diff src/share/vm/opto/macro.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children eac007780a58
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/macro.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,995 @@
+/*
+ * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_macro.cpp.incl"
+
+
+//
+// Replace any references to "oldref" in inputs to "use" with "newref".
+// Returns the number of replacements made.
+//
+int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
+  int nreplacements = 0;
+  uint req = use->req();
+  for (uint j = 0; j < use->len(); j++) {
+    Node *uin = use->in(j);
+    if (uin == oldref) {
+      if (j < req)
+        use->set_req(j, newref);
+      else
+        use->set_prec(j, newref);
+      nreplacements++;
+    } else if (j >= req && uin == NULL) {
+      break;
+    }
+  }
+  return nreplacements;
+}
+
+void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
+  // Copy debug information and adjust JVMState information
+  uint old_dbg_start = oldcall->tf()->domain()->cnt();
+  uint new_dbg_start = newcall->tf()->domain()->cnt();
+  int jvms_adj  = new_dbg_start - old_dbg_start;
+  assert (new_dbg_start == newcall->req(), "argument count mismatch");
+  for (uint i = old_dbg_start; i < oldcall->req(); i++) {
+    newcall->add_req(oldcall->in(i));
+  }
+  newcall->set_jvms(oldcall->jvms());
+  for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
+    jvms->set_map(newcall);
+    jvms->set_locoff(jvms->locoff()+jvms_adj);
+    jvms->set_stkoff(jvms->stkoff()+jvms_adj);
+    jvms->set_monoff(jvms->monoff()+jvms_adj);
+    jvms->set_endoff(jvms->endoff()+jvms_adj);
+  }
+}
+
+Node* PhaseMacroExpand::opt_iff(Node* region, Node* iff) {
+  IfNode *opt_iff = transform_later(iff)->as_If();
+
+  // Fast path taken; set region slot 2
+  Node *fast_taken = transform_later( new (C, 1) IfFalseNode(opt_iff) );
+  region->init_req(2,fast_taken); // Capture fast-control
+
+  // Fast path not-taken, i.e. slow path
+  Node *slow_taken = transform_later( new (C, 1) IfTrueNode(opt_iff) );
+  return slow_taken;
+}
+
+//--------------------copy_predefined_input_for_runtime_call--------------------
+void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
+  // Set fixed predefined input arguments
+  call->init_req( TypeFunc::Control, ctrl );
+  call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
+  call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
+  call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
+  call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
+}
+
+//------------------------------make_slow_call---------------------------------
+CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
+
+  // Slow-path call
+  int size = slow_call_type->domain()->cnt();
+ CallNode *call = leaf_name
+   ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
+   : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
+
+  // Slow path call has no side-effects, uses few values
+  copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
+  if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
+  if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
+  copy_call_debug_info(oldcall, call);
+  call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
+  _igvn.hash_delete(oldcall);
+  _igvn.subsume_node(oldcall, call);
+  transform_later(call);
+
+  return call;
+}
+
+void PhaseMacroExpand::extract_call_projections(CallNode *call) {
+  _fallthroughproj = NULL;
+  _fallthroughcatchproj = NULL;
+  _ioproj_fallthrough = NULL;
+  _ioproj_catchall = NULL;
+  _catchallcatchproj = NULL;
+  _memproj_fallthrough = NULL;
+  _memproj_catchall = NULL;
+  _resproj = NULL;
+  for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
+    ProjNode *pn = call->fast_out(i)->as_Proj();
+    switch (pn->_con) {
+      case TypeFunc::Control:
+      {
+        // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
+        _fallthroughproj = pn;
+        DUIterator_Fast jmax, j = pn->fast_outs(jmax);
+        const Node *cn = pn->fast_out(j);
+        if (cn->is_Catch()) {
+          ProjNode *cpn = NULL;
+          for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
+            cpn = cn->fast_out(k)->as_Proj();
+            assert(cpn->is_CatchProj(), "must be a CatchProjNode");
+            if (cpn->_con == CatchProjNode::fall_through_index)
+              _fallthroughcatchproj = cpn;
+            else {
+              assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
+              _catchallcatchproj = cpn;
+            }
+          }
+        }
+        break;
+      }
+      case TypeFunc::I_O:
+        if (pn->_is_io_use)
+          _ioproj_catchall = pn;
+        else
+          _ioproj_fallthrough = pn;
+        break;
+      case TypeFunc::Memory:
+        if (pn->_is_io_use)
+          _memproj_catchall = pn;
+        else
+          _memproj_fallthrough = pn;
+        break;
+      case TypeFunc::Parms:
+        _resproj = pn;
+        break;
+      default:
+        assert(false, "unexpected projection from allocation node.");
+    }
+  }
+
+}
+
+
+//---------------------------set_eden_pointers-------------------------
+void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
+  if (UseTLAB) {                // Private allocation: load from TLS
+    Node* thread = transform_later(new (C, 1) ThreadLocalNode());
+    int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
+    int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
+    eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
+    eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
+  } else {                      // Shared allocation: load from globals
+    CollectedHeap* ch = Universe::heap();
+    address top_adr = (address)ch->top_addr();
+    address end_adr = (address)ch->end_addr();
+    eden_top_adr = makecon(TypeRawPtr::make(top_adr));
+    eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
+  }
+}
+
+
+Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
+  Node* adr = basic_plus_adr(base, offset);
+  const TypePtr* adr_type = TypeRawPtr::BOTTOM;
+  Node* value = LoadNode::make(C, ctl, mem, adr, adr_type, value_type, bt);
+  transform_later(value);
+  return value;
+}
+
+
+Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
+  Node* adr = basic_plus_adr(base, offset);
+  mem = StoreNode::make(C, ctl, mem, adr, NULL, value, bt);
+  transform_later(mem);
+  return mem;
+}
+
+//=============================================================================
+//
+//                              A L L O C A T I O N
+//
+// Allocation attempts to be fast in the case of frequent small objects.
+// It breaks down like this:
+//
+// 1) Size in doublewords is computed.  This is a constant for objects and
+// variable for most arrays.  Doubleword units are used to avoid size
+// overflow of huge doubleword arrays.  We need doublewords in the end for
+// rounding.
+//
+// 2) Size is checked for being 'too large'.  Too-large allocations will go
+// the slow path into the VM.  The slow path can throw any required
+// exceptions, and does all the special checks for very large arrays.  The
+// size test can constant-fold away for objects.  For objects with
+// finalizers it constant-folds the otherway: you always go slow with
+// finalizers.
+//
+// 3) If NOT using TLABs, this is the contended loop-back point.
+// Load-Locked the heap top.  If using TLABs normal-load the heap top.
+//
+// 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
+// NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
+// "size*8" we always enter the VM, where "largish" is a constant picked small
+// enough that there's always space between the eden max and 4Gig (old space is
+// there so it's quite large) and large enough that the cost of entering the VM
+// is dwarfed by the cost to initialize the space.
+//
+// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
+// down.  If contended, repeat at step 3.  If using TLABs normal-store
+// adjusted heap top back down; there is no contention.
+//
+// 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
+// fields.
+//
+// 7) Merge with the slow-path; cast the raw memory pointer to the correct
+// oop flavor.
+//
+//=============================================================================
+// FastAllocateSizeLimit value is in DOUBLEWORDS.
+// Allocations bigger than this always go the slow route.
+// This value must be small enough that allocation attempts that need to
+// trigger exceptions go the slow route.  Also, it must be small enough so
+// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
+//=============================================================================j//
+// %%% Here is an old comment from parseHelper.cpp; is it outdated?
+// The allocator will coalesce int->oop copies away.  See comment in
+// coalesce.cpp about how this works.  It depends critically on the exact
+// code shape produced here, so if you are changing this code shape
+// make sure the GC info for the heap-top is correct in and around the
+// slow-path call.
+//
+
+void PhaseMacroExpand::expand_allocate_common(
+            AllocateNode* alloc, // allocation node to be expanded
+            Node* length,  // array length for an array allocation
+            const TypeFunc* slow_call_type, // Type of slow call
+            address slow_call_address  // Address of slow call
+    )
+{
+
+  Node* ctrl = alloc->in(TypeFunc::Control);
+  Node* mem  = alloc->in(TypeFunc::Memory);
+  Node* i_o  = alloc->in(TypeFunc::I_O);
+  Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
+  Node* klass_node        = alloc->in(AllocateNode::KlassNode);
+  Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
+
+  Node* eden_top_adr;
+  Node* eden_end_adr;
+  set_eden_pointers(eden_top_adr, eden_end_adr);
+
+  uint raw_idx = C->get_alias_index(TypeRawPtr::BOTTOM);
+  assert(ctrl != NULL, "must have control");
+
+  // Load Eden::end.  Loop invariant and hoisted.
+  //
+  // Note: We set the control input on "eden_end" and "old_eden_top" when using
+  //       a TLAB to work around a bug where these values were being moved across
+  //       a safepoint.  These are not oops, so they cannot be include in the oop
+  //       map, but the can be changed by a GC.   The proper way to fix this would
+  //       be to set the raw memory state when generating a  SafepointNode.  However
+  //       this will require extensive changes to the loop optimization in order to
+  //       prevent a degradation of the optimization.
+  //       See comment in memnode.hpp, around line 227 in class LoadPNode.
+  Node* eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
+
+  // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
+  // they will not be used if "always_slow" is set
+  enum { slow_result_path = 1, fast_result_path = 2 };
+  Node *result_region;
+  Node *result_phi_rawmem;
+  Node *result_phi_rawoop;
+  Node *result_phi_i_o;
+
+  // The initial slow comparison is a size check, the comparison
+  // we want to do is a BoolTest::gt
+  bool always_slow = false;
+  int tv = _igvn.find_int_con(initial_slow_test, -1);
+  if (tv >= 0) {
+    always_slow = (tv == 1);
+    initial_slow_test = NULL;
+  } else {
+    initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
+  }
+
+  if (DTraceAllocProbes) {
+    // Force slow-path allocation
+    always_slow = true;
+    initial_slow_test = NULL;
+  }
+
+  enum { too_big_or_final_path = 1, need_gc_path = 2 };
+  Node *slow_region = NULL;
+  Node *toobig_false = ctrl;
+
+  assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
+  // generate the initial test if necessary
+  if (initial_slow_test != NULL ) {
+    slow_region = new (C, 3) RegionNode(3);
+
+    // Now make the initial failure test.  Usually a too-big test but
+    // might be a TRUE for finalizers or a fancy class check for
+    // newInstance0.
+    IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
+    transform_later(toobig_iff);
+    // Plug the failing-too-big test into the slow-path region
+    Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
+    transform_later(toobig_true);
+    slow_region    ->init_req( too_big_or_final_path, toobig_true );
+    toobig_false = new (C, 1) IfFalseNode( toobig_iff );
+    transform_later(toobig_false);
+  } else {         // No initial test, just fall into next case
+    toobig_false = ctrl;
+    debug_only(slow_region = NodeSentinel);
+  }
+
+  Node *slow_mem = mem;  // save the current memory state for slow path
+  // generate the fast allocation code unless we know that the initial test will always go slow
+  if (!always_slow) {
+    // allocate the Region and Phi nodes for the result
+    result_region = new (C, 3) RegionNode(3);
+    result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
+    result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
+    result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
+
+    // We need a Region for the loop-back contended case.
+    enum { fall_in_path = 1, contended_loopback_path = 2 };
+    Node *contended_region;
+    Node *contended_phi_rawmem;
+    if( UseTLAB ) {
+      contended_region = toobig_false;
+      contended_phi_rawmem = mem;
+    } else {
+      contended_region = new (C, 3) RegionNode(3);
+      contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
+      // Now handle the passing-too-big test.  We fall into the contended
+      // loop-back merge point.
+      contended_region    ->init_req( fall_in_path, toobig_false );
+      contended_phi_rawmem->init_req( fall_in_path, mem );
+      transform_later(contended_region);
+      transform_later(contended_phi_rawmem);
+    }
+
+    // Load(-locked) the heap top.
+    // See note above concerning the control input when using a TLAB
+    Node *old_eden_top = UseTLAB
+      ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
+      : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
+
+    transform_later(old_eden_top);
+    // Add to heap top to get a new heap top
+    Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
+    transform_later(new_eden_top);
+    // Check for needing a GC; compare against heap end
+    Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
+    transform_later(needgc_cmp);
+    Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
+    transform_later(needgc_bol);
+    IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
+    transform_later(needgc_iff);
+
+    // Plug the failing-heap-space-need-gc test into the slow-path region
+    Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
+    transform_later(needgc_true);
+    if( initial_slow_test ) {
+      slow_region    ->init_req( need_gc_path, needgc_true );
+      // This completes all paths into the slow merge point
+      transform_later(slow_region);
+    } else {                      // No initial slow path needed!
+      // Just fall from the need-GC path straight into the VM call.
+      slow_region    = needgc_true;
+    }
+    // No need for a GC.  Setup for the Store-Conditional
+    Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
+    transform_later(needgc_false);
+
+    // Grab regular I/O before optional prefetch may change it.
+    // Slow-path does no I/O so just set it to the original I/O.
+    result_phi_i_o->init_req( slow_result_path, i_o );
+
+    i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
+                              old_eden_top, new_eden_top, length);
+
+    // Store (-conditional) the modified eden top back down.
+    // StorePConditional produces flags for a test PLUS a modified raw
+    // memory state.
+    Node *store_eden_top;
+    Node *fast_oop_ctrl;
+    if( UseTLAB ) {
+      store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
+      transform_later(store_eden_top);
+      fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
+    } else {
+      store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
+      transform_later(store_eden_top);
+      Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
+      transform_later(contention_check);
+      store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
+      transform_later(store_eden_top);
+
+      // If not using TLABs, check to see if there was contention.
+      IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
+      transform_later(contention_iff);
+      Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
+      transform_later(contention_true);
+      // If contention, loopback and try again.
+      contended_region->init_req( contended_loopback_path, contention_true );
+      contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
+
+      // Fast-path succeeded with no contention!
+      Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
+      transform_later(contention_false);
+      fast_oop_ctrl = contention_false;
+    }
+
+    // Rename successful fast-path variables to make meaning more obvious
+    Node* fast_oop        = old_eden_top;
+    Node* fast_oop_rawmem = store_eden_top;
+    fast_oop_rawmem = initialize_object(alloc,
+                                        fast_oop_ctrl, fast_oop_rawmem, fast_oop,
+                                        klass_node, length, size_in_bytes);
+
+    if (ExtendedDTraceProbes) {
+      // Slow-path call
+      int size = TypeFunc::Parms + 2;
+      CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
+                                                      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
+                                                      "dtrace_object_alloc",
+                                                      TypeRawPtr::BOTTOM);
+
+      // Get base of thread-local storage area
+      Node* thread = new (C, 1) ThreadLocalNode();
+      transform_later(thread);
+
+      call->init_req(TypeFunc::Parms+0, thread);
+      call->init_req(TypeFunc::Parms+1, fast_oop);
+      call->init_req( TypeFunc::Control, fast_oop_ctrl );
+      call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
+      call->init_req( TypeFunc::Memory , fast_oop_rawmem );
+      call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
+      call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
+      transform_later(call);
+      fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
+      transform_later(fast_oop_ctrl);
+      fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
+      transform_later(fast_oop_rawmem);
+    }
+
+    // Plug in the successful fast-path into the result merge point
+    result_region    ->init_req( fast_result_path, fast_oop_ctrl );
+    result_phi_rawoop->init_req( fast_result_path, fast_oop );
+    result_phi_i_o   ->init_req( fast_result_path, i_o );
+    result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
+  } else {
+    slow_region = ctrl;
+  }
+
+  // Generate slow-path call
+  CallNode *call = new (C, slow_call_type->domain()->cnt())
+    CallStaticJavaNode(slow_call_type, slow_call_address,
+                       OptoRuntime::stub_name(slow_call_address),
+                       alloc->jvms()->bci(),
+                       TypePtr::BOTTOM);
+  call->init_req( TypeFunc::Control, slow_region );
+  call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
+  call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
+  call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
+  call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
+
+  call->init_req(TypeFunc::Parms+0, klass_node);
+  if (length != NULL) {
+    call->init_req(TypeFunc::Parms+1, length);
+  }
+
+  // Copy debug information and adjust JVMState information, then replace
+  // allocate node with the call
+  copy_call_debug_info((CallNode *) alloc,  call);
+  if (!always_slow) {
+    call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
+  }
+  _igvn.hash_delete(alloc);
+  _igvn.subsume_node(alloc, call);
+  transform_later(call);
+
+  // Identify the output projections from the allocate node and
+  // adjust any references to them.
+  // The control and io projections look like:
+  //
+  //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
+  //  Allocate                   Catch
+  //        ^---Proj(io) <-------+   ^---CatchProj(io)
+  //
+  //  We are interested in the CatchProj nodes.
+  //
+  extract_call_projections(call);
+
+  // An allocate node has separate memory projections for the uses on the control and i_o paths
+  // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
+  if (!always_slow && _memproj_fallthrough != NULL) {
+    for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
+      Node *use = _memproj_fallthrough->fast_out(i);
+      _igvn.hash_delete(use);
+      imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
+      _igvn._worklist.push(use);
+      // back up iterator
+      --i;
+    }
+  }
+  // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
+  // we end up with a call that has only 1 memory projection
+  if (_memproj_catchall != NULL ) {
+    if (_memproj_fallthrough == NULL) {
+      _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
+      transform_later(_memproj_fallthrough);
+    }
+    for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
+      Node *use = _memproj_catchall->fast_out(i);
+      _igvn.hash_delete(use);
+      imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
+      _igvn._worklist.push(use);
+      // back up iterator
+      --i;
+    }
+  }
+
+  mem = result_phi_rawmem;
+
+  // An allocate node has separate i_o projections for the uses on the control and i_o paths
+  // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
+  if (_ioproj_fallthrough == NULL) {
+    _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
+    transform_later(_ioproj_fallthrough);
+  } else if (!always_slow) {
+    for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
+      Node *use = _ioproj_fallthrough->fast_out(i);
+
+      _igvn.hash_delete(use);
+      imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
+      _igvn._worklist.push(use);
+      // back up iterator
+      --i;
+    }
+  }
+  // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
+  // we end up with a call that has only 1 control projection
+  if (_ioproj_catchall != NULL ) {
+    for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
+      Node *use = _ioproj_catchall->fast_out(i);
+      _igvn.hash_delete(use);
+      imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
+      _igvn._worklist.push(use);
+      // back up iterator
+      --i;
+    }
+  }
+
+  // if we generated only a slow call, we are done
+  if (always_slow)
+    return;
+
+
+  if (_fallthroughcatchproj != NULL) {
+    ctrl = _fallthroughcatchproj->clone();
+    transform_later(ctrl);
+    _igvn.hash_delete(_fallthroughcatchproj);
+    _igvn.subsume_node(_fallthroughcatchproj, result_region);
+  } else {
+    ctrl = top();
+  }
+  Node *slow_result;
+  if (_resproj == NULL) {
+    // no uses of the allocation result
+    slow_result = top();
+  } else {
+    slow_result = _resproj->clone();
+    transform_later(slow_result);
+    _igvn.hash_delete(_resproj);
+    _igvn.subsume_node(_resproj, result_phi_rawoop);
+  }
+
+  // Plug slow-path into result merge point
+  result_region    ->init_req( slow_result_path, ctrl );
+  result_phi_rawoop->init_req( slow_result_path, slow_result);
+  result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
+  transform_later(result_region);
+  transform_later(result_phi_rawoop);
+  transform_later(result_phi_rawmem);
+  transform_later(result_phi_i_o);
+  // This completes all paths into the result merge point
+}
+
+
+// Helper for PhaseMacroExpand::expand_allocate_common.
+// Initializes the newly-allocated storage.
+Node*
+PhaseMacroExpand::initialize_object(AllocateNode* alloc,
+                                    Node* control, Node* rawmem, Node* object,
+                                    Node* klass_node, Node* length,
+                                    Node* size_in_bytes) {
+  InitializeNode* init = alloc->initialization();
+  // Store the klass & mark bits
+  Node* mark_node = NULL;
+  // For now only enable fast locking for non-array types
+  if (UseBiasedLocking && (length == NULL)) {
+    mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
+  } else {
+    mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
+  }
+  rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
+  rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
+  int header_size = alloc->minimum_header_size();  // conservatively small
+
+  // Array length
+  if (length != NULL) {         // Arrays need length field
+    rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
+    // conservatively small header size:
+    header_size = sizeof(arrayOopDesc);
+    ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
+    if (k->is_array_klass())    // we know the exact header size in most cases:
+      header_size = Klass::layout_helper_header_size(k->layout_helper());
+  }
+
+  // Clear the object body, if necessary.
+  if (init == NULL) {
+    // The init has somehow disappeared; be cautious and clear everything.
+    //
+    // This can happen if a node is allocated but an uncommon trap occurs
+    // immediately.  In this case, the Initialize gets associated with the
+    // trap, and may be placed in a different (outer) loop, if the Allocate
+    // is in a loop.  If (this is rare) the inner loop gets unrolled, then
+    // there can be two Allocates to one Initialize.  The answer in all these
+    // edge cases is safety first.  It is always safe to clear immediately
+    // within an Allocate, and then (maybe or maybe not) clear some more later.
+    if (!ZeroTLAB)
+      rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
+                                            header_size, size_in_bytes,
+                                            &_igvn);
+  } else {
+    if (!init->is_complete()) {
+      // Try to win by zeroing only what the init does not store.
+      // We can also try to do some peephole optimizations,
+      // such as combining some adjacent subword stores.
+      rawmem = init->complete_stores(control, rawmem, object,
+                                     header_size, size_in_bytes, &_igvn);
+    }
+
+    // We have no more use for this link, since the AllocateNode goes away:
+    init->set_req(InitializeNode::RawAddress, top());
+    // (If we keep the link, it just confuses the register allocator,
+    // who thinks he sees a real use of the address by the membar.)
+  }
+
+  return rawmem;
+}
+
+// Generate prefetch instructions for next allocations.
+Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
+                                        Node*& contended_phi_rawmem,
+                                        Node* old_eden_top, Node* new_eden_top,
+                                        Node* length) {
+   if( UseTLAB && AllocatePrefetchStyle == 2 ) {
+      // Generate prefetch allocation with watermark check.
+      // As an allocation hits the watermark, we will prefetch starting
+      // at a "distance" away from watermark.
+      enum { fall_in_path = 1, pf_path = 2 };
+
+      Node *pf_region = new (C, 3) RegionNode(3);
+      Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
+                                                TypeRawPtr::BOTTOM );
+      // I/O is used for Prefetch
+      Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
+
+      Node *thread = new (C, 1) ThreadLocalNode();
+      transform_later(thread);
+
+      Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
+                   _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
+      transform_later(eden_pf_adr);
+
+      Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
+                                   contended_phi_rawmem, eden_pf_adr,
+                                   TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
+      transform_later(old_pf_wm);
+
+      // check against new_eden_top
+      Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
+      transform_later(need_pf_cmp);
+      Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
+      transform_later(need_pf_bol);
+      IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
+                                       PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
+      transform_later(need_pf_iff);
+
+      // true node, add prefetchdistance
+      Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
+      transform_later(need_pf_true);
+
+      Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
+      transform_later(need_pf_false);
+
+      Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
+                                    _igvn.MakeConX(AllocatePrefetchDistance) );
+      transform_later(new_pf_wmt );
+      new_pf_wmt->set_req(0, need_pf_true);
+
+      Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
+                                       contended_phi_rawmem, eden_pf_adr,
+                                       TypeRawPtr::BOTTOM, new_pf_wmt );
+      transform_later(store_new_wmt);
+
+      // adding prefetches
+      pf_phi_abio->init_req( fall_in_path, i_o );
+
+      Node *prefetch_adr;
+      Node *prefetch;
+      uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
+      uint step_size = AllocatePrefetchStepSize;
+      uint distance = 0;
+
+      for ( uint i = 0; i < lines; i++ ) {
+        prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
+                                            _igvn.MakeConX(distance) );
+        transform_later(prefetch_adr);
+        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
+        transform_later(prefetch);
+        distance += step_size;
+        i_o = prefetch;
+      }
+      pf_phi_abio->set_req( pf_path, i_o );
+
+      pf_region->init_req( fall_in_path, need_pf_false );
+      pf_region->init_req( pf_path, need_pf_true );
+
+      pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
+      pf_phi_rawmem->init_req( pf_path, store_new_wmt );
+
+      transform_later(pf_region);
+      transform_later(pf_phi_rawmem);
+      transform_later(pf_phi_abio);
+
+      needgc_false = pf_region;
+      contended_phi_rawmem = pf_phi_rawmem;
+      i_o = pf_phi_abio;
+   } else if( AllocatePrefetchStyle > 0 ) {
+      // Insert a prefetch for each allocation only on the fast-path
+      Node *prefetch_adr;
+      Node *prefetch;
+      // Generate several prefetch instructions only for arrays.
+      uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
+      uint step_size = AllocatePrefetchStepSize;
+      uint distance = AllocatePrefetchDistance;
+      for ( uint i = 0; i < lines; i++ ) {
+        prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
+                                            _igvn.MakeConX(distance) );
+        transform_later(prefetch_adr);
+        prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
+        // Do not let it float too high, since if eden_top == eden_end,
+        // both might be null.
+        if( i == 0 ) { // Set control for first prefetch, next follows it
+          prefetch->init_req(0, needgc_false);
+        }
+        transform_later(prefetch);
+        distance += step_size;
+        i_o = prefetch;
+      }
+   }
+   return i_o;
+}
+
+
+void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
+  expand_allocate_common(alloc, NULL,
+                         OptoRuntime::new_instance_Type(),
+                         OptoRuntime::new_instance_Java());
+}
+
+void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
+  Node* length = alloc->in(AllocateNode::ALength);
+  expand_allocate_common(alloc, length,
+                         OptoRuntime::new_array_Type(),
+                         OptoRuntime::new_array_Java());
+}
+
+
+// we have determined that this lock/unlock can be eliminated, we simply
+// eliminate the node without expanding it.
+//
+// Note:  The membar's associated with the lock/unlock are currently not
+//        eliminated.  This should be investigated as a future enhancement.
+//
+void PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
+  Node* mem = alock->in(TypeFunc::Memory);
+
+  // The memory projection from a lock/unlock is RawMem
+  // The input to a Lock is merged memory, so extract its RawMem input
+  // (unless the MergeMem has been optimized away.)
+  if (alock->is_Lock()) {
+    if (mem->is_MergeMem())
+      mem = mem->as_MergeMem()->in(Compile::AliasIdxRaw);
+  }
+
+  extract_call_projections(alock);
+  // There are 2 projections from the lock.  The lock node will
+  // be deleted when its last use is subsumed below.
+  assert(alock->outcnt() == 2 && _fallthroughproj != NULL &&
+          _memproj_fallthrough != NULL, "Unexpected projections from Lock/Unlock");
+  _igvn.hash_delete(_fallthroughproj);
+  _igvn.subsume_node(_fallthroughproj, alock->in(TypeFunc::Control));
+  _igvn.hash_delete(_memproj_fallthrough);
+  _igvn.subsume_node(_memproj_fallthrough, mem);
+  return;
+}
+
+
+//------------------------------expand_lock_node----------------------
+void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
+
+  Node* ctrl = lock->in(TypeFunc::Control);
+  Node* mem = lock->in(TypeFunc::Memory);
+  Node* obj = lock->obj_node();
+  Node* box = lock->box_node();
+  Node *flock = lock->fastlock_node();
+
+  if (lock->is_eliminated()) {
+    eliminate_locking_node(lock);
+    return;
+  }
+
+  // Make the merge point
+  Node *region = new (C, 3) RegionNode(3);
+
+  Node *bol = transform_later(new (C, 2) BoolNode(flock,BoolTest::ne));
+  Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
+  // Optimize test; set region slot 2
+  Node *slow_path = opt_iff(region,iff);
+
+  // Make slow path call
+  CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
+
+  extract_call_projections(call);
+
+  // Slow path can only throw asynchronous exceptions, which are always
+  // de-opted.  So the compiler thinks the slow-call can never throw an
+  // exception.  If it DOES throw an exception we would need the debug
+  // info removed first (since if it throws there is no monitor).
+  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
+           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
+
+  // Capture slow path
+  // disconnect fall-through projection from call and create a new one
+  // hook up users of fall-through projection to region
+  Node *slow_ctrl = _fallthroughproj->clone();
+  transform_later(slow_ctrl);
+  _igvn.hash_delete(_fallthroughproj);
+  _fallthroughproj->disconnect_inputs(NULL);
+  region->init_req(1, slow_ctrl);
+  // region inputs are now complete
+  transform_later(region);
+  _igvn.subsume_node(_fallthroughproj, region);
+
+  // create a Phi for the memory state
+  Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
+  Node *memproj = transform_later( new (C, 1) ProjNode(call, TypeFunc::Memory) );
+  mem_phi->init_req(1, memproj );
+  mem_phi->init_req(2, mem);
+  transform_later(mem_phi);
+    _igvn.hash_delete(_memproj_fallthrough);
+  _igvn.subsume_node(_memproj_fallthrough, mem_phi);
+
+
+}
+
+//------------------------------expand_unlock_node----------------------
+void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
+
+  Node *ctrl = unlock->in(TypeFunc::Control);
+  Node* mem = unlock->in(TypeFunc::Memory);
+  Node* obj = unlock->obj_node();
+  Node* box = unlock->box_node();
+
+
+  if (unlock->is_eliminated()) {
+    eliminate_locking_node(unlock);
+    return;
+  }
+
+  // No need for a null check on unlock
+
+  // Make the merge point
+  RegionNode *region = new (C, 3) RegionNode(3);
+
+  FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
+  funlock = transform_later( funlock )->as_FastUnlock();
+  Node *bol = transform_later(new (C, 2) BoolNode(funlock,BoolTest::ne));
+  Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
+  // Optimize test; set region slot 2
+  Node *slow_path = opt_iff(region,iff);
+
+  CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
+
+  extract_call_projections(call);
+
+  assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
+           _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
+
+  // No exceptions for unlocking
+  // Capture slow path
+  // disconnect fall-through projection from call and create a new one
+  // hook up users of fall-through projection to region
+  Node *slow_ctrl = _fallthroughproj->clone();
+  transform_later(slow_ctrl);
+  _igvn.hash_delete(_fallthroughproj);
+  _fallthroughproj->disconnect_inputs(NULL);
+  region->init_req(1, slow_ctrl);
+  // region inputs are now complete
+  transform_later(region);
+  _igvn.subsume_node(_fallthroughproj, region);
+
+  // create a Phi for the memory state
+  Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
+  Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
+  mem_phi->init_req(1, memproj );
+  mem_phi->init_req(2, mem);
+  transform_later(mem_phi);
+    _igvn.hash_delete(_memproj_fallthrough);
+  _igvn.subsume_node(_memproj_fallthrough, mem_phi);
+
+
+}
+
+//------------------------------expand_macro_nodes----------------------
+//  Returns true if a failure occurred.
+bool PhaseMacroExpand::expand_macro_nodes() {
+  if (C->macro_count() == 0)
+    return false;
+  // Make sure expansion will not cause node limit to be exceeded.  Worst case is a
+  // macro node gets expanded into about 50 nodes.  Allow 50% more for optimization
+  if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
+    return true;
+  // expand "macro" nodes
+  // nodes are removed from the macro list as they are processed
+  while (C->macro_count() > 0) {
+    Node * n = C->macro_node(0);
+    assert(n->is_macro(), "only macro nodes expected here");
+    if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
+      // node is unreachable, so don't try to expand it
+      C->remove_macro_node(n);
+      continue;
+    }
+    switch (n->class_id()) {
+    case Node::Class_Allocate:
+      expand_allocate(n->as_Allocate());
+      break;
+    case Node::Class_AllocateArray:
+      expand_allocate_array(n->as_AllocateArray());
+      break;
+    case Node::Class_Lock:
+      expand_lock_node(n->as_Lock());
+      break;
+    case Node::Class_Unlock:
+      expand_unlock_node(n->as_Unlock());
+      break;
+    default:
+      assert(false, "unknown node type in macro list");
+    }
+    if (C->failing())  return true;
+  }
+  _igvn.optimize();
+  return false;
+}