diff src/share/vm/opto/addnode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ff5961f4c095
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/addnode.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,871 @@
+/*
+ * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+#include "incls/_precompiled.incl"
+#include "incls/_addnode.cpp.incl"
+
+#define MAXFLOAT        ((float)3.40282346638528860e+38)
+
+// Classic Add functionality.  This covers all the usual 'add' behaviors for
+// an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
+// all inherited from this class.  The various identity values are supplied
+// by virtual functions.
+
+
+//=============================================================================
+//------------------------------hash-------------------------------------------
+// Hash function over AddNodes.  Needs to be commutative; i.e., I swap
+// (commute) inputs to AddNodes willy-nilly so the hash function must return
+// the same value in the presence of edge swapping.
+uint AddNode::hash() const {
+  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
+}
+
+//------------------------------Identity---------------------------------------
+// If either input is a constant 0, return the other input.
+Node *AddNode::Identity( PhaseTransform *phase ) {
+  const Type *zero = add_id();  // The additive identity
+  if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
+  if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
+  return this;
+}
+
+//------------------------------commute----------------------------------------
+// Commute operands to move loads and constants to the right.
+static bool commute( Node *add, int con_left, int con_right ) {
+  Node *in1 = add->in(1);
+  Node *in2 = add->in(2);
+
+  // Convert "1+x" into "x+1".
+  // Right is a constant; leave it
+  if( con_right ) return false;
+  // Left is a constant; move it right.
+  if( con_left ) {
+    add->swap_edges(1, 2);
+    return true;
+  }
+
+  // Convert "Load+x" into "x+Load".
+  // Now check for loads
+  if( in2->is_Load() ) return false;
+  // Left is a Load and Right is not; move it right.
+  if( in1->is_Load() ) {
+    add->swap_edges(1, 2);
+    return true;
+  }
+
+  PhiNode *phi;
+  // Check for tight loop increments: Loop-phi of Add of loop-phi
+  if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
+    return false;
+  if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
+    add->swap_edges(1, 2);
+    return true;
+  }
+
+  // Otherwise, sort inputs (commutativity) to help value numbering.
+  if( in1->_idx > in2->_idx ) {
+    add->swap_edges(1, 2);
+    return true;
+  }
+  return false;
+}
+
+//------------------------------Idealize---------------------------------------
+// If we get here, we assume we are associative!
+Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  const Type *t1 = phase->type( in(1) );
+  const Type *t2 = phase->type( in(2) );
+  int con_left  = t1->singleton();
+  int con_right = t2->singleton();
+
+  // Check for commutative operation desired
+  if( commute(this,con_left,con_right) ) return this;
+
+  AddNode *progress = NULL;             // Progress flag
+
+  // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
+  // constant, and the left input is an add of a constant, flatten the
+  // expression tree.
+  Node *add1 = in(1);
+  Node *add2 = in(2);
+  int add1_op = add1->Opcode();
+  int this_op = Opcode();
+  if( con_right && t2 != Type::TOP && // Right input is a constant?
+      add1_op == this_op ) { // Left input is an Add?
+
+    // Type of left _in right input
+    const Type *t12 = phase->type( add1->in(2) );
+    if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
+      // Check for rare case of closed data cycle which can happen inside
+      // unreachable loops. In these cases the computation is undefined.
+#ifdef ASSERT
+      Node *add11    = add1->in(1);
+      int   add11_op = add11->Opcode();
+      if( (add1 == add1->in(1))
+         || (add11_op == this_op && add11->in(1) == add1) ) {
+        assert(false, "dead loop in AddNode::Ideal");
+      }
+#endif
+      // The Add of the flattened expression
+      Node *x1 = add1->in(1);
+      Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
+      PhaseIterGVN *igvn = phase->is_IterGVN();
+      if( igvn ) {
+        set_req_X(2,x2,igvn);
+        set_req_X(1,x1,igvn);
+      } else {
+        set_req(2,x2);
+        set_req(1,x1);
+      }
+      progress = this;            // Made progress
+      add1 = in(1);
+      add1_op = add1->Opcode();
+    }
+  }
+
+  // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
+  if( add1_op == this_op && !con_right ) {
+    Node *a12 = add1->in(2);
+    const Type *t12 = phase->type( a12 );
+    if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
+      add2 = add1->clone();
+      add2->set_req(2, in(2));
+      add2 = phase->transform(add2);
+      set_req(1, add2);
+      set_req(2, a12);
+      progress = this;
+      add2 = a12;
+    }
+  }
+
+  // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
+  int add2_op = add2->Opcode();
+  if( add2_op == this_op && !con_left ) {
+    Node *a22 = add2->in(2);
+    const Type *t22 = phase->type( a22 );
+    if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
+      Node *addx = add2->clone();
+      addx->set_req(1, in(1));
+      addx->set_req(2, add2->in(1));
+      addx = phase->transform(addx);
+      set_req(1, addx);
+      set_req(2, a22);
+      progress = this;
+    }
+  }
+
+  return progress;
+}
+
+//------------------------------Value-----------------------------------------
+// An add node sums it's two _in.  If one input is an RSD, we must mixin
+// the other input's symbols.
+const Type *AddNode::Value( PhaseTransform *phase ) const {
+  // Either input is TOP ==> the result is TOP
+  const Type *t1 = phase->type( in(1) );
+  const Type *t2 = phase->type( in(2) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t2 == Type::TOP ) return Type::TOP;
+
+  // Either input is BOTTOM ==> the result is the local BOTTOM
+  const Type *bot = bottom_type();
+  if( (t1 == bot) || (t2 == bot) ||
+      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
+    return bot;
+
+  // Check for an addition involving the additive identity
+  const Type *tadd = add_of_identity( t1, t2 );
+  if( tadd ) return tadd;
+
+  return add_ring(t1,t2);               // Local flavor of type addition
+}
+
+//------------------------------add_identity-----------------------------------
+// Check for addition of the identity
+const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
+  const Type *zero = add_id();  // The additive identity
+  if( t1->higher_equal( zero ) ) return t2;
+  if( t2->higher_equal( zero ) ) return t1;
+
+  return NULL;
+}
+
+
+//=============================================================================
+//------------------------------Idealize---------------------------------------
+Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  int op1 = in(1)->Opcode();
+  int op2 = in(2)->Opcode();
+  // Fold (con1-x)+con2 into (con1+con2)-x
+  if( op1 == Op_SubI ) {
+    const Type *t_sub1 = phase->type( in(1)->in(1) );
+    const Type *t_2    = phase->type( in(2)        );
+    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
+      return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
+                              in(1)->in(2) );
+    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
+    if( op2 == Op_SubI ) {
+      // Check for dead cycle: d = (a-b)+(c-d)
+      assert( in(1)->in(2) != this && in(2)->in(2) != this,
+              "dead loop in AddINode::Ideal" );
+      Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
+      sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
+      sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
+      return sub;
+    }
+  }
+
+  // Convert "x+(0-y)" into "(x-y)"
+  if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
+    return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
+
+  // Convert "(0-y)+x" into "(x-y)"
+  if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
+    return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
+
+  // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
+  // Helps with array allocation math constant folding
+  // See 4790063:
+  // Unrestricted transformation is unsafe for some runtime values of 'x'
+  // ( x ==  0, z == 1, y == -1 ) fails
+  // ( x == -5, z == 1, y ==  1 ) fails
+  // Transform works for small z and small negative y when the addition
+  // (x + (y << z)) does not cross zero.
+  // Implement support for negative y and (x >= -(y << z))
+  // Have not observed cases where type information exists to support
+  // positive y and (x <= -(y << z))
+  if( op1 == Op_URShiftI && op2 == Op_ConI &&
+      in(1)->in(2)->Opcode() == Op_ConI ) {
+    jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
+    jint y = phase->type( in(2) )->is_int()->get_con();
+
+    if( z < 5 && -5 < y && y < 0 ) {
+      const Type *t_in11 = phase->type(in(1)->in(1));
+      if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
+        Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
+        return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
+      }
+    }
+  }
+
+  return AddNode::Ideal(phase, can_reshape);
+}
+
+
+//------------------------------Identity---------------------------------------
+// Fold (x-y)+y  OR  y+(x-y)  into  x
+Node *AddINode::Identity( PhaseTransform *phase ) {
+  if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
+    return in(1)->in(1);
+  }
+  else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
+    return in(2)->in(1);
+  }
+  return AddNode::Identity(phase);
+}
+
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.  Guaranteed never
+// to be passed a TOP or BOTTOM type, these are filtered out by
+// pre-check.
+const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeInt *r0 = t0->is_int(); // Handy access
+  const TypeInt *r1 = t1->is_int();
+  int lo = r0->_lo + r1->_lo;
+  int hi = r0->_hi + r1->_hi;
+  if( !(r0->is_con() && r1->is_con()) ) {
+    // Not both constants, compute approximate result
+    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
+      lo = min_jint; hi = max_jint; // Underflow on the low side
+    }
+    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
+      lo = min_jint; hi = max_jint; // Overflow on the high side
+    }
+    if( lo > hi ) {               // Handle overflow
+      lo = min_jint; hi = max_jint;
+    }
+  } else {
+    // both constants, compute precise result using 'lo' and 'hi'
+    // Semantics define overflow and underflow for integer addition
+    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
+  }
+  return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
+}
+
+
+//=============================================================================
+//------------------------------Idealize---------------------------------------
+Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  int op1 = in(1)->Opcode();
+  int op2 = in(2)->Opcode();
+  // Fold (con1-x)+con2 into (con1+con2)-x
+  if( op1 == Op_SubL ) {
+    const Type *t_sub1 = phase->type( in(1)->in(1) );
+    const Type *t_2    = phase->type( in(2)        );
+    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
+      return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
+                              in(1)->in(2) );
+    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
+    if( op2 == Op_SubL ) {
+      // Check for dead cycle: d = (a-b)+(c-d)
+      assert( in(1)->in(2) != this && in(2)->in(2) != this,
+              "dead loop in AddLNode::Ideal" );
+      Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
+      sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
+      sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
+      return sub;
+    }
+  }
+
+  // Convert "x+(0-y)" into "(x-y)"
+  if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
+    return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
+
+  // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
+  // into "(X<<1)+Y" and let shift-folding happen.
+  if( op2 == Op_AddL &&
+      in(2)->in(1) == in(1) &&
+      op1 != Op_ConL &&
+      0 ) {
+    Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
+    return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
+  }
+
+  return AddNode::Ideal(phase, can_reshape);
+}
+
+
+//------------------------------Identity---------------------------------------
+// Fold (x-y)+y  OR  y+(x-y)  into  x
+Node *AddLNode::Identity( PhaseTransform *phase ) {
+  if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
+    return in(1)->in(1);
+  }
+  else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
+    return in(2)->in(1);
+  }
+  return AddNode::Identity(phase);
+}
+
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.  Guaranteed never
+// to be passed a TOP or BOTTOM type, these are filtered out by
+// pre-check.
+const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeLong *r0 = t0->is_long(); // Handy access
+  const TypeLong *r1 = t1->is_long();
+  jlong lo = r0->_lo + r1->_lo;
+  jlong hi = r0->_hi + r1->_hi;
+  if( !(r0->is_con() && r1->is_con()) ) {
+    // Not both constants, compute approximate result
+    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
+      lo =min_jlong; hi = max_jlong; // Underflow on the low side
+    }
+    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
+      lo = min_jlong; hi = max_jlong; // Overflow on the high side
+    }
+    if( lo > hi ) {               // Handle overflow
+      lo = min_jlong; hi = max_jlong;
+    }
+  } else {
+    // both constants, compute precise result using 'lo' and 'hi'
+    // Semantics define overflow and underflow for integer addition
+    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
+  }
+  return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
+}
+
+
+//=============================================================================
+//------------------------------add_of_identity--------------------------------
+// Check for addition of the identity
+const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
+  // x ADD 0  should return x unless 'x' is a -zero
+  //
+  // const Type *zero = add_id();     // The additive identity
+  // jfloat f1 = t1->getf();
+  // jfloat f2 = t2->getf();
+  //
+  // if( t1->higher_equal( zero ) ) return t2;
+  // if( t2->higher_equal( zero ) ) return t1;
+
+  return NULL;
+}
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+// This also type-checks the inputs for sanity.  Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
+  // We must be adding 2 float constants.
+  return TypeF::make( t0->getf() + t1->getf() );
+}
+
+//------------------------------Ideal------------------------------------------
+Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
+    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
+  }
+
+  // Floating point additions are not associative because of boundary conditions (infinity)
+  return commute(this,
+                 phase->type( in(1) )->singleton(),
+                 phase->type( in(2) )->singleton() ) ? this : NULL;
+}
+
+
+//=============================================================================
+//------------------------------add_of_identity--------------------------------
+// Check for addition of the identity
+const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
+  // x ADD 0  should return x unless 'x' is a -zero
+  //
+  // const Type *zero = add_id();     // The additive identity
+  // jfloat f1 = t1->getf();
+  // jfloat f2 = t2->getf();
+  //
+  // if( t1->higher_equal( zero ) ) return t2;
+  // if( t2->higher_equal( zero ) ) return t1;
+
+  return NULL;
+}
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+// This also type-checks the inputs for sanity.  Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
+  // We must be adding 2 double constants.
+  return TypeD::make( t0->getd() + t1->getd() );
+}
+
+//------------------------------Ideal------------------------------------------
+Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
+    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
+  }
+
+  // Floating point additions are not associative because of boundary conditions (infinity)
+  return commute(this,
+                 phase->type( in(1) )->singleton(),
+                 phase->type( in(2) )->singleton() ) ? this : NULL;
+}
+
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+// If one input is a constant 0, return the other input.
+Node *AddPNode::Identity( PhaseTransform *phase ) {
+  return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
+}
+
+//------------------------------Idealize---------------------------------------
+Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  // Bail out if dead inputs
+  if( phase->type( in(Address) ) == Type::TOP ) return NULL;
+
+  // If the left input is an add of a constant, flatten the expression tree.
+  const Node *n = in(Address);
+  if (n->is_AddP() && n->in(Base) == in(Base)) {
+    const AddPNode *addp = n->as_AddP(); // Left input is an AddP
+    assert( !addp->in(Address)->is_AddP() ||
+             addp->in(Address)->as_AddP() != addp,
+            "dead loop in AddPNode::Ideal" );
+    // Type of left input's right input
+    const Type *t = phase->type( addp->in(Offset) );
+    if( t == Type::TOP ) return NULL;
+    const TypeX *t12 = t->is_intptr_t();
+    if( t12->is_con() ) {       // Left input is an add of a constant?
+      // If the right input is a constant, combine constants
+      const Type *temp_t2 = phase->type( in(Offset) );
+      if( temp_t2 == Type::TOP ) return NULL;
+      const TypeX *t2 = temp_t2->is_intptr_t();
+      if( t2->is_con() ) {
+        // The Add of the flattened expression
+        set_req(Address, addp->in(Address));
+        set_req(Offset , phase->MakeConX(t2->get_con() + t12->get_con()));
+        return this;                    // Made progress
+      }
+      // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
+      set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset))));
+      set_req(Offset , addp->in(Offset));
+      return this;
+    }
+  }
+
+  // Raw pointers?
+  if( in(Base)->bottom_type() == Type::TOP ) {
+    // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
+    if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
+      Node* offset = in(Offset);
+      return new (phase->C, 2) CastX2PNode(offset);
+    }
+  }
+
+  // If the right is an add of a constant, push the offset down.
+  // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
+  // The idea is to merge array_base+scaled_index groups together,
+  // and only have different constant offsets from the same base.
+  const Node *add = in(Offset);
+  if( add->Opcode() == Op_AddX && add->in(1) != add ) {
+    const Type *t22 = phase->type( add->in(2) );
+    if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
+      set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
+      set_req(Offset, add->in(2));
+      return this;              // Made progress
+    }
+  }
+
+  return NULL;                  // No progress
+}
+
+//------------------------------bottom_type------------------------------------
+// Bottom-type is the pointer-type with unknown offset.
+const Type *AddPNode::bottom_type() const {
+  if (in(Address) == NULL)  return TypePtr::BOTTOM;
+  const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
+  if( !tp ) return Type::TOP;   // TOP input means TOP output
+  assert( in(Offset)->Opcode() != Op_ConP, "" );
+  const Type *t = in(Offset)->bottom_type();
+  if( t == Type::TOP )
+    return tp->add_offset(Type::OffsetTop);
+  const TypeX *tx = t->is_intptr_t();
+  intptr_t txoffset = Type::OffsetBot;
+  if (tx->is_con()) {   // Left input is an add of a constant?
+    txoffset = tx->get_con();
+    if (txoffset != (int)txoffset)
+      txoffset = Type::OffsetBot;   // oops:  add_offset will choke on it
+  }
+  return tp->add_offset(txoffset);
+}
+
+//------------------------------Value------------------------------------------
+const Type *AddPNode::Value( PhaseTransform *phase ) const {
+  // Either input is TOP ==> the result is TOP
+  const Type *t1 = phase->type( in(Address) );
+  const Type *t2 = phase->type( in(Offset) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t2 == Type::TOP ) return Type::TOP;
+
+  // Left input is a pointer
+  const TypePtr *p1 = t1->isa_ptr();
+  // Right input is an int
+  const TypeX *p2 = t2->is_intptr_t();
+  // Add 'em
+  intptr_t p2offset = Type::OffsetBot;
+  if (p2->is_con()) {   // Left input is an add of a constant?
+    p2offset = p2->get_con();
+    if (p2offset != (int)p2offset)
+      p2offset = Type::OffsetBot;   // oops:  add_offset will choke on it
+  }
+  return p1->add_offset(p2offset);
+}
+
+//------------------------Ideal_base_and_offset--------------------------------
+// Split an oop pointer into a base and offset.
+// (The offset might be Type::OffsetBot in the case of an array.)
+// Return the base, or NULL if failure.
+Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
+                                      // second return value:
+                                      intptr_t& offset) {
+  if (ptr->is_AddP()) {
+    Node* base = ptr->in(AddPNode::Base);
+    Node* addr = ptr->in(AddPNode::Address);
+    Node* offs = ptr->in(AddPNode::Offset);
+    if (base == addr || base->is_top()) {
+      offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
+      if (offset != Type::OffsetBot) {
+        return addr;
+      }
+    }
+  }
+  offset = Type::OffsetBot;
+  return NULL;
+}
+
+//------------------------------match_edge-------------------------------------
+// Do we Match on this edge index or not?  Do not match base pointer edge
+uint AddPNode::match_edge(uint idx) const {
+  return idx > Base;
+}
+
+//---------------------------mach_bottom_type----------------------------------
+// Utility function for use by ADLC.  Implements bottom_type for matched AddP.
+const Type *AddPNode::mach_bottom_type( const MachNode* n) {
+  Node* base = n->in(Base);
+  const Type *t = base->bottom_type();
+  if ( t == Type::TOP ) {
+    // an untyped pointer
+    return TypeRawPtr::BOTTOM;
+  }
+  const TypePtr* tp = t->isa_oopptr();
+  if ( tp == NULL )  return t;
+  if ( tp->_offset == TypePtr::OffsetBot )  return tp;
+
+  // We must carefully add up the various offsets...
+  intptr_t offset = 0;
+  const TypePtr* tptr = NULL;
+
+  uint numopnds = n->num_opnds();
+  uint index = n->oper_input_base();
+  for ( uint i = 1; i < numopnds; i++ ) {
+    MachOper *opnd = n->_opnds[i];
+    // Check for any interesting operand info.
+    // In particular, check for both memory and non-memory operands.
+    // %%%%% Clean this up: use xadd_offset
+    int con = opnd->constant();
+    if ( con == TypePtr::OffsetBot )  goto bottom_out;
+    offset += con;
+    con = opnd->constant_disp();
+    if ( con == TypePtr::OffsetBot )  goto bottom_out;
+    offset += con;
+    if( opnd->scale() != 0 ) goto bottom_out;
+
+    // Check each operand input edge.  Find the 1 allowed pointer
+    // edge.  Other edges must be index edges; track exact constant
+    // inputs and otherwise assume the worst.
+    for ( uint j = opnd->num_edges(); j > 0; j-- ) {
+      Node* edge = n->in(index++);
+      const Type*    et  = edge->bottom_type();
+      const TypeX*   eti = et->isa_intptr_t();
+      if ( eti == NULL ) {
+        // there must be one pointer among the operands
+        guarantee(tptr == NULL, "must be only one pointer operand");
+        tptr = et->isa_oopptr();
+        guarantee(tptr != NULL, "non-int operand must be pointer");
+        continue;
+      }
+      if ( eti->_hi != eti->_lo )  goto bottom_out;
+      offset += eti->_lo;
+    }
+  }
+  guarantee(tptr != NULL, "must be exactly one pointer operand");
+  return tptr->add_offset(offset);
+
+ bottom_out:
+  return tp->add_offset(TypePtr::OffsetBot);
+}
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+Node *OrINode::Identity( PhaseTransform *phase ) {
+  // x | x => x
+  if (phase->eqv(in(1), in(2))) {
+    return in(1);
+  }
+
+  return AddNode::Identity(phase);
+}
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
+// the logical operations the ring's ADD is really a logical OR function.
+// This also type-checks the inputs for sanity.  Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeInt *r0 = t0->is_int(); // Handy access
+  const TypeInt *r1 = t1->is_int();
+
+  // If both args are bool, can figure out better types
+  if ( r0 == TypeInt::BOOL ) {
+    if ( r1 == TypeInt::ONE) {
+      return TypeInt::ONE;
+    } else if ( r1 == TypeInt::BOOL ) {
+      return TypeInt::BOOL;
+    }
+  } else if ( r0 == TypeInt::ONE ) {
+    if ( r1 == TypeInt::BOOL ) {
+      return TypeInt::ONE;
+    }
+  }
+
+  // If either input is not a constant, just return all integers.
+  if( !r0->is_con() || !r1->is_con() )
+    return TypeInt::INT;        // Any integer, but still no symbols.
+
+  // Otherwise just OR them bits.
+  return TypeInt::make( r0->get_con() | r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+Node *OrLNode::Identity( PhaseTransform *phase ) {
+  // x | x => x
+  if (phase->eqv(in(1), in(2))) {
+    return in(1);
+  }
+
+  return AddNode::Identity(phase);
+}
+
+//------------------------------add_ring---------------------------------------
+const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeLong *r0 = t0->is_long(); // Handy access
+  const TypeLong *r1 = t1->is_long();
+
+  // If either input is not a constant, just return all integers.
+  if( !r0->is_con() || !r1->is_con() )
+    return TypeLong::LONG;      // Any integer, but still no symbols.
+
+  // Otherwise just OR them bits.
+  return TypeLong::make( r0->get_con() | r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
+// the logical operations the ring's ADD is really a logical OR function.
+// This also type-checks the inputs for sanity.  Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeInt *r0 = t0->is_int(); // Handy access
+  const TypeInt *r1 = t1->is_int();
+
+  // Complementing a boolean?
+  if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
+                               || r1 == TypeInt::BOOL))
+    return TypeInt::BOOL;
+
+  if( !r0->is_con() || !r1->is_con() ) // Not constants
+    return TypeInt::INT;        // Any integer, but still no symbols.
+
+  // Otherwise just XOR them bits.
+  return TypeInt::make( r0->get_con() ^ r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------add_ring---------------------------------------
+const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeLong *r0 = t0->is_long(); // Handy access
+  const TypeLong *r1 = t1->is_long();
+
+  // If either input is not a constant, just return all integers.
+  if( !r0->is_con() || !r1->is_con() )
+    return TypeLong::LONG;      // Any integer, but still no symbols.
+
+  // Otherwise just OR them bits.
+  return TypeLong::make( r0->get_con() ^ r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeInt *r0 = t0->is_int(); // Handy access
+  const TypeInt *r1 = t1->is_int();
+
+  // Otherwise just MAX them bits.
+  return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
+}
+
+//=============================================================================
+//------------------------------Idealize---------------------------------------
+// MINs show up in range-check loop limit calculations.  Look for
+// "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
+Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  Node *progress = NULL;
+  // Force a right-spline graph
+  Node *l = in(1);
+  Node *r = in(2);
+  // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
+  // to force a right-spline graph for the rest of MinINode::Ideal().
+  if( l->Opcode() == Op_MinI ) {
+    assert( l != l->in(1), "dead loop in MinINode::Ideal" );
+    r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
+    l = l->in(1);
+    set_req(1, l);
+    set_req(2, r);
+    return this;
+  }
+
+  // Get left input & constant
+  Node *x = l;
+  int x_off = 0;
+  if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
+      x->in(2)->is_Con() ) {
+    const Type *t = x->in(2)->bottom_type();
+    if( t == Type::TOP ) return NULL;  // No progress
+    x_off = t->is_int()->get_con();
+    x = x->in(1);
+  }
+
+  // Scan a right-spline-tree for MINs
+  Node *y = r;
+  int y_off = 0;
+  // Check final part of MIN tree
+  if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
+      y->in(2)->is_Con() ) {
+    const Type *t = y->in(2)->bottom_type();
+    if( t == Type::TOP ) return NULL;  // No progress
+    y_off = t->is_int()->get_con();
+    y = y->in(1);
+  }
+  if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
+    swap_edges(1, 2);
+    return this;
+  }
+
+
+  if( r->Opcode() == Op_MinI ) {
+    assert( r != r->in(2), "dead loop in MinINode::Ideal" );
+    y = r->in(1);
+    // Check final part of MIN tree
+    if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
+        y->in(2)->is_Con() ) {
+      const Type *t = y->in(2)->bottom_type();
+      if( t == Type::TOP ) return NULL;  // No progress
+      y_off = t->is_int()->get_con();
+      y = y->in(1);
+    }
+
+    if( x->_idx > y->_idx )
+      return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
+
+    // See if covers: MIN2(x+c0,MIN2(y+c1,z))
+    if( !phase->eqv(x,y) ) return NULL;
+    // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
+    // MIN2(x+c0 or x+c1 which less, z).
+    return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
+  } else {
+    // See if covers: MIN2(x+c0,y+c1)
+    if( !phase->eqv(x,y) ) return NULL;
+    // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
+    return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
+  }
+
+}
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
+  const TypeInt *r0 = t0->is_int(); // Handy access
+  const TypeInt *r1 = t1->is_int();
+
+  // Otherwise just MIN them bits.
+  return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
+}