diff src/share/vm/opto/node.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 953939ef62ab
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/node.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1919 @@
+/*
+ * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_node.cpp.incl"
+
+class RegMask;
+// #include "phase.hpp"
+class PhaseTransform;
+class PhaseGVN;
+
+// Arena we are currently building Nodes in
+const uint Node::NotAMachineReg = 0xffff0000;
+
+#ifndef PRODUCT
+extern int nodes_created;
+#endif
+
+#ifdef ASSERT
+
+//-------------------------- construct_node------------------------------------
+// Set a breakpoint here to identify where a particular node index is built.
+void Node::verify_construction() {
+  _debug_orig = NULL;
+  int old_debug_idx = Compile::debug_idx();
+  int new_debug_idx = old_debug_idx+1;
+  if (new_debug_idx > 0) {
+    // Arrange that the lowest five decimal digits of _debug_idx
+    // will repeat thos of _idx.  In case this is somehow pathological,
+    // we continue to assign negative numbers (!) consecutively.
+    const int mod = 100000;
+    int bump = (int)(_idx - new_debug_idx) % mod;
+    if (bump < 0)  bump += mod;
+    assert(bump >= 0 && bump < mod, "");
+    new_debug_idx += bump;
+  }
+  Compile::set_debug_idx(new_debug_idx);
+  set_debug_idx( new_debug_idx );
+  assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
+  if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
+    tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
+    BREAKPOINT;
+  }
+#if OPTO_DU_ITERATOR_ASSERT
+  _last_del = NULL;
+  _del_tick = 0;
+#endif
+  _hash_lock = 0;
+}
+
+
+// #ifdef ASSERT ...
+
+#if OPTO_DU_ITERATOR_ASSERT
+void DUIterator_Common::sample(const Node* node) {
+  _vdui     = VerifyDUIterators;
+  _node     = node;
+  _outcnt   = node->_outcnt;
+  _del_tick = node->_del_tick;
+  _last     = NULL;
+}
+
+void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
+  assert(_node     == node, "consistent iterator source");
+  assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
+}
+
+void DUIterator_Common::verify_resync() {
+  // Ensure that the loop body has just deleted the last guy produced.
+  const Node* node = _node;
+  // Ensure that at least one copy of the last-seen edge was deleted.
+  // Note:  It is OK to delete multiple copies of the last-seen edge.
+  // Unfortunately, we have no way to verify that all the deletions delete
+  // that same edge.  On this point we must use the Honor System.
+  assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
+  assert(node->_last_del == _last, "must have deleted the edge just produced");
+  // We liked this deletion, so accept the resulting outcnt and tick.
+  _outcnt   = node->_outcnt;
+  _del_tick = node->_del_tick;
+}
+
+void DUIterator_Common::reset(const DUIterator_Common& that) {
+  if (this == &that)  return;  // ignore assignment to self
+  if (!_vdui) {
+    // We need to initialize everything, overwriting garbage values.
+    _last = that._last;
+    _vdui = that._vdui;
+  }
+  // Note:  It is legal (though odd) for an iterator over some node x
+  // to be reassigned to iterate over another node y.  Some doubly-nested
+  // progress loops depend on being able to do this.
+  const Node* node = that._node;
+  // Re-initialize everything, except _last.
+  _node     = node;
+  _outcnt   = node->_outcnt;
+  _del_tick = node->_del_tick;
+}
+
+void DUIterator::sample(const Node* node) {
+  DUIterator_Common::sample(node);      // Initialize the assertion data.
+  _refresh_tick = 0;                    // No refreshes have happened, as yet.
+}
+
+void DUIterator::verify(const Node* node, bool at_end_ok) {
+  DUIterator_Common::verify(node, at_end_ok);
+  assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
+}
+
+void DUIterator::verify_increment() {
+  if (_refresh_tick & 1) {
+    // We have refreshed the index during this loop.
+    // Fix up _idx to meet asserts.
+    if (_idx > _outcnt)  _idx = _outcnt;
+  }
+  verify(_node, true);
+}
+
+void DUIterator::verify_resync() {
+  // Note:  We do not assert on _outcnt, because insertions are OK here.
+  DUIterator_Common::verify_resync();
+  // Make sure we are still in sync, possibly with no more out-edges:
+  verify(_node, true);
+}
+
+void DUIterator::reset(const DUIterator& that) {
+  if (this == &that)  return;  // self assignment is always a no-op
+  assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
+  assert(that._idx          == 0, "assign only the result of Node::outs()");
+  assert(_idx               == that._idx, "already assigned _idx");
+  if (!_vdui) {
+    // We need to initialize everything, overwriting garbage values.
+    sample(that._node);
+  } else {
+    DUIterator_Common::reset(that);
+    if (_refresh_tick & 1) {
+      _refresh_tick++;                  // Clear the "was refreshed" flag.
+    }
+    assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
+  }
+}
+
+void DUIterator::refresh() {
+  DUIterator_Common::sample(_node);     // Re-fetch assertion data.
+  _refresh_tick |= 1;                   // Set the "was refreshed" flag.
+}
+
+void DUIterator::verify_finish() {
+  // If the loop has killed the node, do not require it to re-run.
+  if (_node->_outcnt == 0)  _refresh_tick &= ~1;
+  // If this assert triggers, it means that a loop used refresh_out_pos
+  // to re-synch an iteration index, but the loop did not correctly
+  // re-run itself, using a "while (progress)" construct.
+  // This iterator enforces the rule that you must keep trying the loop
+  // until it "runs clean" without any need for refreshing.
+  assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
+}
+
+
+void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
+  DUIterator_Common::verify(node, at_end_ok);
+  Node** out    = node->_out;
+  uint   cnt    = node->_outcnt;
+  assert(cnt == _outcnt, "no insertions allowed");
+  assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
+  // This last check is carefully designed to work for NO_OUT_ARRAY.
+}
+
+void DUIterator_Fast::verify_limit() {
+  const Node* node = _node;
+  verify(node, true);
+  assert(_outp == node->_out + node->_outcnt, "limit still correct");
+}
+
+void DUIterator_Fast::verify_resync() {
+  const Node* node = _node;
+  if (_outp == node->_out + _outcnt) {
+    // Note that the limit imax, not the pointer i, gets updated with the
+    // exact count of deletions.  (For the pointer it's always "--i".)
+    assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
+    // This is a limit pointer, with a name like "imax".
+    // Fudge the _last field so that the common assert will be happy.
+    _last = (Node*) node->_last_del;
+    DUIterator_Common::verify_resync();
+  } else {
+    assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
+    // A normal internal pointer.
+    DUIterator_Common::verify_resync();
+    // Make sure we are still in sync, possibly with no more out-edges:
+    verify(node, true);
+  }
+}
+
+void DUIterator_Fast::verify_relimit(uint n) {
+  const Node* node = _node;
+  assert((int)n > 0, "use imax -= n only with a positive count");
+  // This must be a limit pointer, with a name like "imax".
+  assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
+  // The reported number of deletions must match what the node saw.
+  assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
+  // Fudge the _last field so that the common assert will be happy.
+  _last = (Node*) node->_last_del;
+  DUIterator_Common::verify_resync();
+}
+
+void DUIterator_Fast::reset(const DUIterator_Fast& that) {
+  assert(_outp              == that._outp, "already assigned _outp");
+  DUIterator_Common::reset(that);
+}
+
+void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
+  // at_end_ok means the _outp is allowed to underflow by 1
+  _outp += at_end_ok;
+  DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
+  _outp -= at_end_ok;
+  assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
+}
+
+void DUIterator_Last::verify_limit() {
+  // Do not require the limit address to be resynched.
+  //verify(node, true);
+  assert(_outp == _node->_out, "limit still correct");
+}
+
+void DUIterator_Last::verify_step(uint num_edges) {
+  assert((int)num_edges > 0, "need non-zero edge count for loop progress");
+  _outcnt   -= num_edges;
+  _del_tick += num_edges;
+  // Make sure we are still in sync, possibly with no more out-edges:
+  const Node* node = _node;
+  verify(node, true);
+  assert(node->_last_del == _last, "must have deleted the edge just produced");
+}
+
+#endif //OPTO_DU_ITERATOR_ASSERT
+
+
+#endif //ASSERT
+
+
+// This constant used to initialize _out may be any non-null value.
+// The value NULL is reserved for the top node only.
+#define NO_OUT_ARRAY ((Node**)-1)
+
+// This funny expression handshakes with Node::operator new
+// to pull Compile::current out of the new node's _out field,
+// and then calls a subroutine which manages most field
+// initializations.  The only one which is tricky is the
+// _idx field, which is const, and so must be initialized
+// by a return value, not an assignment.
+//
+// (Aren't you thankful that Java finals don't require so many tricks?)
+#define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
+#ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
+#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
+#endif
+
+// Out-of-line code from node constructors.
+// Executed only when extra debug info. is being passed around.
+static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
+  C->set_node_notes_at(idx, nn);
+}
+
+// Shared initialization code.
+inline int Node::Init(int req, Compile* C) {
+  assert(Compile::current() == C, "must use operator new(Compile*)");
+  int idx = C->next_unique();
+
+  // If there are default notes floating around, capture them:
+  Node_Notes* nn = C->default_node_notes();
+  if (nn != NULL)  init_node_notes(C, idx, nn);
+
+  // Note:  At this point, C is dead,
+  // and we begin to initialize the new Node.
+
+  _cnt = _max = req;
+  _outcnt = _outmax = 0;
+  _class_id = Class_Node;
+  _flags = 0;
+  _out = NO_OUT_ARRAY;
+  return idx;
+}
+
+//------------------------------Node-------------------------------------------
+// Create a Node, with a given number of required edges.
+Node::Node(uint req)
+  : _idx(IDX_INIT(req))
+{
+  assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  if (req == 0) {
+    assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
+    _in = NULL;
+  } else {
+    assert( _in[req-1] == this, "Must pass arg count to 'new'" );
+    Node** to = _in;
+    for(uint i = 0; i < req; i++) {
+      to[i] = NULL;
+    }
+  }
+}
+
+//------------------------------Node-------------------------------------------
+Node::Node(Node *n0)
+  : _idx(IDX_INIT(1))
+{
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Assert we allocated space for input array already
+  assert( _in[0] == this, "Must pass arg count to 'new'" );
+  assert( is_not_dead(n0), "can not use dead node");
+  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
+}
+
+//------------------------------Node-------------------------------------------
+Node::Node(Node *n0, Node *n1)
+  : _idx(IDX_INIT(2))
+{
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Assert we allocated space for input array already
+  assert( _in[1] == this, "Must pass arg count to 'new'" );
+  assert( is_not_dead(n0), "can not use dead node");
+  assert( is_not_dead(n1), "can not use dead node");
+  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
+  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
+}
+
+//------------------------------Node-------------------------------------------
+Node::Node(Node *n0, Node *n1, Node *n2)
+  : _idx(IDX_INIT(3))
+{
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Assert we allocated space for input array already
+  assert( _in[2] == this, "Must pass arg count to 'new'" );
+  assert( is_not_dead(n0), "can not use dead node");
+  assert( is_not_dead(n1), "can not use dead node");
+  assert( is_not_dead(n2), "can not use dead node");
+  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
+  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
+  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
+}
+
+//------------------------------Node-------------------------------------------
+Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
+  : _idx(IDX_INIT(4))
+{
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Assert we allocated space for input array already
+  assert( _in[3] == this, "Must pass arg count to 'new'" );
+  assert( is_not_dead(n0), "can not use dead node");
+  assert( is_not_dead(n1), "can not use dead node");
+  assert( is_not_dead(n2), "can not use dead node");
+  assert( is_not_dead(n3), "can not use dead node");
+  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
+  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
+  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
+  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
+}
+
+//------------------------------Node-------------------------------------------
+Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
+  : _idx(IDX_INIT(5))
+{
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Assert we allocated space for input array already
+  assert( _in[4] == this, "Must pass arg count to 'new'" );
+  assert( is_not_dead(n0), "can not use dead node");
+  assert( is_not_dead(n1), "can not use dead node");
+  assert( is_not_dead(n2), "can not use dead node");
+  assert( is_not_dead(n3), "can not use dead node");
+  assert( is_not_dead(n4), "can not use dead node");
+  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
+  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
+  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
+  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
+  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
+}
+
+//------------------------------Node-------------------------------------------
+Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
+                     Node *n4, Node *n5)
+  : _idx(IDX_INIT(6))
+{
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Assert we allocated space for input array already
+  assert( _in[5] == this, "Must pass arg count to 'new'" );
+  assert( is_not_dead(n0), "can not use dead node");
+  assert( is_not_dead(n1), "can not use dead node");
+  assert( is_not_dead(n2), "can not use dead node");
+  assert( is_not_dead(n3), "can not use dead node");
+  assert( is_not_dead(n4), "can not use dead node");
+  assert( is_not_dead(n5), "can not use dead node");
+  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
+  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
+  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
+  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
+  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
+  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
+}
+
+//------------------------------Node-------------------------------------------
+Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
+                     Node *n4, Node *n5, Node *n6)
+  : _idx(IDX_INIT(7))
+{
+  debug_only( verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Assert we allocated space for input array already
+  assert( _in[6] == this, "Must pass arg count to 'new'" );
+  assert( is_not_dead(n0), "can not use dead node");
+  assert( is_not_dead(n1), "can not use dead node");
+  assert( is_not_dead(n2), "can not use dead node");
+  assert( is_not_dead(n3), "can not use dead node");
+  assert( is_not_dead(n4), "can not use dead node");
+  assert( is_not_dead(n5), "can not use dead node");
+  assert( is_not_dead(n6), "can not use dead node");
+  _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
+  _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
+  _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
+  _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
+  _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
+  _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
+  _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
+}
+
+
+//------------------------------clone------------------------------------------
+// Clone a Node.
+Node *Node::clone() const {
+  Compile *compile = Compile::current();
+  uint s = size_of();           // Size of inherited Node
+  Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
+  Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
+  // Set the new input pointer array
+  n->_in = (Node**)(((char*)n)+s);
+  // Cannot share the old output pointer array, so kill it
+  n->_out = NO_OUT_ARRAY;
+  // And reset the counters to 0
+  n->_outcnt = 0;
+  n->_outmax = 0;
+  // Unlock this guy, since he is not in any hash table.
+  debug_only(n->_hash_lock = 0);
+  // Walk the old node's input list to duplicate its edges
+  uint i;
+  for( i = 0; i < len(); i++ ) {
+    Node *x = in(i);
+    n->_in[i] = x;
+    if (x != NULL) x->add_out(n);
+  }
+  if (is_macro())
+    compile->add_macro_node(n);
+
+  n->set_idx(compile->next_unique()); // Get new unique index as well
+  debug_only( n->verify_construction() );
+  NOT_PRODUCT(nodes_created++);
+  // Do not patch over the debug_idx of a clone, because it makes it
+  // impossible to break on the clone's moment of creation.
+  //debug_only( n->set_debug_idx( debug_idx() ) );
+
+  compile->copy_node_notes_to(n, (Node*) this);
+
+  // MachNode clone
+  uint nopnds;
+  if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
+    MachNode *mach  = n->as_Mach();
+    MachNode *mthis = this->as_Mach();
+    // Get address of _opnd_array.
+    // It should be the same offset since it is the clone of this node.
+    MachOper **from = mthis->_opnds;
+    MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
+                    pointer_delta((const void*)from,
+                                  (const void*)(&mthis->_opnds), 1));
+    mach->_opnds = to;
+    for ( uint i = 0; i < nopnds; ++i ) {
+      to[i] = from[i]->clone(compile);
+    }
+  }
+  // cloning CallNode may need to clone JVMState
+  if (n->is_Call()) {
+    CallNode *call = n->as_Call();
+    call->clone_jvms();
+  }
+  return n;                     // Return the clone
+}
+
+//---------------------------setup_is_top--------------------------------------
+// Call this when changing the top node, to reassert the invariants
+// required by Node::is_top.  See Compile::set_cached_top_node.
+void Node::setup_is_top() {
+  if (this == (Node*)Compile::current()->top()) {
+    // This node has just become top.  Kill its out array.
+    _outcnt = _outmax = 0;
+    _out = NULL;                           // marker value for top
+    assert(is_top(), "must be top");
+  } else {
+    if (_out == NULL)  _out = NO_OUT_ARRAY;
+    assert(!is_top(), "must not be top");
+  }
+}
+
+
+//------------------------------~Node------------------------------------------
+// Fancy destructor; eagerly attempt to reclaim Node numberings and storage
+extern int reclaim_idx ;
+extern int reclaim_in  ;
+extern int reclaim_node;
+void Node::destruct() {
+  // Eagerly reclaim unique Node numberings
+  Compile* compile = Compile::current();
+  if ((uint)_idx+1 == compile->unique()) {
+    compile->set_unique(compile->unique()-1);
+#ifdef ASSERT
+    reclaim_idx++;
+#endif
+  }
+  // Clear debug info:
+  Node_Notes* nn = compile->node_notes_at(_idx);
+  if (nn != NULL)  nn->clear();
+  // Walk the input array, freeing the corresponding output edges
+  _cnt = _max;  // forget req/prec distinction
+  uint i;
+  for( i = 0; i < _max; i++ ) {
+    set_req(i, NULL);
+    //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
+  }
+  assert(outcnt() == 0, "deleting a node must not leave a dangling use");
+  // See if the input array was allocated just prior to the object
+  int edge_size = _max*sizeof(void*);
+  int out_edge_size = _outmax*sizeof(void*);
+  char *edge_end = ((char*)_in) + edge_size;
+  char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
+  char *out_edge_end = out_array + out_edge_size;
+  int node_size = size_of();
+
+  // Free the output edge array
+  if (out_edge_size > 0) {
+#ifdef ASSERT
+    if( out_edge_end == compile->node_arena()->hwm() )
+      reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
+#endif
+    compile->node_arena()->Afree(out_array, out_edge_size);
+  }
+
+  // Free the input edge array and the node itself
+  if( edge_end == (char*)this ) {
+#ifdef ASSERT
+    if( edge_end+node_size == compile->node_arena()->hwm() ) {
+      reclaim_in  += edge_size;
+      reclaim_node+= node_size;
+    }
+#else
+    // It was; free the input array and object all in one hit
+    compile->node_arena()->Afree(_in,edge_size+node_size);
+#endif
+  } else {
+
+    // Free just the input array
+#ifdef ASSERT
+    if( edge_end == compile->node_arena()->hwm() )
+      reclaim_in  += edge_size;
+#endif
+    compile->node_arena()->Afree(_in,edge_size);
+
+    // Free just the object
+#ifdef ASSERT
+    if( ((char*)this) + node_size == compile->node_arena()->hwm() )
+      reclaim_node+= node_size;
+#else
+    compile->node_arena()->Afree(this,node_size);
+#endif
+  }
+  if (is_macro()) {
+    compile->remove_macro_node(this);
+  }
+#ifdef ASSERT
+  // We will not actually delete the storage, but we'll make the node unusable.
+  *(address*)this = badAddress;  // smash the C++ vtbl, probably
+  _in = _out = (Node**) badAddress;
+  _max = _cnt = _outmax = _outcnt = 0;
+#endif
+}
+
+//------------------------------grow-------------------------------------------
+// Grow the input array, making space for more edges
+void Node::grow( uint len ) {
+  Arena* arena = Compile::current()->node_arena();
+  uint new_max = _max;
+  if( new_max == 0 ) {
+    _max = 4;
+    _in = (Node**)arena->Amalloc(4*sizeof(Node*));
+    Node** to = _in;
+    to[0] = NULL;
+    to[1] = NULL;
+    to[2] = NULL;
+    to[3] = NULL;
+    return;
+  }
+  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
+  // Trimming to limit allows a uint8 to handle up to 255 edges.
+  // Previously I was using only powers-of-2 which peaked at 128 edges.
+  //if( new_max >= limit ) new_max = limit-1;
+  _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
+  Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
+  _max = new_max;               // Record new max length
+  // This assertion makes sure that Node::_max is wide enough to
+  // represent the numerical value of new_max.
+  assert(_max == new_max && _max > len, "int width of _max is too small");
+}
+
+//-----------------------------out_grow----------------------------------------
+// Grow the input array, making space for more edges
+void Node::out_grow( uint len ) {
+  assert(!is_top(), "cannot grow a top node's out array");
+  Arena* arena = Compile::current()->node_arena();
+  uint new_max = _outmax;
+  if( new_max == 0 ) {
+    _outmax = 4;
+    _out = (Node **)arena->Amalloc(4*sizeof(Node*));
+    return;
+  }
+  while( new_max <= len ) new_max <<= 1; // Find next power-of-2
+  // Trimming to limit allows a uint8 to handle up to 255 edges.
+  // Previously I was using only powers-of-2 which peaked at 128 edges.
+  //if( new_max >= limit ) new_max = limit-1;
+  assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
+  _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
+  //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
+  _outmax = new_max;               // Record new max length
+  // This assertion makes sure that Node::_max is wide enough to
+  // represent the numerical value of new_max.
+  assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
+}
+
+#ifdef ASSERT
+//------------------------------is_dead----------------------------------------
+bool Node::is_dead() const {
+  // Mach and pinch point nodes may look like dead.
+  if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
+    return false;
+  for( uint i = 0; i < _max; i++ )
+    if( _in[i] != NULL )
+      return false;
+  dump();
+  return true;
+}
+#endif
+
+//------------------------------add_req----------------------------------------
+// Add a new required input at the end
+void Node::add_req( Node *n ) {
+  assert( is_not_dead(n), "can not use dead node");
+
+  // Look to see if I can move precedence down one without reallocating
+  if( (_cnt >= _max) || (in(_max-1) != NULL) )
+    grow( _max+1 );
+
+  // Find a precedence edge to move
+  if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
+    uint i;
+    for( i=_cnt; i<_max; i++ )
+      if( in(i) == NULL )       // Find the NULL at end of prec edge list
+        break;                  // There must be one, since we grew the array
+    _in[i] = in(_cnt);          // Move prec over, making space for req edge
+  }
+  _in[_cnt++] = n;            // Stuff over old prec edge
+  if (n != NULL) n->add_out((Node *)this);
+}
+
+//---------------------------add_req_batch-------------------------------------
+// Add a new required input at the end
+void Node::add_req_batch( Node *n, uint m ) {
+  assert( is_not_dead(n), "can not use dead node");
+  // check various edge cases
+  if ((int)m <= 1) {
+    assert((int)m >= 0, "oob");
+    if (m != 0)  add_req(n);
+    return;
+  }
+
+  // Look to see if I can move precedence down one without reallocating
+  if( (_cnt+m) > _max || _in[_max-m] )
+    grow( _max+m );
+
+  // Find a precedence edge to move
+  if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
+    uint i;
+    for( i=_cnt; i<_max; i++ )
+      if( _in[i] == NULL )      // Find the NULL at end of prec edge list
+        break;                  // There must be one, since we grew the array
+    // Slide all the precs over by m positions (assume #prec << m).
+    Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
+  }
+
+  // Stuff over the old prec edges
+  for(uint i=0; i<m; i++ ) {
+    _in[_cnt++] = n;
+  }
+
+  // Insert multiple out edges on the node.
+  if (n != NULL && !n->is_top()) {
+    for(uint i=0; i<m; i++ ) {
+      n->add_out((Node *)this);
+    }
+  }
+}
+
+//------------------------------del_req----------------------------------------
+// Delete the required edge and compact the edge array
+void Node::del_req( uint idx ) {
+  // First remove corresponding def-use edge
+  Node *n = in(idx);
+  if (n != NULL) n->del_out((Node *)this);
+  _in[idx] = in(--_cnt);  // Compact the array
+  _in[_cnt] = NULL;       // NULL out emptied slot
+}
+
+//------------------------------ins_req----------------------------------------
+// Insert a new required input at the end
+void Node::ins_req( uint idx, Node *n ) {
+  assert( is_not_dead(n), "can not use dead node");
+  add_req(NULL);                // Make space
+  assert( idx < _max, "Must have allocated enough space");
+  // Slide over
+  if(_cnt-idx-1 > 0) {
+    Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
+  }
+  _in[idx] = n;                            // Stuff over old required edge
+  if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
+}
+
+//-----------------------------find_edge---------------------------------------
+int Node::find_edge(Node* n) {
+  for (uint i = 0; i < len(); i++) {
+    if (_in[i] == n)  return i;
+  }
+  return -1;
+}
+
+//----------------------------replace_edge-------------------------------------
+int Node::replace_edge(Node* old, Node* neww) {
+  if (old == neww)  return 0;  // nothing to do
+  uint nrep = 0;
+  for (uint i = 0; i < len(); i++) {
+    if (in(i) == old) {
+      if (i < req())
+        set_req(i, neww);
+      else
+        set_prec(i, neww);
+      nrep++;
+    }
+  }
+  return nrep;
+}
+
+//-------------------------disconnect_inputs-----------------------------------
+// NULL out all inputs to eliminate incoming Def-Use edges.
+// Return the number of edges between 'n' and 'this'
+int Node::disconnect_inputs(Node *n) {
+  int edges_to_n = 0;
+
+  uint cnt = req();
+  for( uint i = 0; i < cnt; ++i ) {
+    if( in(i) == 0 ) continue;
+    if( in(i) == n ) ++edges_to_n;
+    set_req(i, NULL);
+  }
+  // Remove precedence edges if any exist
+  // Note: Safepoints may have precedence edges, even during parsing
+  if( (req() != len()) && (in(req()) != NULL) ) {
+    uint max = len();
+    for( uint i = 0; i < max; ++i ) {
+      if( in(i) == 0 ) continue;
+      if( in(i) == n ) ++edges_to_n;
+      set_prec(i, NULL);
+    }
+  }
+
+  // Node::destruct requires all out edges be deleted first
+  // debug_only(destruct();)   // no reuse benefit expected
+  return edges_to_n;
+}
+
+//-----------------------------uncast---------------------------------------
+// %%% Temporary, until we sort out CheckCastPP vs. CastPP.
+// Strip away casting.  (It is depth-limited.)
+Node* Node::uncast() const {
+  // Should be inline:
+  //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
+  if (is_ConstraintCast() ||
+      (is_Type() && req() == 2 && Opcode() == Op_CheckCastPP))
+    return uncast_helper(this);
+  else
+    return (Node*) this;
+}
+
+//---------------------------uncast_helper-------------------------------------
+Node* Node::uncast_helper(const Node* p) {
+  uint max_depth = 3;
+  for (uint i = 0; i < max_depth; i++) {
+    if (p == NULL || p->req() != 2) {
+      break;
+    } else if (p->is_ConstraintCast()) {
+      p = p->in(1);
+    } else if (p->is_Type() && p->Opcode() == Op_CheckCastPP) {
+      p = p->in(1);
+    } else {
+      break;
+    }
+  }
+  return (Node*) p;
+}
+
+//------------------------------add_prec---------------------------------------
+// Add a new precedence input.  Precedence inputs are unordered, with
+// duplicates removed and NULLs packed down at the end.
+void Node::add_prec( Node *n ) {
+  assert( is_not_dead(n), "can not use dead node");
+
+  // Check for NULL at end
+  if( _cnt >= _max || in(_max-1) )
+    grow( _max+1 );
+
+  // Find a precedence edge to move
+  uint i = _cnt;
+  while( in(i) != NULL ) i++;
+  _in[i] = n;                                // Stuff prec edge over NULL
+  if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
+}
+
+//------------------------------rm_prec----------------------------------------
+// Remove a precedence input.  Precedence inputs are unordered, with
+// duplicates removed and NULLs packed down at the end.
+void Node::rm_prec( uint j ) {
+
+  // Find end of precedence list to pack NULLs
+  uint i;
+  for( i=j; i<_max; i++ )
+    if( !_in[i] )               // Find the NULL at end of prec edge list
+      break;
+  if (_in[j] != NULL) _in[j]->del_out((Node *)this);
+  _in[j] = _in[--i];            // Move last element over removed guy
+  _in[i] = NULL;                // NULL out last element
+}
+
+//------------------------------size_of----------------------------------------
+uint Node::size_of() const { return sizeof(*this); }
+
+//------------------------------ideal_reg--------------------------------------
+uint Node::ideal_reg() const { return 0; }
+
+//------------------------------jvms-------------------------------------------
+JVMState* Node::jvms() const { return NULL; }
+
+#ifdef ASSERT
+//------------------------------jvms-------------------------------------------
+bool Node::verify_jvms(const JVMState* using_jvms) const {
+  for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
+    if (jvms == using_jvms)  return true;
+  }
+  return false;
+}
+
+//------------------------------init_NodeProperty------------------------------
+void Node::init_NodeProperty() {
+  assert(_max_classes <= max_jushort, "too many NodeProperty classes");
+  assert(_max_flags <= max_jushort, "too many NodeProperty flags");
+}
+#endif
+
+//------------------------------format-----------------------------------------
+// Print as assembly
+void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
+//------------------------------emit-------------------------------------------
+// Emit bytes starting at parameter 'ptr'.
+void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
+//------------------------------size-------------------------------------------
+// Size of instruction in bytes
+uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
+
+//------------------------------CFG Construction-------------------------------
+// Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
+// Goto and Return.
+const Node *Node::is_block_proj() const { return 0; }
+
+// Minimum guaranteed type
+const Type *Node::bottom_type() const { return Type::BOTTOM; }
+
+
+//------------------------------raise_bottom_type------------------------------
+// Get the worst-case Type output for this Node.
+void Node::raise_bottom_type(const Type* new_type) {
+  if (is_Type()) {
+    TypeNode *n = this->as_Type();
+    if (VerifyAliases) {
+      assert(new_type->higher_equal(n->type()), "new type must refine old type");
+    }
+    n->set_type(new_type);
+  } else if (is_Load()) {
+    LoadNode *n = this->as_Load();
+    if (VerifyAliases) {
+      assert(new_type->higher_equal(n->type()), "new type must refine old type");
+    }
+    n->set_type(new_type);
+  }
+}
+
+//------------------------------Identity---------------------------------------
+// Return a node that the given node is equivalent to.
+Node *Node::Identity( PhaseTransform * ) {
+  return this;                  // Default to no identities
+}
+
+//------------------------------Value------------------------------------------
+// Compute a new Type for a node using the Type of the inputs.
+const Type *Node::Value( PhaseTransform * ) const {
+  return bottom_type();         // Default to worst-case Type
+}
+
+//------------------------------Ideal------------------------------------------
+//
+// 'Idealize' the graph rooted at this Node.
+//
+// In order to be efficient and flexible there are some subtle invariants
+// these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
+// these invariants, although its too slow to have on by default.  If you are
+// hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
+//
+// The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
+// pointer.  If ANY change is made, it must return the root of the reshaped
+// graph - even if the root is the same Node.  Example: swapping the inputs
+// to an AddINode gives the same answer and same root, but you still have to
+// return the 'this' pointer instead of NULL.
+//
+// You cannot return an OLD Node, except for the 'this' pointer.  Use the
+// Identity call to return an old Node; basically if Identity can find
+// another Node have the Ideal call make no change and return NULL.
+// Example: AddINode::Ideal must check for add of zero; in this case it
+// returns NULL instead of doing any graph reshaping.
+//
+// You cannot modify any old Nodes except for the 'this' pointer.  Due to
+// sharing there may be other users of the old Nodes relying on their current
+// semantics.  Modifying them will break the other users.
+// Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
+// "X+3" unchanged in case it is shared.
+//
+// If you modify the 'this' pointer's inputs, you must use 'set_req' with
+// def-use info.  If you are making a new Node (either as the new root or
+// some new internal piece) you must NOT use set_req with def-use info.
+// You can make a new Node with either 'new' or 'clone'.  In either case,
+// def-use info is (correctly) not generated.
+// Example: reshape "(X+3)+4" into "X+7":
+//    set_req(1,in(1)->in(1) /* grab X */, du /* must use DU on 'this' */);
+//    set_req(2,phase->intcon(7),du);
+//    return this;
+// Example: reshape "X*4" into "X<<1"
+//    return new (C,3) LShiftINode( in(1), phase->intcon(1) );
+//
+// You must call 'phase->transform(X)' on any new Nodes X you make, except
+// for the returned root node.  Example: reshape "X*31" with "(X<<5)-1".
+//    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
+//    return new (C,3) AddINode(shift, phase->intcon(-1));
+//
+// When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
+// These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
+// The Right Thing with def-use info.
+//
+// You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
+// graph uses the 'this' Node it must be the root.  If you want a Node with
+// the same Opcode as the 'this' pointer use 'clone'.
+//
+Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
+  return NULL;                  // Default to being Ideal already
+}
+
+// Some nodes have specific Ideal subgraph transformations only if they are
+// unique users of specific nodes. Such nodes should be put on IGVN worklist
+// for the transformations to happen.
+bool Node::has_special_unique_user() const {
+  assert(outcnt() == 1, "match only for unique out");
+  Node* n = unique_out();
+  int op  = Opcode();
+  if( this->is_Store() ) {
+    // Condition for back-to-back stores folding.
+    return n->Opcode() == op && n->in(MemNode::Memory) == this;
+  } else if( op == Op_AddL ) {
+    // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
+    return n->Opcode() == Op_ConvL2I && n->in(1) == this;
+  } else if( op == Op_SubI || op == Op_SubL ) {
+    // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
+    return n->Opcode() == op && n->in(2) == this;
+  }
+  return false;
+};
+
+//------------------------------remove_dead_region-----------------------------
+// This control node is dead.  Follow the subgraph below it making everything
+// using it dead as well.  This will happen normally via the usual IterGVN
+// worklist but this call is more efficient.  Do not update use-def info
+// inside the dead region, just at the borders.
+static bool kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
+  // Con's are a popular node to re-hit in the hash table again.
+  if( dead->is_Con() ) return false;
+
+  // Can't put ResourceMark here since igvn->_worklist uses the same arena
+  // for verify pass with +VerifyOpto and we add/remove elements in it here.
+  Node_List  nstack(Thread::current()->resource_area());
+
+  Node *top = igvn->C->top();
+  bool progress = false;
+  nstack.push(dead);
+
+  while (nstack.size() > 0) {
+    dead = nstack.pop();
+    if (dead->outcnt() > 0) {
+      // Keep dead node on stack until all uses are processed.
+      nstack.push(dead);
+      // For all Users of the Dead...    ;-)
+      for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
+        Node* use = dead->last_out(k);
+        igvn->hash_delete(use);       // Yank from hash table prior to mod
+        if (use->in(0) == dead) {     // Found another dead node
+          assert (!use->is_Con(), "Control for Con node should be Root node.")
+          use->set_req(0, top);       // Cut dead edge to prevent processing
+          nstack.push(use);           // the dead node again.
+        } else {                      // Else found a not-dead user
+          for (uint j = 1; j < use->req(); j++) {
+            if (use->in(j) == dead) { // Turn all dead inputs into TOP
+              use->set_req(j, top);
+            }
+          }
+          igvn->_worklist.push(use);
+        }
+        // Refresh the iterator, since any number of kills might have happened.
+        k = dead->last_outs(kmin);
+      }
+    } else { // (dead->outcnt() == 0)
+      // Done with outputs.
+      igvn->hash_delete(dead);
+      igvn->_worklist.remove(dead);
+      igvn->set_type(dead, Type::TOP);
+      if (dead->is_macro()) {
+        igvn->C->remove_macro_node(dead);
+      }
+      // Kill all inputs to the dead guy
+      for (uint i=0; i < dead->req(); i++) {
+        Node *n = dead->in(i);      // Get input to dead guy
+        if (n != NULL && !n->is_top()) { // Input is valid?
+          progress = true;
+          dead->set_req(i, top);    // Smash input away
+          if (n->outcnt() == 0) {   // Input also goes dead?
+            if (!n->is_Con())
+              nstack.push(n);       // Clear it out as well
+          } else if (n->outcnt() == 1 &&
+                     n->has_special_unique_user()) {
+            igvn->add_users_to_worklist( n );
+          } else if (n->outcnt() <= 2 && n->is_Store()) {
+            // Push store's uses on worklist to enable folding optimization for
+            // store/store and store/load to the same address.
+            // The restriction (outcnt() <= 2) is the same as in set_req_X()
+            // and remove_globally_dead_node().
+            igvn->add_users_to_worklist( n );
+          }
+        }
+      }
+    } // (dead->outcnt() == 0)
+  }   // while (nstack.size() > 0) for outputs
+  return progress;
+}
+
+//------------------------------remove_dead_region-----------------------------
+bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
+  Node *n = in(0);
+  if( !n ) return false;
+  // Lost control into this guy?  I.e., it became unreachable?
+  // Aggressively kill all unreachable code.
+  if (can_reshape && n->is_top()) {
+    return kill_dead_code(this, phase->is_IterGVN());
+  }
+
+  if( n->is_Region() && n->as_Region()->is_copy() ) {
+    Node *m = n->nonnull_req();
+    set_req(0, m);
+    return true;
+  }
+  return false;
+}
+
+//------------------------------Ideal_DU_postCCP-------------------------------
+// Idealize graph, using DU info.  Must clone result into new-space
+Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
+  return NULL;                 // Default to no change
+}
+
+//------------------------------hash-------------------------------------------
+// Hash function over Nodes.
+uint Node::hash() const {
+  uint sum = 0;
+  for( uint i=0; i<_cnt; i++ )  // Add in all inputs
+    sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
+  return (sum>>2) + _cnt + Opcode();
+}
+
+//------------------------------cmp--------------------------------------------
+// Compare special parts of simple Nodes
+uint Node::cmp( const Node &n ) const {
+  return 1;                     // Must be same
+}
+
+//------------------------------rematerialize-----------------------------------
+// Should we clone rather than spill this instruction?
+bool Node::rematerialize() const {
+  if ( is_Mach() )
+    return this->as_Mach()->rematerialize();
+  else
+    return (_flags & Flag_rematerialize) != 0;
+}
+
+//------------------------------needs_anti_dependence_check---------------------
+// Nodes which use memory without consuming it, hence need antidependences.
+bool Node::needs_anti_dependence_check() const {
+  if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
+    return false;
+  else
+    return in(1)->bottom_type()->has_memory();
+}
+
+
+// Get an integer constant from a ConNode (or CastIINode).
+// Return a default value if there is no apparent constant here.
+const TypeInt* Node::find_int_type() const {
+  if (this->is_Type()) {
+    return this->as_Type()->type()->isa_int();
+  } else if (this->is_Con()) {
+    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
+    return this->bottom_type()->isa_int();
+  }
+  return NULL;
+}
+
+// Get a pointer constant from a ConstNode.
+// Returns the constant if it is a pointer ConstNode
+intptr_t Node::get_ptr() const {
+  assert( Opcode() == Op_ConP, "" );
+  return ((ConPNode*)this)->type()->is_ptr()->get_con();
+}
+
+// Get a long constant from a ConNode.
+// Return a default value if there is no apparent constant here.
+const TypeLong* Node::find_long_type() const {
+  if (this->is_Type()) {
+    return this->as_Type()->type()->isa_long();
+  } else if (this->is_Con()) {
+    assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
+    return this->bottom_type()->isa_long();
+  }
+  return NULL;
+}
+
+// Get a double constant from a ConstNode.
+// Returns the constant if it is a double ConstNode
+jdouble Node::getd() const {
+  assert( Opcode() == Op_ConD, "" );
+  return ((ConDNode*)this)->type()->is_double_constant()->getd();
+}
+
+// Get a float constant from a ConstNode.
+// Returns the constant if it is a float ConstNode
+jfloat Node::getf() const {
+  assert( Opcode() == Op_ConF, "" );
+  return ((ConFNode*)this)->type()->is_float_constant()->getf();
+}
+
+#ifndef PRODUCT
+
+//----------------------------NotANode----------------------------------------
+// Used in debugging code to avoid walking across dead or uninitialized edges.
+static inline bool NotANode(const Node* n) {
+  if (n == NULL)                   return true;
+  if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
+  if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
+  return false;
+}
+
+
+//------------------------------find------------------------------------------
+// Find a neighbor of this Node with the given _idx
+// If idx is negative, find its absolute value, following both _in and _out.
+static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
+                        VectorSet &old_space, VectorSet &new_space ) {
+  int node_idx = (idx >= 0) ? idx : -idx;
+  if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
+  // Contained in new_space or old_space?
+  VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
+  if( v->test(n->_idx) ) return;
+  if( (int)n->_idx == node_idx
+      debug_only(|| n->debug_idx() == node_idx) ) {
+    if (result != NULL)
+      tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
+                 (uintptr_t)result, (uintptr_t)n, node_idx);
+    result = n;
+  }
+  v->set(n->_idx);
+  for( uint i=0; i<n->len(); i++ ) {
+    if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
+    find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
+  }
+  // Search along forward edges also:
+  if (idx < 0 && !only_ctrl) {
+    for( uint j=0; j<n->outcnt(); j++ ) {
+      find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
+    }
+  }
+#ifdef ASSERT
+  // Search along debug_orig edges last:
+  for (Node* orig = n->debug_orig(); orig != NULL; orig = orig->debug_orig()) {
+    if (NotANode(orig))  break;
+    find_recur( result, orig, idx, only_ctrl, old_space, new_space );
+  }
+#endif //ASSERT
+}
+
+// call this from debugger:
+Node* find_node(Node* n, int idx) {
+  return n->find(idx);
+}
+
+//------------------------------find-------------------------------------------
+Node* Node::find(int idx) const {
+  ResourceArea *area = Thread::current()->resource_area();
+  VectorSet old_space(area), new_space(area);
+  Node* result = NULL;
+  find_recur( result, (Node*) this, idx, false, old_space, new_space );
+  return result;
+}
+
+//------------------------------find_ctrl--------------------------------------
+// Find an ancestor to this node in the control history with given _idx
+Node* Node::find_ctrl(int idx) const {
+  ResourceArea *area = Thread::current()->resource_area();
+  VectorSet old_space(area), new_space(area);
+  Node* result = NULL;
+  find_recur( result, (Node*) this, idx, true, old_space, new_space );
+  return result;
+}
+#endif
+
+
+
+#ifndef PRODUCT
+int Node::_in_dump_cnt = 0;
+
+// -----------------------------Name-------------------------------------------
+extern const char *NodeClassNames[];
+const char *Node::Name() const { return NodeClassNames[Opcode()]; }
+
+static bool is_disconnected(const Node* n) {
+  for (uint i = 0; i < n->req(); i++) {
+    if (n->in(i) != NULL)  return false;
+  }
+  return true;
+}
+
+#ifdef ASSERT
+static void dump_orig(Node* orig) {
+  Compile* C = Compile::current();
+  if (NotANode(orig))  orig = NULL;
+  if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
+  if (orig == NULL)  return;
+  tty->print(" !orig=");
+  Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
+  if (NotANode(fast))  fast = NULL;
+  while (orig != NULL) {
+    bool discon = is_disconnected(orig);  // if discon, print [123] else 123
+    if (discon)  tty->print("[");
+    if (!Compile::current()->node_arena()->contains(orig))
+      tty->print("o");
+    tty->print("%d", orig->_idx);
+    if (discon)  tty->print("]");
+    orig = orig->debug_orig();
+    if (NotANode(orig))  orig = NULL;
+    if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
+    if (orig != NULL)  tty->print(",");
+    if (fast != NULL) {
+      // Step fast twice for each single step of orig:
+      fast = fast->debug_orig();
+      if (NotANode(fast))  fast = NULL;
+      if (fast != NULL && fast != orig) {
+        fast = fast->debug_orig();
+        if (NotANode(fast))  fast = NULL;
+      }
+      if (fast == orig) {
+        tty->print("...");
+        break;
+      }
+    }
+  }
+}
+
+void Node::set_debug_orig(Node* orig) {
+  _debug_orig = orig;
+  if (BreakAtNode == 0)  return;
+  if (NotANode(orig))  orig = NULL;
+  int trip = 10;
+  while (orig != NULL) {
+    if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
+      tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
+                    this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
+      BREAKPOINT;
+    }
+    orig = orig->debug_orig();
+    if (NotANode(orig))  orig = NULL;
+    if (trip-- <= 0)  break;
+  }
+}
+#endif //ASSERT
+
+//------------------------------dump------------------------------------------
+// Dump a Node
+void Node::dump() const {
+  Compile* C = Compile::current();
+  bool is_new = C->node_arena()->contains(this);
+  _in_dump_cnt++;
+  tty->print("%c%d\t%s\t=== ",
+             is_new ? ' ' : 'o', _idx, Name());
+
+  // Dump the required and precedence inputs
+  dump_req();
+  dump_prec();
+  // Dump the outputs
+  dump_out();
+
+  if (is_disconnected(this)) {
+#ifdef ASSERT
+    tty->print("  [%d]",debug_idx());
+    dump_orig(debug_orig());
+#endif
+    tty->cr();
+    _in_dump_cnt--;
+    return;                     // don't process dead nodes
+  }
+
+  // Dump node-specific info
+  dump_spec(tty);
+#ifdef ASSERT
+  // Dump the non-reset _debug_idx
+  if( Verbose && WizardMode ) {
+    tty->print("  [%d]",debug_idx());
+  }
+#endif
+
+  const Type *t = bottom_type();
+
+  if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
+    const TypeInstPtr  *toop = t->isa_instptr();
+    const TypeKlassPtr *tkls = t->isa_klassptr();
+    ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
+    if( klass && klass->is_loaded() && klass->is_interface() ) {
+      tty->print("  Interface:");
+    } else if( toop ) {
+      tty->print("  Oop:");
+    } else if( tkls ) {
+      tty->print("  Klass:");
+    }
+    t->dump();
+  } else if( t == Type::MEMORY ) {
+    tty->print("  Memory:");
+    MemNode::dump_adr_type(this, adr_type(), tty);
+  } else if( Verbose || WizardMode ) {
+    tty->print("  Type:");
+    if( t ) {
+      t->dump();
+    } else {
+      tty->print("no type");
+    }
+  }
+  if (is_new) {
+    debug_only(dump_orig(debug_orig()));
+    Node_Notes* nn = C->node_notes_at(_idx);
+    if (nn != NULL && !nn->is_clear()) {
+      if (nn->jvms() != NULL) {
+        tty->print(" !jvms:");
+        nn->jvms()->dump_spec(tty);
+      }
+    }
+  }
+  tty->cr();
+  _in_dump_cnt--;
+}
+
+//------------------------------dump_req--------------------------------------
+void Node::dump_req() const {
+  // Dump the required input edges
+  for (uint i = 0; i < req(); i++) {    // For all required inputs
+    Node* d = in(i);
+    if (d == NULL) {
+      tty->print("_ ");
+    } else if (NotANode(d)) {
+      tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
+    } else {
+      tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
+    }
+  }
+}
+
+
+//------------------------------dump_prec-------------------------------------
+void Node::dump_prec() const {
+  // Dump the precedence edges
+  int any_prec = 0;
+  for (uint i = req(); i < len(); i++) {       // For all precedence inputs
+    Node* p = in(i);
+    if (p != NULL) {
+      if( !any_prec++ ) tty->print(" |");
+      if (NotANode(p)) { tty->print("NotANode "); continue; }
+      tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
+    }
+  }
+}
+
+//------------------------------dump_out--------------------------------------
+void Node::dump_out() const {
+  // Delimit the output edges
+  tty->print(" [[");
+  // Dump the output edges
+  for (uint i = 0; i < _outcnt; i++) {    // For all outputs
+    Node* u = _out[i];
+    if (u == NULL) {
+      tty->print("_ ");
+    } else if (NotANode(u)) {
+      tty->print("NotANode ");
+    } else {
+      tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
+    }
+  }
+  tty->print("]] ");
+}
+
+//------------------------------dump_nodes-------------------------------------
+
+// Helper class  for dump_nodes. Wraps an old and new VectorSet.
+class OldNewVectorSet : public StackObj {
+   Arena*    _node_arena;
+   VectorSet _old_vset, _new_vset;
+   VectorSet* select(Node* n) {
+     return _node_arena->contains(n) ? &_new_vset : &_old_vset;
+   }
+  public:
+  OldNewVectorSet(Arena* node_arena, ResourceArea* area) :
+     _node_arena(node_arena),
+     _old_vset(area), _new_vset(area) {}
+
+  void set(Node* n)      { select(n)->set(n->_idx); }
+  bool test_set(Node* n) { return select(n)->test_set(n->_idx) != 0; }
+  bool test(Node* n)     { return select(n)->test(n->_idx) != 0; }
+  void del(Node* n)      { (*select(n)) >>= n->_idx; }
+};
+
+
+static void dump_nodes(const Node* start, int d, bool only_ctrl) {
+  Node* s = (Node*)start; // remove const
+  if (NotANode(s)) return;
+
+  Compile* C = Compile::current();
+  ResourceArea *area = Thread::current()->resource_area();
+  Node_Stack      stack(area, MIN2((uint)ABS(d), C->unique() >> 1));
+  OldNewVectorSet visited(C->node_arena(), area);
+  OldNewVectorSet on_stack(C->node_arena(), area);
+
+  visited.set(s);
+  on_stack.set(s);
+  stack.push(s, 0);
+  if (d < 0) s->dump();
+
+  // Do a depth first walk over edges
+  while (stack.is_nonempty()) {
+    Node* tp  = stack.node();
+    uint  idx = stack.index();
+    uint  limit = d > 0 ? tp->len() : tp->outcnt();
+    if (idx >= limit) {
+      // no more arcs to visit
+      if (d > 0) tp->dump();
+      on_stack.del(tp);
+      stack.pop();
+    } else {
+      // process the "idx"th arc
+      stack.set_index(idx + 1);
+      Node* n = d > 0 ? tp->in(idx) : tp->raw_out(idx);
+
+      if (NotANode(n))  continue;
+      // do not recurse through top or the root (would reach unrelated stuff)
+      if (n->is_Root() || n->is_top())  continue;
+      if (only_ctrl && !n->is_CFG()) continue;
+
+      if (!visited.test_set(n)) {  // forward arc
+        // Limit depth
+        if (stack.size() < (uint)ABS(d)) {
+          if (d < 0) n->dump();
+          stack.push(n, 0);
+          on_stack.set(n);
+        }
+      } else {  // back or cross arc
+        if (on_stack.test(n)) {  // back arc
+          // print loop if there are no phis or regions in the mix
+          bool found_loop_breaker = false;
+          int k;
+          for (k = stack.size() - 1; k >= 0; k--) {
+            Node* m = stack.node_at(k);
+            if (m->is_Phi() || m->is_Region() || m->is_Root() || m->is_Start()) {
+              found_loop_breaker = true;
+              break;
+            }
+            if (m == n) // Found loop head
+              break;
+          }
+          assert(k >= 0, "n must be on stack");
+
+          if (!found_loop_breaker) {
+            tty->print("# %s LOOP FOUND:", only_ctrl ? "CONTROL" : "DATA");
+            for (int i = stack.size() - 1; i >= k; i--) {
+              Node* m = stack.node_at(i);
+              bool mnew = C->node_arena()->contains(m);
+              tty->print(" %s%d:%s", (mnew? "": "o"), m->_idx, m->Name());
+              if (i != 0) tty->print(d > 0? " <-": " ->");
+            }
+            tty->cr();
+          }
+        }
+      }
+    }
+  }
+}
+
+//------------------------------dump-------------------------------------------
+void Node::dump(int d) const {
+  dump_nodes(this, d, false);
+}
+
+//------------------------------dump_ctrl--------------------------------------
+// Dump a Node's control history to depth
+void Node::dump_ctrl(int d) const {
+  dump_nodes(this, d, true);
+}
+
+// VERIFICATION CODE
+// For each input edge to a node (ie - for each Use-Def edge), verify that
+// there is a corresponding Def-Use edge.
+//------------------------------verify_edges-----------------------------------
+void Node::verify_edges(Unique_Node_List &visited) {
+  uint i, j, idx;
+  int  cnt;
+  Node *n;
+
+  // Recursive termination test
+  if (visited.member(this))  return;
+  visited.push(this);
+
+  // Walk over all input edges, checking for correspondance
+  for( i = 0; i < len(); i++ ) {
+    n = in(i);
+    if (n != NULL && !n->is_top()) {
+      // Count instances of (Node *)this
+      cnt = 0;
+      for (idx = 0; idx < n->_outcnt; idx++ ) {
+        if (n->_out[idx] == (Node *)this)  cnt++;
+      }
+      assert( cnt > 0,"Failed to find Def-Use edge." );
+      // Check for duplicate edges
+      // walk the input array downcounting the input edges to n
+      for( j = 0; j < len(); j++ ) {
+        if( in(j) == n ) cnt--;
+      }
+      assert( cnt == 0,"Mismatched edge count.");
+    } else if (n == NULL) {
+      assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
+    } else {
+      assert(n->is_top(), "sanity");
+      // Nothing to check.
+    }
+  }
+  // Recursive walk over all input edges
+  for( i = 0; i < len(); i++ ) {
+    n = in(i);
+    if( n != NULL )
+      in(i)->verify_edges(visited);
+  }
+}
+
+//------------------------------verify_recur-----------------------------------
+static const Node *unique_top = NULL;
+
+void Node::verify_recur(const Node *n, int verify_depth,
+                        VectorSet &old_space, VectorSet &new_space) {
+  if ( verify_depth == 0 )  return;
+  if (verify_depth > 0)  --verify_depth;
+
+  Compile* C = Compile::current();
+
+  // Contained in new_space or old_space?
+  VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
+  // Check for visited in the proper space.  Numberings are not unique
+  // across spaces so we need a seperate VectorSet for each space.
+  if( v->test_set(n->_idx) ) return;
+
+  if (n->is_Con() && n->bottom_type() == Type::TOP) {
+    if (C->cached_top_node() == NULL)
+      C->set_cached_top_node((Node*)n);
+    assert(C->cached_top_node() == n, "TOP node must be unique");
+  }
+
+  for( uint i = 0; i < n->len(); i++ ) {
+    Node *x = n->in(i);
+    if (!x || x->is_top()) continue;
+
+    // Verify my input has a def-use edge to me
+    if (true /*VerifyDefUse*/) {
+      // Count use-def edges from n to x
+      int cnt = 0;
+      for( uint j = 0; j < n->len(); j++ )
+        if( n->in(j) == x )
+          cnt++;
+      // Count def-use edges from x to n
+      uint max = x->_outcnt;
+      for( uint k = 0; k < max; k++ )
+        if (x->_out[k] == n)
+          cnt--;
+      assert( cnt == 0, "mismatched def-use edge counts" );
+    }
+
+    verify_recur(x, verify_depth, old_space, new_space);
+  }
+
+}
+
+//------------------------------verify-----------------------------------------
+// Check Def-Use info for my subgraph
+void Node::verify() const {
+  Compile* C = Compile::current();
+  Node* old_top = C->cached_top_node();
+  ResourceMark rm;
+  ResourceArea *area = Thread::current()->resource_area();
+  VectorSet old_space(area), new_space(area);
+  verify_recur(this, -1, old_space, new_space);
+  C->set_cached_top_node(old_top);
+}
+#endif
+
+
+//------------------------------walk-------------------------------------------
+// Graph walk, with both pre-order and post-order functions
+void Node::walk(NFunc pre, NFunc post, void *env) {
+  VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
+  walk_(pre, post, env, visited);
+}
+
+void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
+  if( visited.test_set(_idx) ) return;
+  pre(*this,env);               // Call the pre-order walk function
+  for( uint i=0; i<_max; i++ )
+    if( in(i) )                 // Input exists and is not walked?
+      in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
+  post(*this,env);              // Call the post-order walk function
+}
+
+void Node::nop(Node &, void*) {}
+
+//------------------------------Registers--------------------------------------
+// Do we Match on this edge index or not?  Generally false for Control
+// and true for everything else.  Weird for calls & returns.
+uint Node::match_edge(uint idx) const {
+  return idx;                   // True for other than index 0 (control)
+}
+
+// Register classes are defined for specific machines
+const RegMask &Node::out_RegMask() const {
+  ShouldNotCallThis();
+  return *(new RegMask());
+}
+
+const RegMask &Node::in_RegMask(uint) const {
+  ShouldNotCallThis();
+  return *(new RegMask());
+}
+
+//=============================================================================
+//-----------------------------------------------------------------------------
+void Node_Array::reset( Arena *new_arena ) {
+  _a->Afree(_nodes,_max*sizeof(Node*));
+  _max   = 0;
+  _nodes = NULL;
+  _a     = new_arena;
+}
+
+//------------------------------clear------------------------------------------
+// Clear all entries in _nodes to NULL but keep storage
+void Node_Array::clear() {
+  Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
+}
+
+//-----------------------------------------------------------------------------
+void Node_Array::grow( uint i ) {
+  if( !_max ) {
+    _max = 1;
+    _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
+    _nodes[0] = NULL;
+  }
+  uint old = _max;
+  while( i >= _max ) _max <<= 1;        // Double to fit
+  _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
+  Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
+}
+
+//-----------------------------------------------------------------------------
+void Node_Array::insert( uint i, Node *n ) {
+  if( _nodes[_max-1] ) grow(_max);      // Get more space if full
+  Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
+  _nodes[i] = n;
+}
+
+//-----------------------------------------------------------------------------
+void Node_Array::remove( uint i ) {
+  Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
+  _nodes[_max-1] = NULL;
+}
+
+//-----------------------------------------------------------------------------
+void Node_Array::sort( C_sort_func_t func) {
+  qsort( _nodes, _max, sizeof( Node* ), func );
+}
+
+//-----------------------------------------------------------------------------
+void Node_Array::dump() const {
+#ifndef PRODUCT
+  for( uint i = 0; i < _max; i++ ) {
+    Node *nn = _nodes[i];
+    if( nn != NULL ) {
+      tty->print("%5d--> ",i); nn->dump();
+    }
+  }
+#endif
+}
+
+//--------------------------is_iteratively_computed------------------------------
+// Operation appears to be iteratively computed (such as an induction variable)
+// It is possible for this operation to return false for a loop-varying
+// value, if it appears (by local graph inspection) to be computed by a simple conditional.
+bool Node::is_iteratively_computed() {
+  if (ideal_reg()) { // does operation have a result register?
+    for (uint i = 1; i < req(); i++) {
+      Node* n = in(i);
+      if (n != NULL && n->is_Phi()) {
+        for (uint j = 1; j < n->req(); j++) {
+          if (n->in(j) == this) {
+            return true;
+          }
+        }
+      }
+    }
+  }
+  return false;
+}
+
+//--------------------------find_similar------------------------------
+// Return a node with opcode "opc" and same inputs as "this" if one can
+// be found; Otherwise return NULL;
+Node* Node::find_similar(int opc) {
+  if (req() >= 2) {
+    Node* def = in(1);
+    if (def && def->outcnt() >= 2) {
+      for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
+        Node* use = def->fast_out(i);
+        if (use->Opcode() == opc &&
+            use->req() == req()) {
+          uint j;
+          for (j = 0; j < use->req(); j++) {
+            if (use->in(j) != in(j)) {
+              break;
+            }
+          }
+          if (j == use->req()) {
+            return use;
+          }
+        }
+      }
+    }
+  }
+  return NULL;
+}
+
+
+//--------------------------unique_ctrl_out------------------------------
+// Return the unique control out if only one. Null if none or more than one.
+Node* Node::unique_ctrl_out() {
+  Node* found = NULL;
+  for (uint i = 0; i < outcnt(); i++) {
+    Node* use = raw_out(i);
+    if (use->is_CFG() && use != this) {
+      if (found != NULL) return NULL;
+      found = use;
+    }
+  }
+  return found;
+}
+
+//=============================================================================
+//------------------------------yank-------------------------------------------
+// Find and remove
+void Node_List::yank( Node *n ) {
+  uint i;
+  for( i = 0; i < _cnt; i++ )
+    if( _nodes[i] == n )
+      break;
+
+  if( i < _cnt )
+    _nodes[i] = _nodes[--_cnt];
+}
+
+//------------------------------dump-------------------------------------------
+void Node_List::dump() const {
+#ifndef PRODUCT
+  for( uint i = 0; i < _cnt; i++ )
+    if( _nodes[i] ) {
+      tty->print("%5d--> ",i);
+      _nodes[i]->dump();
+    }
+#endif
+}
+
+//=============================================================================
+//------------------------------remove-----------------------------------------
+void Unique_Node_List::remove( Node *n ) {
+  if( _in_worklist[n->_idx] ) {
+    for( uint i = 0; i < size(); i++ )
+      if( _nodes[i] == n ) {
+        map(i,Node_List::pop());
+        _in_worklist >>= n->_idx;
+        return;
+      }
+    ShouldNotReachHere();
+  }
+}
+
+//-----------------------remove_useless_nodes----------------------------------
+// Remove useless nodes from worklist
+void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
+
+  for( uint i = 0; i < size(); ++i ) {
+    Node *n = at(i);
+    assert( n != NULL, "Did not expect null entries in worklist");
+    if( ! useful.test(n->_idx) ) {
+      _in_worklist >>= n->_idx;
+      map(i,Node_List::pop());
+      // Node *replacement = Node_List::pop();
+      // if( i != size() ) { // Check if removing last entry
+      //   _nodes[i] = replacement;
+      // }
+      --i;  // Visit popped node
+      // If it was last entry, loop terminates since size() was also reduced
+    }
+  }
+}
+
+//=============================================================================
+void Node_Stack::grow() {
+  size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
+  size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
+  size_t max = old_max << 1;             // max * 2
+  _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
+  _inode_max = _inodes + max;
+  _inode_top = _inodes + old_top;        // restore _top
+}
+
+//=============================================================================
+uint TypeNode::size_of() const { return sizeof(*this); }
+#ifndef PRODUCT
+void TypeNode::dump_spec(outputStream *st) const {
+  if( !Verbose && !WizardMode ) {
+    // standard dump does this in Verbose and WizardMode
+    st->print(" #"); _type->dump_on(st);
+  }
+}
+#endif
+uint TypeNode::hash() const {
+  return Node::hash() + _type->hash();
+}
+uint TypeNode::cmp( const Node &n ) const
+{ return !Type::cmp( _type, ((TypeNode&)n)._type ); }
+const Type *TypeNode::bottom_type() const { return _type; }
+const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
+
+//------------------------------ideal_reg--------------------------------------
+uint TypeNode::ideal_reg() const {
+  return Matcher::base2reg[_type->base()];
+}