_FORMAT,
+      cur_eden, desired_eden, scaled_change);
+  }
+
+  return desired_eden;
+}
+
+size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
+
+  set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
+
+  size_t change = eden_decrement(cur_eden);
+  size_t desired_eden_size = cur_eden - change;
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
+      "adjusting eden for footprint. "
+      " starting eden size " SIZE_FORMAT
+      " reduced eden size " SIZE_FORMAT
+      " eden delta " SIZE_FORMAT,
+      cur_eden, desired_eden_size, change);
+  }
+  return desired_eden_size;
+}
+
+// The eden and promo versions should be combined if possible.
+// They are the same except that the sizes of the decrement
+// and increment are different for eden and promo.
+size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
+  size_t delta = eden_decrement(cur_eden);
+  return align_size_down(delta, generation_alignment());
+}
+
+size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
+  size_t delta = eden_increment(cur_eden);
+  return align_size_up(delta, generation_alignment());
+}
+
+size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
+  size_t delta = promo_decrement(cur_promo);
+  return align_size_down(delta, generation_alignment());
+}
+
+size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
+  size_t delta = promo_increment(cur_promo);
+  return align_size_up(delta, generation_alignment());
+}
+
+
+void CMSAdaptiveSizePolicy::compute_young_generation_free_space(size_t cur_eden,
+                                          size_t max_eden_size)
+{
+  size_t desired_eden_size = cur_eden;
+  size_t eden_limit = max_eden_size;
+
+  // Printout input
+  if (PrintGC && PrintAdaptiveSizePolicy) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::compute_young_generation_free_space: "
+      "cur_eden " SIZE_FORMAT,
+      cur_eden);
+  }
+
+  // Used for diagnostics
+  clear_generation_free_space_flags();
+
+  if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
+    if (minor_pause_young_estimator()->decrement_will_decrease()) {
+      // If the minor pause is too long, shrink the young gen.
+      set_change_young_gen_for_min_pauses(
+        decrease_young_gen_for_min_pauses_true);
+      desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
+    }
+  } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
+             (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
+    // The remark or initial pauses are not meeting the goal.  Should
+    // the generation be shrunk?
+    if (get_and_clear_first_after_collection() &&
+        ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
+          remark_pause_young_estimator()->decrement_will_decrease()) ||
+         (avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
+          initial_pause_young_estimator()->decrement_will_decrease()))) {
+
+       set_change_young_gen_for_maj_pauses(
+         decrease_young_gen_for_maj_pauses_true);
+
+      // If the remark or initial pause is too long and this is the
+      // first young gen collection after a cms collection, shrink
+      // the young gen.
+      desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
+    }
+    // If not the first young gen collection after a cms collection,
+    // don't do anything.  In this case an adjustment has already
+    // been made and the results of the adjustment has not yet been
+    // measured.
+  } else if ((minor_gc_cost() >= 0.0) &&
+             (adjusted_mutator_cost() < _throughput_goal)) {
+    desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
+  } else {
+    desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
+  }
+
+  if (PrintGC && PrintAdaptiveSizePolicy) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::compute_young_generation_free_space limits:"
+      " desired_eden_size: " SIZE_FORMAT
+      " old_eden_size: " SIZE_FORMAT,
+      desired_eden_size, cur_eden);
+  }
+
+  set_eden_size(desired_eden_size);
+}
+
+size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
+  size_t change = 0;
+  size_t desired_promo = cur_promo;
+  // Move this test up to caller like the adjust_eden_for_pause_time()
+  // call.
+  if ((AdaptiveSizePausePolicy == 0) &&
+      ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
+      (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
+    set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
+    change = promo_decrement_aligned_down(cur_promo);
+    desired_promo = cur_promo - change;
+  } else if ((AdaptiveSizePausePolicy > 0) &&
+      (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
+       remark_pause_old_estimator()->decrement_will_decrease()) ||
+      ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
+       initial_pause_old_estimator()->decrement_will_decrease()))) {
+    set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
+    change = promo_decrement_aligned_down(cur_promo);
+    desired_promo = cur_promo - change;
+  }
+
+  if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
+      "adjusting promo for pause time. "
+      " starting promo size " SIZE_FORMAT
+      " reduced promo size " SIZE_FORMAT
+      " promo delta " SIZE_FORMAT,
+      cur_promo, desired_promo, change);
+  }
+
+  return desired_promo;
+}
+
+// Try to share this with PS.
+size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
+                                                  double gen_gc_cost) {
+
+  // Calculate the change to use for the tenured gen.
+  size_t scaled_change = 0;
+  // Can the increment to the generation be scaled?
+  if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
+    double scale_by_ratio = gen_gc_cost / gc_cost();
+    scaled_change =
+      (size_t) (scale_by_ratio * (double) base_change);
+    if (PrintAdaptiveSizePolicy && Verbose) {
+      gclog_or_tty->print_cr(
+        "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
+          SIZE_FORMAT,
+        base_change, scale_by_ratio, scaled_change);
+    }
+  } else if (gen_gc_cost >= 0.0) {
+    // Scaling is not going to work.  If the major gc time is the
+    // larger than the other GC costs, give it a full increment.
+    if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
+      scaled_change = base_change;
+    }
+  } else {
+    // Don't expect to get here but it's ok if it does
+    // in the product build since the delta will be 0
+    // and nothing will change.
+    assert(false, "Unexpected value for gc costs");
+  }
+
+  return scaled_change;
+}
+
+size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
+
+  size_t desired_promo = cur_promo;
+
+  set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
+
+  size_t change = promo_increment_aligned_up(cur_promo);
+  size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
+
+  if (cur_promo + scaled_change > cur_promo) {
+    desired_promo = cur_promo + scaled_change;
+  }
+
+  _old_gen_change_for_major_throughput++;
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
+      "adjusting promo for throughput. "
+      " starting promo size " SIZE_FORMAT
+      " increased promo size " SIZE_FORMAT
+      " promo delta " SIZE_FORMAT,
+      cur_promo, desired_promo, scaled_change);
+  }
+
+  return desired_promo;
+}
+
+size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
+                                                         size_t cur_eden) {
+
+  set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
+
+  size_t change = promo_decrement(cur_promo);
+  size_t desired_promo_size = cur_promo - change;
+
+  if (PrintAdaptiveSizePolicy && Verbose) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
+      "adjusting promo for footprint. "
+      " starting promo size " SIZE_FORMAT
+      " reduced promo size " SIZE_FORMAT
+      " promo delta " SIZE_FORMAT,
+      cur_promo, desired_promo_size, change);
+  }
+  return desired_promo_size;
+}
+
+void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
+                                size_t cur_tenured_free,
+                                size_t max_tenured_available,
+                                size_t cur_eden) {
+  // This can be bad if the desired value grows/shrinks without
+  // any connection to the read free space
+  size_t desired_promo_size = promo_size();
+  size_t tenured_limit = max_tenured_available;
+
+  // Printout input
+  if (PrintGC && PrintAdaptiveSizePolicy) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
+      "cur_tenured_free " SIZE_FORMAT
+      " max_tenured_available " SIZE_FORMAT,
+      cur_tenured_free, max_tenured_available);
+  }
+
+  // Used for diagnostics
+  clear_generation_free_space_flags();
+
+  set_decide_at_full_gc(decide_at_full_gc_true);
+  if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
+      avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
+    desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
+  } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
+    // Nothing to do since the minor collections are too large and
+    // this method only deals with the cms generation.
+  } else if ((cms_gc_cost() >= 0.0) &&
+             (adjusted_mutator_cost() < _throughput_goal)) {
+    desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
+  } else {
+    desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
+                                                    cur_eden);
+  }
+
+  if (PrintGC && PrintAdaptiveSizePolicy) {
+    gclog_or_tty->print_cr(
+      "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
+      " desired_promo_size: " SIZE_FORMAT
+      " old_promo_size: " SIZE_FORMAT,
+      desired_promo_size, cur_tenured_free);
+  }
+
+  set_promo_size(desired_promo_size);
+}
+
+int CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
+                                             bool is_survivor_overflow,
+                                             int tenuring_threshold,
+                                             size_t survivor_limit) {
+  assert(survivor_limit >= generation_alignment(),
+         "survivor_limit too small");
+  assert((size_t)align_size_down(survivor_limit, generation_alignment())
+         == survivor_limit, "survivor_limit not aligned");
+
+  // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
+  if (!UsePSAdaptiveSurvivorSizePolicy ||
+      !young_gen_policy_is_ready()) {
+    return tenuring_threshold;
+  }
+
+  // We'll decide whether to increase or decrease the tenuring
+  // threshold based partly on the newly computed survivor size
+  // (if we hit the maximum limit allowed, we'll always choose to
+  // decrement the threshold).
+  bool incr_tenuring_threshold = false;
+  bool decr_tenuring_threshold = false;
+
+  set_decrement_tenuring_threshold_for_gc_cost(false);
+  set_increment_tenuring_threshold_for_gc_cost(false);
+  set_decrement_tenuring_threshold_for_survivor_limit(false);
+
+  if (!is_survivor_overflow) {
+    // Keep running averages on how much survived
+
+    // We use the tenuring threshold to equalize the cost of major
+    // and minor collections.
+    // ThresholdTolerance is used to indicate how sensitive the
+    // tenuring threshold is to differences in cost betweent the
+    // collection types.
+
+    // Get the times of interest. This involves a little work, so
+    // we cache the values here.
+    const double major_cost = major_gc_cost();
+    const double minor_cost = minor_gc_cost();
+
+    if (minor_cost > major_cost * _threshold_tolerance_percent) {
+      // Minor times are getting too long;  lower the threshold so
+      // less survives and more is promoted.
+      decr_tenuring_threshold = true;
+      set_decrement_tenuring_threshold_for_gc_cost(true);
+    } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
+      // Major times are too long, so we want less promotion.
+      incr_tenuring_threshold = true;
+      set_increment_tenuring_threshold_for_gc_cost(true);
+    }
+
+  } else {
+    // Survivor space overflow occurred, so promoted and survived are
+    // not accurate. We'll make our best guess by combining survived
+    // and promoted and count them as survivors.
+    //
+    // We'll lower the tenuring threshold to see if we can correct
+    // things. Also, set the survivor size conservatively. We're
+    // trying to avoid many overflows from occurring if defnew size
+    // is just too small.
+
+    decr_tenuring_threshold = true;
+  }
+
+  // The padded average also maintains a deviation from the average;
+  // we use this to see how good of an estimate we have of what survived.
+  // We're trying to pad the survivor size as little as possible without
+  // overflowing the survivor spaces.
+  size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
+                                     generation_alignment());
+  target_size = MAX2(target_size, generation_alignment());
+
+  if (target_size > survivor_limit) {
+    // Target size is bigger than we can handle. Let's also reduce
+    // the tenuring threshold.
+    target_size = survivor_limit;
+    decr_tenuring_threshold = true;
+    set_decrement_tenuring_threshold_for_survivor_limit(true);
+  }
+
+  // Finally, increment or decrement the tenuring threshold, as decided above.
+  // We test for decrementing first, as we might have hit the target size
+  // limit.
+  if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
+    if (tenuring_threshold > 1) {
+      tenuring_threshold--;
+    }
+  } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
+    if (tenuring_threshold < MaxTenuringThreshold) {
+      tenuring_threshold++;
+    }
+  }
+
+  // We keep a running average of the amount promoted which is used
+  // to decide when we should collect the old generation (when
+  // the amount of old gen free space is less than what we expect to
+  // promote).
+
+  if (PrintAdaptiveSizePolicy) {
+    // A little more detail if Verbose is on
+    GenCollectedHeap* gch = GenCollectedHeap::heap();
+    if (Verbose) {
+      gclog_or_tty->print( "  avg_survived: %f"
+                  "  avg_deviation: %f",
+                  _avg_survived->average(),
+                  _avg_survived->deviation());
+    }
+
+    gclog_or_tty->print( "  avg_survived_padded_avg: %f",
+                _avg_survived->padded_average());
+
+    if (Verbose) {
+      gclog_or_tty->print( "  avg_promoted_avg: %f"
+                  "  avg_promoted_dev: %f",
+                  gch->gc_stats(1)->avg_promoted()->average(),
+                  gch->gc_stats(1)->avg_promoted()->deviation());
+    }
+
+    gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
+                "  avg_pretenured_padded_avg: %f"
+                "  tenuring_thresh: %d"
+                "  target_size: " SIZE_FORMAT
+                "  survivor_limit: " SIZE_FORMAT,
+                gch->gc_stats(1)->avg_promoted()->padded_average(),
+                _avg_pretenured->padded_average(),
+                tenuring_threshold, target_size, survivor_limit);
+    gclog_or_tty->cr();
+  }
+
+  set_survivor_size(target_size);
+
+  return tenuring_threshold;
+}
+
+bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
+  bool result = _first_after_collection;
+  _first_after_collection = false;
+  return result;
+}
+
+bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
+                                                    outputStream* st) const {
+
+  if (!UseAdaptiveSizePolicy) return false;
+
+  GenCollectedHeap* gch = GenCollectedHeap::heap();
+  Generation* gen0 = gch->get_gen(0);
+  DefNewGeneration* def_new = gen0->as_DefNewGeneration();
+  return
+    AdaptiveSizePolicy::print_adaptive_size_policy_on(
+                                         st,
+                                         def_new->tenuring_threshold());
+}