diff src/share/vm/opto/parse2.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children ff5961f4c095
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/parse2.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2171 @@
+/*
+ * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_parse2.cpp.incl"
+
+extern int explicit_null_checks_inserted,
+           explicit_null_checks_elided;
+
+//---------------------------------array_load----------------------------------
+void Parse::array_load(BasicType elem_type) {
+  const Type* elem = Type::TOP;
+  Node* adr = array_addressing(elem_type, 0, &elem);
+  if (stopped())  return;     // guarenteed null or range check
+  _sp -= 2;                   // Pop array and index
+  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
+  Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
+  push(ld);
+}
+
+
+//--------------------------------array_store----------------------------------
+void Parse::array_store(BasicType elem_type) {
+  Node* adr = array_addressing(elem_type, 1);
+  if (stopped())  return;     // guarenteed null or range check
+  Node* val = pop();
+  _sp -= 2;                   // Pop array and index
+  const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
+  store_to_memory(control(), adr, val, elem_type, adr_type);
+}
+
+
+//------------------------------array_addressing-------------------------------
+// Pull array and index from the stack.  Compute pointer-to-element.
+Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
+  Node *idx   = peek(0+vals);   // Get from stack without popping
+  Node *ary   = peek(1+vals);   // in case of exception
+
+  // Null check the array base, with correct stack contents
+  ary = do_null_check(ary, T_ARRAY);
+  // Compile-time detect of null-exception?
+  if (stopped())  return top();
+
+  const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
+  const TypeInt*    sizetype = arytype->size();
+  const Type*       elemtype = arytype->elem();
+
+  if (UseUniqueSubclasses && result2 != NULL) {
+    const TypeInstPtr* toop = elemtype->isa_instptr();
+    if (toop) {
+      if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
+        // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
+        const Type* subklass = Type::get_const_type(toop->klass());
+        elemtype = subklass->join(elemtype);
+      }
+    }
+  }
+
+  // Check for big class initializers with all constant offsets
+  // feeding into a known-size array.
+  const TypeInt* idxtype = _gvn.type(idx)->is_int();
+  // See if the highest idx value is less than the lowest array bound,
+  // and if the idx value cannot be negative:
+  bool need_range_check = true;
+  if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
+    need_range_check = false;
+    if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
+  }
+
+  if (!arytype->klass()->is_loaded()) {
+    // Only fails for some -Xcomp runs
+    // The class is unloaded.  We have to run this bytecode in the interpreter.
+    uncommon_trap(Deoptimization::Reason_unloaded,
+                  Deoptimization::Action_reinterpret,
+                  arytype->klass(), "!loaded array");
+    return top();
+  }
+
+  // Do the range check
+  if (GenerateRangeChecks && need_range_check) {
+    // Range is constant in array-oop, so we can use the original state of mem
+    Node* len = load_array_length(ary);
+    // Test length vs index (standard trick using unsigned compare)
+    Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
+    BoolTest::mask btest = BoolTest::lt;
+    Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
+    // Branch to failure if out of bounds
+    { BuildCutout unless(this, tst, PROB_MAX);
+      if (C->allow_range_check_smearing()) {
+        // Do not use builtin_throw, since range checks are sometimes
+        // made more stringent by an optimistic transformation.
+        // This creates "tentative" range checks at this point,
+        // which are not guaranteed to throw exceptions.
+        // See IfNode::Ideal, is_range_check, adjust_check.
+        uncommon_trap(Deoptimization::Reason_range_check,
+                      Deoptimization::Action_make_not_entrant,
+                      NULL, "range_check");
+      } else {
+        // If we have already recompiled with the range-check-widening
+        // heroic optimization turned off, then we must really be throwing
+        // range check exceptions.
+        builtin_throw(Deoptimization::Reason_range_check, idx);
+      }
+    }
+  }
+  // Check for always knowing you are throwing a range-check exception
+  if (stopped())  return top();
+
+  Node* ptr = array_element_address( ary, idx, type, sizetype);
+
+  if (result2 != NULL)  *result2 = elemtype;
+  return ptr;
+}
+
+
+// returns IfNode
+IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
+  Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
+  Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
+  IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
+  return iff;
+}
+
+// return Region node
+Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
+  Node *region  = new (C, 3) RegionNode(3); // 2 results
+  record_for_igvn(region);
+  region->init_req(1, iffalse);
+  region->init_req(2, iftrue );
+  _gvn.set_type(region, Type::CONTROL);
+  region = _gvn.transform(region);
+  set_control (region);
+  return region;
+}
+
+
+//------------------------------helper for tableswitch-------------------------
+void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
+  // True branch, use existing map info
+  { PreserveJVMState pjvms(this);
+    Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
+    set_control( iftrue );
+    profile_switch_case(prof_table_index);
+    merge_new_path(dest_bci_if_true);
+  }
+
+  // False branch
+  Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
+  set_control( iffalse );
+}
+
+void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
+  // True branch, use existing map info
+  { PreserveJVMState pjvms(this);
+    Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
+    set_control( iffalse );
+    profile_switch_case(prof_table_index);
+    merge_new_path(dest_bci_if_true);
+  }
+
+  // False branch
+  Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
+  set_control( iftrue );
+}
+
+void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
+  // False branch, use existing map and control()
+  profile_switch_case(prof_table_index);
+  merge_new_path(dest_bci);
+}
+
+
+extern "C" {
+  static int jint_cmp(const void *i, const void *j) {
+    int a = *(jint *)i;
+    int b = *(jint *)j;
+    return a > b ? 1 : a < b ? -1 : 0;
+  }
+}
+
+
+// Default value for methodData switch indexing. Must be a negative value to avoid
+// conflict with any legal switch index.
+#define NullTableIndex -1
+
+class SwitchRange : public StackObj {
+  // a range of integers coupled with a bci destination
+  jint _lo;                     // inclusive lower limit
+  jint _hi;                     // inclusive upper limit
+  int _dest;
+  int _table_index;             // index into method data table
+
+public:
+  jint lo() const              { return _lo;   }
+  jint hi() const              { return _hi;   }
+  int  dest() const            { return _dest; }
+  int  table_index() const     { return _table_index; }
+  bool is_singleton() const    { return _lo == _hi; }
+
+  void setRange(jint lo, jint hi, int dest, int table_index) {
+    assert(lo <= hi, "must be a non-empty range");
+    _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
+  }
+  bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
+    assert(lo <= hi, "must be a non-empty range");
+    if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
+      _hi = hi;
+      return true;
+    }
+    return false;
+  }
+
+  void set (jint value, int dest, int table_index) {
+    setRange(value, value, dest, table_index);
+  }
+  bool adjoin(jint value, int dest, int table_index) {
+    return adjoinRange(value, value, dest, table_index);
+  }
+
+  void print(ciEnv* env) {
+    if (is_singleton())
+      tty->print(" {%d}=>%d", lo(), dest());
+    else if (lo() == min_jint)
+      tty->print(" {..%d}=>%d", hi(), dest());
+    else if (hi() == max_jint)
+      tty->print(" {%d..}=>%d", lo(), dest());
+    else
+      tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
+  }
+};
+
+
+//-------------------------------do_tableswitch--------------------------------
+void Parse::do_tableswitch() {
+  Node* lookup = pop();
+
+  // Get information about tableswitch
+  int default_dest = iter().get_dest_table(0);
+  int lo_index     = iter().get_int_table(1);
+  int hi_index     = iter().get_int_table(2);
+  int len          = hi_index - lo_index + 1;
+
+  if (len < 1) {
+    // If this is a backward branch, add safepoint
+    maybe_add_safepoint(default_dest);
+    merge(default_dest);
+    return;
+  }
+
+  // generate decision tree, using trichotomy when possible
+  int rnum = len+2;
+  bool makes_backward_branch = false;
+  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
+  int rp = -1;
+  if (lo_index != min_jint) {
+    ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
+  }
+  for (int j = 0; j < len; j++) {
+    jint match_int = lo_index+j;
+    int  dest      = iter().get_dest_table(j+3);
+    makes_backward_branch |= (dest <= bci());
+    int  table_index = method_data_update() ? j : NullTableIndex;
+    if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
+      ranges[++rp].set(match_int, dest, table_index);
+    }
+  }
+  jint highest = lo_index+(len-1);
+  assert(ranges[rp].hi() == highest, "");
+  if (highest != max_jint
+      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
+    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
+  }
+  assert(rp < len+2, "not too many ranges");
+
+  // Safepoint in case if backward branch observed
+  if( makes_backward_branch && UseLoopSafepoints )
+    add_safepoint();
+
+  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
+}
+
+
+//------------------------------do_lookupswitch--------------------------------
+void Parse::do_lookupswitch() {
+  Node *lookup = pop();         // lookup value
+  // Get information about lookupswitch
+  int default_dest = iter().get_dest_table(0);
+  int len          = iter().get_int_table(1);
+
+  if (len < 1) {    // If this is a backward branch, add safepoint
+    maybe_add_safepoint(default_dest);
+    merge(default_dest);
+    return;
+  }
+
+  // generate decision tree, using trichotomy when possible
+  jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
+  {
+    for( int j = 0; j < len; j++ ) {
+      table[j+j+0] = iter().get_int_table(2+j+j);
+      table[j+j+1] = iter().get_dest_table(2+j+j+1);
+    }
+    qsort( table, len, 2*sizeof(table[0]), jint_cmp );
+  }
+
+  int rnum = len*2+1;
+  bool makes_backward_branch = false;
+  SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
+  int rp = -1;
+  for( int j = 0; j < len; j++ ) {
+    jint match_int   = table[j+j+0];
+    int  dest        = table[j+j+1];
+    int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
+    int  table_index = method_data_update() ? j : NullTableIndex;
+    makes_backward_branch |= (dest <= bci());
+    if( match_int != next_lo ) {
+      ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
+    }
+    if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
+      ranges[++rp].set(match_int, dest, table_index);
+    }
+  }
+  jint highest = table[2*(len-1)];
+  assert(ranges[rp].hi() == highest, "");
+  if( highest != max_jint
+      && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
+    ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
+  }
+  assert(rp < rnum, "not too many ranges");
+
+  // Safepoint in case backward branch observed
+  if( makes_backward_branch && UseLoopSafepoints )
+    add_safepoint();
+
+  jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
+}
+
+//----------------------------create_jump_tables-------------------------------
+bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
+  // Are jumptables enabled
+  if (!UseJumpTables)  return false;
+
+  // Are jumptables supported
+  if (!Matcher::has_match_rule(Op_Jump))  return false;
+
+  // Don't make jump table if profiling
+  if (method_data_update())  return false;
+
+  // Decide if a guard is needed to lop off big ranges at either (or
+  // both) end(s) of the input set. We'll call this the default target
+  // even though we can't be sure that it is the true "default".
+
+  bool needs_guard = false;
+  int default_dest;
+  int64 total_outlier_size = 0;
+  int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
+  int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
+
+  if (lo->dest() == hi->dest()) {
+    total_outlier_size = hi_size + lo_size;
+    default_dest = lo->dest();
+  } else if (lo_size > hi_size) {
+    total_outlier_size = lo_size;
+    default_dest = lo->dest();
+  } else {
+    total_outlier_size = hi_size;
+    default_dest = hi->dest();
+  }
+
+  // If a guard test will eliminate very sparse end ranges, then
+  // it is worth the cost of an extra jump.
+  if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
+    needs_guard = true;
+    if (default_dest == lo->dest()) lo++;
+    if (default_dest == hi->dest()) hi--;
+  }
+
+  // Find the total number of cases and ranges
+  int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
+  int num_range = hi - lo + 1;
+
+  // Don't create table if: too large, too small, or too sparse.
+  if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
+    return false;
+  if (num_cases > (MaxJumpTableSparseness * num_range))
+    return false;
+
+  // Normalize table lookups to zero
+  int lowval = lo->lo();
+  key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
+
+  // Generate a guard to protect against input keyvals that aren't
+  // in the switch domain.
+  if (needs_guard) {
+    Node*   size = _gvn.intcon(num_cases);
+    Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
+    Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
+    IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
+    jump_if_true_fork(iff, default_dest, NullTableIndex);
+  }
+
+  // Create an ideal node JumpTable that has projections
+  // of all possible ranges for a switch statement
+  // The key_val input must be converted to a pointer offset and scaled.
+  // Compare Parse::array_addressing above.
+#ifdef _LP64
+  // Clean the 32-bit int into a real 64-bit offset.
+  // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
+  const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
+  key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
+#endif
+  // Shift the value by wordsize so we have an index into the table, rather
+  // than a switch value
+  Node *shiftWord = _gvn.MakeConX(wordSize);
+  key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
+
+  // Create the JumpNode
+  Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
+
+  // These are the switch destinations hanging off the jumpnode
+  int i = 0;
+  for (SwitchRange* r = lo; r <= hi; r++) {
+    for (int j = r->lo(); j <= r->hi(); j++, i++) {
+      Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
+      {
+        PreserveJVMState pjvms(this);
+        set_control(input);
+        jump_if_always_fork(r->dest(), r->table_index());
+      }
+    }
+  }
+  assert(i == num_cases, "miscount of cases");
+  stop_and_kill_map();  // no more uses for this JVMS
+  return true;
+}
+
+//----------------------------jump_switch_ranges-------------------------------
+void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
+  Block* switch_block = block();
+
+  if (switch_depth == 0) {
+    // Do special processing for the top-level call.
+    assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
+    assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
+
+    // Decrement pred-numbers for the unique set of nodes.
+#ifdef ASSERT
+    // Ensure that the block's successors are a (duplicate-free) set.
+    int successors_counted = 0;  // block occurrences in [hi..lo]
+    int unique_successors = switch_block->num_successors();
+    for (int i = 0; i < unique_successors; i++) {
+      Block* target = switch_block->successor_at(i);
+
+      // Check that the set of successors is the same in both places.
+      int successors_found = 0;
+      for (SwitchRange* p = lo; p <= hi; p++) {
+        if (p->dest() == target->start())  successors_found++;
+      }
+      assert(successors_found > 0, "successor must be known");
+      successors_counted += successors_found;
+    }
+    assert(successors_counted == (hi-lo)+1, "no unexpected successors");
+#endif
+
+    // Maybe prune the inputs, based on the type of key_val.
+    jint min_val = min_jint;
+    jint max_val = max_jint;
+    const TypeInt* ti = key_val->bottom_type()->isa_int();
+    if (ti != NULL) {
+      min_val = ti->_lo;
+      max_val = ti->_hi;
+      assert(min_val <= max_val, "invalid int type");
+    }
+    while (lo->hi() < min_val)  lo++;
+    if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
+    while (hi->lo() > max_val)  hi--;
+    if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
+  }
+
+#ifndef PRODUCT
+  if (switch_depth == 0) {
+    _max_switch_depth = 0;
+    _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
+  }
+#endif
+
+  assert(lo <= hi, "must be a non-empty set of ranges");
+  if (lo == hi) {
+    jump_if_always_fork(lo->dest(), lo->table_index());
+  } else {
+    assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
+    assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
+
+    if (create_jump_tables(key_val, lo, hi)) return;
+
+    int nr = hi - lo + 1;
+
+    SwitchRange* mid = lo + nr/2;
+    // if there is an easy choice, pivot at a singleton:
+    if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
+
+    assert(lo < mid && mid <= hi, "good pivot choice");
+    assert(nr != 2 || mid == hi,   "should pick higher of 2");
+    assert(nr != 3 || mid == hi-1, "should pick middle of 3");
+
+    Node *test_val = _gvn.intcon(mid->lo());
+
+    if (mid->is_singleton()) {
+      IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
+      jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
+
+      // Special Case:  If there are exactly three ranges, and the high
+      // and low range each go to the same place, omit the "gt" test,
+      // since it will not discriminate anything.
+      bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
+      if (eq_test_only) {
+        assert(mid == hi-1, "");
+      }
+
+      // if there is a higher range, test for it and process it:
+      if (mid < hi && !eq_test_only) {
+        // two comparisons of same values--should enable 1 test for 2 branches
+        // Use BoolTest::le instead of BoolTest::gt
+        IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
+        Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
+        Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
+        { PreserveJVMState pjvms(this);
+          set_control(iffalse);
+          jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
+        }
+        set_control(iftrue);
+      }
+
+    } else {
+      // mid is a range, not a singleton, so treat mid..hi as a unit
+      IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
+
+      // if there is a higher range, test for it and process it:
+      if (mid == hi) {
+        jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
+      } else {
+        Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
+        Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
+        { PreserveJVMState pjvms(this);
+          set_control(iftrue);
+          jump_switch_ranges(key_val, mid, hi, switch_depth+1);
+        }
+        set_control(iffalse);
+      }
+    }
+
+    // in any case, process the lower range
+    jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
+  }
+
+  // Decrease pred_count for each successor after all is done.
+  if (switch_depth == 0) {
+    int unique_successors = switch_block->num_successors();
+    for (int i = 0; i < unique_successors; i++) {
+      Block* target = switch_block->successor_at(i);
+      // Throw away the pre-allocated path for each unique successor.
+      target->next_path_num();
+    }
+  }
+
+#ifndef PRODUCT
+  _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
+  if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
+    SwitchRange* r;
+    int nsing = 0;
+    for( r = lo; r <= hi; r++ ) {
+      if( r->is_singleton() )  nsing++;
+    }
+    tty->print(">>> ");
+    _method->print_short_name();
+    tty->print_cr(" switch decision tree");
+    tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
+                  hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
+    if (_max_switch_depth > _est_switch_depth) {
+      tty->print_cr("******** BAD SWITCH DEPTH ********");
+    }
+    tty->print("   ");
+    for( r = lo; r <= hi; r++ ) {
+      r->print(env());
+    }
+    tty->print_cr("");
+  }
+#endif
+}
+
+void Parse::modf() {
+  Node *f2 = pop();
+  Node *f1 = pop();
+  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
+                              CAST_FROM_FN_PTR(address, SharedRuntime::frem),
+                              "frem", NULL, //no memory effects
+                              f1, f2);
+  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
+
+  push(res);
+}
+
+void Parse::modd() {
+  Node *d2 = pop_pair();
+  Node *d1 = pop_pair();
+  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
+                              CAST_FROM_FN_PTR(address, SharedRuntime::drem),
+                              "drem", NULL, //no memory effects
+                              d1, top(), d2, top());
+  Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
+
+#ifdef ASSERT
+  Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
+  assert(res_top == top(), "second value must be top");
+#endif
+
+  push_pair(res_d);
+}
+
+void Parse::l2f() {
+  Node* f2 = pop();
+  Node* f1 = pop();
+  Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
+                              CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
+                              "l2f", NULL, //no memory effects
+                              f1, f2);
+  Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
+
+  push(res);
+}
+
+void Parse::do_irem() {
+  // Must keep both values on the expression-stack during null-check
+  do_null_check(peek(), T_INT);
+  // Compile-time detect of null-exception?
+  if (stopped())  return;
+
+  Node* b = pop();
+  Node* a = pop();
+
+  const Type *t = _gvn.type(b);
+  if (t != Type::TOP) {
+    const TypeInt *ti = t->is_int();
+    if (ti->is_con()) {
+      int divisor = ti->get_con();
+      // check for positive power of 2
+      if (divisor > 0 &&
+          (divisor & ~(divisor-1)) == divisor) {
+        // yes !
+        Node *mask = _gvn.intcon((divisor - 1));
+        // Sigh, must handle negative dividends
+        Node *zero = _gvn.intcon(0);
+        IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
+        Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
+        Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
+        Node *reg = jump_if_join(ift, iff);
+        Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
+        // Negative path; negate/and/negate
+        Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
+        Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
+        Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
+        phi->init_req(1, negn);
+        // Fast positive case
+        Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
+        phi->init_req(2, andx);
+        // Push the merge
+        push( _gvn.transform(phi) );
+        return;
+      }
+    }
+  }
+  // Default case
+  push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
+}
+
+// Handle jsr and jsr_w bytecode
+void Parse::do_jsr() {
+  assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
+
+  // Store information about current state, tagged with new _jsr_bci
+  int return_bci = iter().next_bci();
+  int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
+
+  // Update method data
+  profile_taken_branch(jsr_bci);
+
+  // The way we do things now, there is only one successor block
+  // for the jsr, because the target code is cloned by ciTypeFlow.
+  Block* target = successor_for_bci(jsr_bci);
+
+  // What got pushed?
+  const Type* ret_addr = target->peek();
+  assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
+
+  // Effect on jsr on stack
+  push(_gvn.makecon(ret_addr));
+
+  // Flow to the jsr.
+  merge(jsr_bci);
+}
+
+// Handle ret bytecode
+void Parse::do_ret() {
+  // Find to whom we return.
+#if 0 // %%%% MAKE THIS WORK
+  Node* con = local();
+  const TypePtr* tp = con->bottom_type()->isa_ptr();
+  assert(tp && tp->singleton(), "");
+  int return_bci = (int) tp->get_con();
+  merge(return_bci);
+#else
+  assert(block()->num_successors() == 1, "a ret can only go one place now");
+  Block* target = block()->successor_at(0);
+  assert(!target->is_ready(), "our arrival must be expected");
+  profile_ret(target->flow()->start());
+  int pnum = target->next_path_num();
+  merge_common(target, pnum);
+#endif
+}
+
+//--------------------------dynamic_branch_prediction--------------------------
+// Try to gather dynamic branch prediction behavior.  Return a probability
+// of the branch being taken and set the "cnt" field.  Returns a -1.0
+// if we need to use static prediction for some reason.
+float Parse::dynamic_branch_prediction(float &cnt) {
+  ResourceMark rm;
+
+  cnt  = COUNT_UNKNOWN;
+
+  // Use MethodData information if it is available
+  // FIXME: free the ProfileData structure
+  ciMethodData* methodData = method()->method_data();
+  if (!methodData->is_mature())  return PROB_UNKNOWN;
+  ciProfileData* data = methodData->bci_to_data(bci());
+  if (!data->is_JumpData())  return PROB_UNKNOWN;
+
+  // get taken and not taken values
+  int     taken = data->as_JumpData()->taken();
+  int not_taken = 0;
+  if (data->is_BranchData()) {
+    not_taken = data->as_BranchData()->not_taken();
+  }
+
+  // scale the counts to be commensurate with invocation counts:
+  taken = method()->scale_count(taken);
+  not_taken = method()->scale_count(not_taken);
+
+  // Give up if too few counts to be meaningful
+  if (taken + not_taken < 40) {
+    if (C->log() != NULL) {
+      C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
+    }
+    return PROB_UNKNOWN;
+  }
+
+  // Compute frequency that we arrive here
+  int sum = taken + not_taken;
+  // Adjust, if this block is a cloned private block but the
+  // Jump counts are shared.  Taken the private counts for
+  // just this path instead of the shared counts.
+  if( block()->count() > 0 )
+    sum = block()->count();
+  cnt = (float)sum / (float)FreqCountInvocations;
+
+  // Pin probability to sane limits
+  float prob;
+  if( !taken )
+    prob = (0+PROB_MIN) / 2;
+  else if( !not_taken )
+    prob = (1+PROB_MAX) / 2;
+  else {                         // Compute probability of true path
+    prob = (float)taken / (float)(taken + not_taken);
+    if (prob > PROB_MAX)  prob = PROB_MAX;
+    if (prob < PROB_MIN)   prob = PROB_MIN;
+  }
+
+  assert((cnt > 0.0f) && (prob > 0.0f),
+         "Bad frequency assignment in if");
+
+  if (C->log() != NULL) {
+    const char* prob_str = NULL;
+    if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
+    if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
+    char prob_str_buf[30];
+    if (prob_str == NULL) {
+      sprintf(prob_str_buf, "%g", prob);
+      prob_str = prob_str_buf;
+    }
+    C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
+                   iter().get_dest(), taken, not_taken, cnt, prob_str);
+  }
+  return prob;
+}
+
+//-----------------------------branch_prediction-------------------------------
+float Parse::branch_prediction(float& cnt,
+                               BoolTest::mask btest,
+                               int target_bci) {
+  float prob = dynamic_branch_prediction(cnt);
+  // If prob is unknown, switch to static prediction
+  if (prob != PROB_UNKNOWN)  return prob;
+
+  prob = PROB_FAIR;                   // Set default value
+  if (btest == BoolTest::eq)          // Exactly equal test?
+    prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
+  else if (btest == BoolTest::ne)
+    prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
+
+  // If this is a conditional test guarding a backwards branch,
+  // assume its a loop-back edge.  Make it a likely taken branch.
+  if (target_bci < bci()) {
+    if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
+      // Since it's an OSR, we probably have profile data, but since
+      // branch_prediction returned PROB_UNKNOWN, the counts are too small.
+      // Let's make a special check here for completely zero counts.
+      ciMethodData* methodData = method()->method_data();
+      if (!methodData->is_empty()) {
+        ciProfileData* data = methodData->bci_to_data(bci());
+        // Only stop for truly zero counts, which mean an unknown part
+        // of the OSR-ed method, and we want to deopt to gather more stats.
+        // If you have ANY counts, then this loop is simply 'cold' relative
+        // to the OSR loop.
+        if (data->as_BranchData()->taken() +
+            data->as_BranchData()->not_taken() == 0 ) {
+          // This is the only way to return PROB_UNKNOWN:
+          return PROB_UNKNOWN;
+        }
+      }
+    }
+    prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
+  }
+
+  assert(prob != PROB_UNKNOWN, "must have some guess at this point");
+  return prob;
+}
+
+// The magic constants are chosen so as to match the output of
+// branch_prediction() when the profile reports a zero taken count.
+// It is important to distinguish zero counts unambiguously, because
+// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
+// very small but nonzero probabilities, which if confused with zero
+// counts would keep the program recompiling indefinitely.
+bool Parse::seems_never_taken(float prob) {
+  return prob < PROB_MIN;
+}
+
+inline void Parse::repush_if_args() {
+#ifndef PRODUCT
+  if (PrintOpto && WizardMode) {
+    tty->print("defending against excessive implicit null exceptions on %s @%d in ",
+               Bytecodes::name(iter().cur_bc()), iter().cur_bci());
+    method()->print_name(); tty->cr();
+  }
+#endif
+  int bc_depth = - Bytecodes::depth(iter().cur_bc());
+  assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
+  DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
+  assert(argument(0) != NULL, "must exist");
+  assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
+  _sp += bc_depth;
+}
+
+//----------------------------------do_ifnull----------------------------------
+void Parse::do_ifnull(BoolTest::mask btest) {
+  int target_bci = iter().get_dest();
+
+  float cnt;
+  float prob = branch_prediction(cnt, btest, target_bci);
+  if (prob == PROB_UNKNOWN) {
+    // (An earlier version of do_ifnull omitted this trap for OSR methods.)
+#ifndef PRODUCT
+    if (PrintOpto && Verbose)
+      tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
+#endif
+    repush_if_args(); // to gather stats on loop
+    // We need to mark this branch as taken so that if we recompile we will
+    // see that it is possible. In the tiered system the interpreter doesn't
+    // do profiling and by the time we get to the lower tier from the interpreter
+    // the path may be cold again. Make sure it doesn't look untaken
+    profile_taken_branch(target_bci, !ProfileInterpreter);
+    uncommon_trap(Deoptimization::Reason_unreached,
+                  Deoptimization::Action_reinterpret,
+                  NULL, "cold");
+    return;
+  }
+
+  // If this is a backwards branch in the bytecodes, add Safepoint
+  maybe_add_safepoint(target_bci);
+  Block* branch_block = successor_for_bci(target_bci);
+  Block* next_block   = successor_for_bci(iter().next_bci());
+
+  explicit_null_checks_inserted++;
+  Node* a = null();
+  Node* b = pop();
+  Node* c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
+
+  // Make a cast-away-nullness that is control dependent on the test
+  const Type *t = _gvn.type(b);
+  const Type *t_not_null = t->join(TypePtr::NOTNULL);
+  Node *cast = new (C, 2) CastPPNode(b,t_not_null);
+
+  // Generate real control flow
+  Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
+
+  // Sanity check the probability value
+  assert(prob > 0.0f,"Bad probability in Parser");
+ // Need xform to put node in hash table
+  IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
+  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
+  // True branch
+  { PreserveJVMState pjvms(this);
+    Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
+    set_control(iftrue);
+
+    if (stopped()) {            // Path is dead?
+      explicit_null_checks_elided++;
+    } else {                    // Path is live.
+      // Update method data
+      profile_taken_branch(target_bci);
+      adjust_map_after_if(btest, c, prob, branch_block, next_block);
+      if (!stopped())
+        merge(target_bci);
+    }
+  }
+
+  // False branch
+  Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
+  set_control(iffalse);
+
+  if (stopped()) {              // Path is dead?
+    explicit_null_checks_elided++;
+  } else  {                     // Path is live.
+    // Update method data
+    profile_not_taken_branch();
+    adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
+                        next_block, branch_block);
+  }
+}
+
+//------------------------------------do_if------------------------------------
+void Parse::do_if(BoolTest::mask btest, Node* c) {
+  int target_bci = iter().get_dest();
+
+  float cnt;
+  float prob = branch_prediction(cnt, btest, target_bci);
+  float untaken_prob = 1.0 - prob;
+
+  if (prob == PROB_UNKNOWN) {
+#ifndef PRODUCT
+    if (PrintOpto && Verbose)
+      tty->print_cr("Never-taken backedge stops compilation at bci %d",bci());
+#endif
+    repush_if_args(); // to gather stats on loop
+    // We need to mark this branch as taken so that if we recompile we will
+    // see that it is possible. In the tiered system the interpreter doesn't
+    // do profiling and by the time we get to the lower tier from the interpreter
+    // the path may be cold again. Make sure it doesn't look untaken
+    profile_taken_branch(target_bci, !ProfileInterpreter);
+    uncommon_trap(Deoptimization::Reason_unreached,
+                  Deoptimization::Action_reinterpret,
+                  NULL, "cold");
+    return;
+  }
+
+  // Sanity check the probability value
+  assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
+
+  bool taken_if_true = true;
+  // Convert BoolTest to canonical form:
+  if (!BoolTest(btest).is_canonical()) {
+    btest         = BoolTest(btest).negate();
+    taken_if_true = false;
+    // prob is NOT updated here; it remains the probability of the taken
+    // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
+  }
+  assert(btest != BoolTest::eq, "!= is the only canonical exact test");
+
+  Node* tst0 = new (C, 2) BoolNode(c, btest);
+  Node* tst = _gvn.transform(tst0);
+  BoolTest::mask taken_btest   = BoolTest::illegal;
+  BoolTest::mask untaken_btest = BoolTest::illegal;
+  if (btest == BoolTest::ne) {
+    // For now, these are the only cases of btest that matter.  (More later.)
+    taken_btest   = taken_if_true ?        btest : BoolTest::eq;
+    untaken_btest = taken_if_true ? BoolTest::eq :        btest;
+  }
+
+  // Generate real control flow
+  float true_prob = (taken_if_true ? prob : untaken_prob);
+  IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
+  assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
+  Node* taken_branch   = new (C, 1) IfTrueNode(iff);
+  Node* untaken_branch = new (C, 1) IfFalseNode(iff);
+  if (!taken_if_true) {  // Finish conversion to canonical form
+    Node* tmp      = taken_branch;
+    taken_branch   = untaken_branch;
+    untaken_branch = tmp;
+  }
+
+  Block* branch_block = successor_for_bci(target_bci);
+  Block* next_block   = successor_for_bci(iter().next_bci());
+
+  // Branch is taken:
+  { PreserveJVMState pjvms(this);
+    taken_branch = _gvn.transform(taken_branch);
+    set_control(taken_branch);
+
+    if (!stopped()) {
+      // Update method data
+      profile_taken_branch(target_bci);
+      adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
+      if (!stopped())
+        merge(target_bci);
+    }
+  }
+
+  untaken_branch = _gvn.transform(untaken_branch);
+  set_control(untaken_branch);
+
+  // Branch not taken.
+  if (!stopped()) {
+    // Update method data
+    profile_not_taken_branch();
+    adjust_map_after_if(untaken_btest, c, untaken_prob,
+                        next_block, branch_block);
+  }
+}
+
+//----------------------------adjust_map_after_if------------------------------
+// Adjust the JVM state to reflect the result of taking this path.
+// Basically, it means inspecting the CmpNode controlling this
+// branch, seeing how it constrains a tested value, and then
+// deciding if it's worth our while to encode this constraint
+// as graph nodes in the current abstract interpretation map.
+void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
+                                Block* path, Block* other_path) {
+  if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
+    return;                             // nothing to do
+
+  bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
+
+  int cop = c->Opcode();
+  if (seems_never_taken(prob) && cop == Op_CmpP && btest == BoolTest::eq) {
+    // (An earlier version of do_if omitted '&& btest == BoolTest::eq'.)
+    //
+    // If this might possibly turn into an implicit null check,
+    // and the null has never yet been seen, we need to generate
+    // an uncommon trap, so as to recompile instead of suffering
+    // with very slow branches.  (We'll get the slow branches if
+    // the program ever changes phase and starts seeing nulls here.)
+    //
+    // The tests we worry about are of the form (p == null).
+    // We do not simply inspect for a null constant, since a node may
+    // optimize to 'null' later on.
+    repush_if_args();
+    // We need to mark this branch as taken so that if we recompile we will
+    // see that it is possible. In the tiered system the interpreter doesn't
+    // do profiling and by the time we get to the lower tier from the interpreter
+    // the path may be cold again. Make sure it doesn't look untaken
+    if (is_fallthrough) {
+      profile_not_taken_branch(!ProfileInterpreter);
+    } else {
+      profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
+    }
+    uncommon_trap(Deoptimization::Reason_unreached,
+                  Deoptimization::Action_reinterpret,
+                  NULL,
+                  (is_fallthrough ? "taken always" : "taken never"));
+    return;
+  }
+
+  Node* val = c->in(1);
+  Node* con = c->in(2);
+  const Type* tcon = _gvn.type(con);
+  const Type* tval = _gvn.type(val);
+  bool have_con = tcon->singleton();
+  if (tval->singleton()) {
+    if (!have_con) {
+      // Swap, so constant is in con.
+      con  = val;
+      tcon = tval;
+      val  = c->in(2);
+      tval = _gvn.type(val);
+      btest = BoolTest(btest).commute();
+      have_con = true;
+    } else {
+      // Do we have two constants?  Then leave well enough alone.
+      have_con = false;
+    }
+  }
+  if (!have_con)                        // remaining adjustments need a con
+    return;
+
+
+  int val_in_map = map()->find_edge(val);
+  if (val_in_map < 0)  return;          // replace_in_map would be useless
+  {
+    JVMState* jvms = this->jvms();
+    if (!(jvms->is_loc(val_in_map) ||
+          jvms->is_stk(val_in_map)))
+      return;                           // again, it would be useless
+  }
+
+  // Check for a comparison to a constant, and "know" that the compared
+  // value is constrained on this path.
+  assert(tcon->singleton(), "");
+  ConstraintCastNode* ccast = NULL;
+  Node* cast = NULL;
+
+  switch (btest) {
+  case BoolTest::eq:                    // Constant test?
+    {
+      const Type* tboth = tcon->join(tval);
+      if (tboth == tval)  break;        // Nothing to gain.
+      if (tcon->isa_int()) {
+        ccast = new (C, 2) CastIINode(val, tboth);
+      } else if (tcon == TypePtr::NULL_PTR) {
+        // Cast to null, but keep the pointer identity temporarily live.
+        ccast = new (C, 2) CastPPNode(val, tboth);
+      } else {
+        const TypeF* tf = tcon->isa_float_constant();
+        const TypeD* td = tcon->isa_double_constant();
+        // Exclude tests vs float/double 0 as these could be
+        // either +0 or -0.  Just because you are equal to +0
+        // doesn't mean you ARE +0!
+        if ((!tf || tf->_f != 0.0) &&
+            (!td || td->_d != 0.0))
+          cast = con;                   // Replace non-constant val by con.
+      }
+    }
+    break;
+
+  case BoolTest::ne:
+    if (tcon == TypePtr::NULL_PTR) {
+      cast = cast_not_null(val, false);
+    }
+    break;
+
+  default:
+    // (At this point we could record int range types with CastII.)
+    break;
+  }
+
+  if (ccast != NULL) {
+    const Type* tcc = ccast->as_Type()->type();
+    assert(tcc != tval && tcc->higher_equal(tval), "must improve");
+    // Delay transform() call to allow recovery of pre-cast value
+    // at the control merge.
+    ccast->set_req(0, control());
+    _gvn.set_type_bottom(ccast);
+    record_for_igvn(ccast);
+    cast = ccast;
+  }
+
+  if (cast != NULL) {                   // Here's the payoff.
+    replace_in_map(val, cast);
+  }
+}
+
+
+//------------------------------do_one_bytecode--------------------------------
+// Parse this bytecode, and alter the Parsers JVM->Node mapping
+void Parse::do_one_bytecode() {
+  Node *a, *b, *c, *d;          // Handy temps
+  BoolTest::mask btest;
+  int i;
+
+  assert(!has_exceptions(), "bytecode entry state must be clear of throws");
+
+  if (C->check_node_count(NodeLimitFudgeFactor * 5,
+                          "out of nodes parsing method")) {
+    return;
+  }
+
+#ifdef ASSERT
+  // for setting breakpoints
+  if (TraceOptoParse) {
+    tty->print(" @");
+    dump_bci(bci());
+  }
+#endif
+
+  switch (bc()) {
+  case Bytecodes::_nop:
+    // do nothing
+    break;
+  case Bytecodes::_lconst_0:
+    push_pair(longcon(0));
+    break;
+
+  case Bytecodes::_lconst_1:
+    push_pair(longcon(1));
+    break;
+
+  case Bytecodes::_fconst_0:
+    push(zerocon(T_FLOAT));
+    break;
+
+  case Bytecodes::_fconst_1:
+    push(makecon(TypeF::ONE));
+    break;
+
+  case Bytecodes::_fconst_2:
+    push(makecon(TypeF::make(2.0f)));
+    break;
+
+  case Bytecodes::_dconst_0:
+    push_pair(zerocon(T_DOUBLE));
+    break;
+
+  case Bytecodes::_dconst_1:
+    push_pair(makecon(TypeD::ONE));
+    break;
+
+  case Bytecodes::_iconst_m1:push(intcon(-1)); break;
+  case Bytecodes::_iconst_0: push(intcon( 0)); break;
+  case Bytecodes::_iconst_1: push(intcon( 1)); break;
+  case Bytecodes::_iconst_2: push(intcon( 2)); break;
+  case Bytecodes::_iconst_3: push(intcon( 3)); break;
+  case Bytecodes::_iconst_4: push(intcon( 4)); break;
+  case Bytecodes::_iconst_5: push(intcon( 5)); break;
+  case Bytecodes::_bipush:   push(intcon( iter().get_byte())); break;
+  case Bytecodes::_sipush:   push(intcon( iter().get_short())); break;
+  case Bytecodes::_aconst_null: push(null());  break;
+  case Bytecodes::_ldc:
+  case Bytecodes::_ldc_w:
+  case Bytecodes::_ldc2_w:
+    // If the constant is unresolved, run this BC once in the interpreter.
+    if (iter().is_unresolved_string()) {
+      uncommon_trap(Deoptimization::make_trap_request
+                    (Deoptimization::Reason_unloaded,
+                     Deoptimization::Action_reinterpret,
+                     iter().get_constant_index()),
+                    NULL, "unresolved_string");
+      break;
+    } else {
+      ciConstant constant = iter().get_constant();
+      if (constant.basic_type() == T_OBJECT) {
+        ciObject* c = constant.as_object();
+        if (c->is_klass()) {
+          // The constant returned for a klass is the ciKlass for the
+          // entry.  We want the java_mirror so get it.
+          ciKlass* klass = c->as_klass();
+          if (klass->is_loaded()) {
+            constant = ciConstant(T_OBJECT, klass->java_mirror());
+          } else {
+            uncommon_trap(Deoptimization::make_trap_request
+                          (Deoptimization::Reason_unloaded,
+                           Deoptimization::Action_reinterpret,
+                           iter().get_constant_index()),
+                          NULL, "unresolved_klass");
+            break;
+          }
+        }
+      }
+      push_constant(constant);
+    }
+
+    break;
+
+  case Bytecodes::_aload_0:
+    push( local(0) );
+    break;
+  case Bytecodes::_aload_1:
+    push( local(1) );
+    break;
+  case Bytecodes::_aload_2:
+    push( local(2) );
+    break;
+  case Bytecodes::_aload_3:
+    push( local(3) );
+    break;
+  case Bytecodes::_aload:
+    push( local(iter().get_index()) );
+    break;
+
+  case Bytecodes::_fload_0:
+  case Bytecodes::_iload_0:
+    push( local(0) );
+    break;
+  case Bytecodes::_fload_1:
+  case Bytecodes::_iload_1:
+    push( local(1) );
+    break;
+  case Bytecodes::_fload_2:
+  case Bytecodes::_iload_2:
+    push( local(2) );
+    break;
+  case Bytecodes::_fload_3:
+  case Bytecodes::_iload_3:
+    push( local(3) );
+    break;
+  case Bytecodes::_fload:
+  case Bytecodes::_iload:
+    push( local(iter().get_index()) );
+    break;
+  case Bytecodes::_lload_0:
+    push_pair_local( 0 );
+    break;
+  case Bytecodes::_lload_1:
+    push_pair_local( 1 );
+    break;
+  case Bytecodes::_lload_2:
+    push_pair_local( 2 );
+    break;
+  case Bytecodes::_lload_3:
+    push_pair_local( 3 );
+    break;
+  case Bytecodes::_lload:
+    push_pair_local( iter().get_index() );
+    break;
+
+  case Bytecodes::_dload_0:
+    push_pair_local(0);
+    break;
+  case Bytecodes::_dload_1:
+    push_pair_local(1);
+    break;
+  case Bytecodes::_dload_2:
+    push_pair_local(2);
+    break;
+  case Bytecodes::_dload_3:
+    push_pair_local(3);
+    break;
+  case Bytecodes::_dload:
+    push_pair_local(iter().get_index());
+    break;
+  case Bytecodes::_fstore_0:
+  case Bytecodes::_istore_0:
+  case Bytecodes::_astore_0:
+    set_local( 0, pop() );
+    break;
+  case Bytecodes::_fstore_1:
+  case Bytecodes::_istore_1:
+  case Bytecodes::_astore_1:
+    set_local( 1, pop() );
+    break;
+  case Bytecodes::_fstore_2:
+  case Bytecodes::_istore_2:
+  case Bytecodes::_astore_2:
+    set_local( 2, pop() );
+    break;
+  case Bytecodes::_fstore_3:
+  case Bytecodes::_istore_3:
+  case Bytecodes::_astore_3:
+    set_local( 3, pop() );
+    break;
+  case Bytecodes::_fstore:
+  case Bytecodes::_istore:
+  case Bytecodes::_astore:
+    set_local( iter().get_index(), pop() );
+    break;
+  // long stores
+  case Bytecodes::_lstore_0:
+    set_pair_local( 0, pop_pair() );
+    break;
+  case Bytecodes::_lstore_1:
+    set_pair_local( 1, pop_pair() );
+    break;
+  case Bytecodes::_lstore_2:
+    set_pair_local( 2, pop_pair() );
+    break;
+  case Bytecodes::_lstore_3:
+    set_pair_local( 3, pop_pair() );
+    break;
+  case Bytecodes::_lstore:
+    set_pair_local( iter().get_index(), pop_pair() );
+    break;
+
+  // double stores
+  case Bytecodes::_dstore_0:
+    set_pair_local( 0, dstore_rounding(pop_pair()) );
+    break;
+  case Bytecodes::_dstore_1:
+    set_pair_local( 1, dstore_rounding(pop_pair()) );
+    break;
+  case Bytecodes::_dstore_2:
+    set_pair_local( 2, dstore_rounding(pop_pair()) );
+    break;
+  case Bytecodes::_dstore_3:
+    set_pair_local( 3, dstore_rounding(pop_pair()) );
+    break;
+  case Bytecodes::_dstore:
+    set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
+    break;
+
+  case Bytecodes::_pop:  _sp -= 1;   break;
+  case Bytecodes::_pop2: _sp -= 2;   break;
+  case Bytecodes::_swap:
+    a = pop();
+    b = pop();
+    push(a);
+    push(b);
+    break;
+  case Bytecodes::_dup:
+    a = pop();
+    push(a);
+    push(a);
+    break;
+  case Bytecodes::_dup_x1:
+    a = pop();
+    b = pop();
+    push( a );
+    push( b );
+    push( a );
+    break;
+  case Bytecodes::_dup_x2:
+    a = pop();
+    b = pop();
+    c = pop();
+    push( a );
+    push( c );
+    push( b );
+    push( a );
+    break;
+  case Bytecodes::_dup2:
+    a = pop();
+    b = pop();
+    push( b );
+    push( a );
+    push( b );
+    push( a );
+    break;
+
+  case Bytecodes::_dup2_x1:
+    // before: .. c, b, a
+    // after:  .. b, a, c, b, a
+    // not tested
+    a = pop();
+    b = pop();
+    c = pop();
+    push( b );
+    push( a );
+    push( c );
+    push( b );
+    push( a );
+    break;
+  case Bytecodes::_dup2_x2:
+    // before: .. d, c, b, a
+    // after:  .. b, a, d, c, b, a
+    // not tested
+    a = pop();
+    b = pop();
+    c = pop();
+    d = pop();
+    push( b );
+    push( a );
+    push( d );
+    push( c );
+    push( b );
+    push( a );
+    break;
+
+  case Bytecodes::_arraylength: {
+    // Must do null-check with value on expression stack
+    Node *ary = do_null_check(peek(), T_ARRAY);
+    // Compile-time detect of null-exception?
+    if (stopped())  return;
+    a = pop();
+    push(load_array_length(a));
+    break;
+  }
+
+  case Bytecodes::_baload: array_load(T_BYTE);   break;
+  case Bytecodes::_caload: array_load(T_CHAR);   break;
+  case Bytecodes::_iaload: array_load(T_INT);    break;
+  case Bytecodes::_saload: array_load(T_SHORT);  break;
+  case Bytecodes::_faload: array_load(T_FLOAT);  break;
+  case Bytecodes::_aaload: array_load(T_OBJECT); break;
+  case Bytecodes::_laload: {
+    a = array_addressing(T_LONG, 0);
+    if (stopped())  return;     // guarenteed null or range check
+    _sp -= 2;                   // Pop array and index
+    push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
+    break;
+  }
+  case Bytecodes::_daload: {
+    a = array_addressing(T_DOUBLE, 0);
+    if (stopped())  return;     // guarenteed null or range check
+    _sp -= 2;                   // Pop array and index
+    push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
+    break;
+  }
+  case Bytecodes::_bastore: array_store(T_BYTE);  break;
+  case Bytecodes::_castore: array_store(T_CHAR);  break;
+  case Bytecodes::_iastore: array_store(T_INT);   break;
+  case Bytecodes::_sastore: array_store(T_SHORT); break;
+  case Bytecodes::_fastore: array_store(T_FLOAT); break;
+  case Bytecodes::_aastore: {
+    d = array_addressing(T_OBJECT, 1);
+    if (stopped())  return;     // guarenteed null or range check
+    array_store_check();
+    c = pop();                  // Oop to store
+    b = pop();                  // index (already used)
+    a = pop();                  // the array itself
+    const Type* elemtype  = _gvn.type(a)->is_aryptr()->elem();
+    const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
+    Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
+    break;
+  }
+  case Bytecodes::_lastore: {
+    a = array_addressing(T_LONG, 2);
+    if (stopped())  return;     // guarenteed null or range check
+    c = pop_pair();
+    _sp -= 2;                   // Pop array and index
+    store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
+    break;
+  }
+  case Bytecodes::_dastore: {
+    a = array_addressing(T_DOUBLE, 2);
+    if (stopped())  return;     // guarenteed null or range check
+    c = pop_pair();
+    _sp -= 2;                   // Pop array and index
+    c = dstore_rounding(c);
+    store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
+    break;
+  }
+  case Bytecodes::_getfield:
+    do_getfield();
+    break;
+
+  case Bytecodes::_getstatic:
+    do_getstatic();
+    break;
+
+  case Bytecodes::_putfield:
+    do_putfield();
+    break;
+
+  case Bytecodes::_putstatic:
+    do_putstatic();
+    break;
+
+  case Bytecodes::_irem:
+    do_irem();
+    break;
+  case Bytecodes::_idiv:
+    // Must keep both values on the expression-stack during null-check
+    do_null_check(peek(), T_INT);
+    // Compile-time detect of null-exception?
+    if (stopped())  return;
+    b = pop();
+    a = pop();
+    push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
+    break;
+  case Bytecodes::_imul:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
+    break;
+  case Bytecodes::_iadd:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
+    break;
+  case Bytecodes::_ineg:
+    a = pop();
+    push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
+    break;
+  case Bytecodes::_isub:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
+    break;
+  case Bytecodes::_iand:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
+    break;
+  case Bytecodes::_ior:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
+    break;
+  case Bytecodes::_ixor:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
+    break;
+  case Bytecodes::_ishl:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
+    break;
+  case Bytecodes::_ishr:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
+    break;
+  case Bytecodes::_iushr:
+    b = pop(); a = pop();
+    push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
+    break;
+
+  case Bytecodes::_fneg:
+    a = pop();
+    b = _gvn.transform(new (C, 2) NegFNode (a));
+    push(b);
+    break;
+
+  case Bytecodes::_fsub:
+    b = pop();
+    a = pop();
+    c = _gvn.transform( new (C, 3) SubFNode(a,b) );
+    d = precision_rounding(c);
+    push( d );
+    break;
+
+  case Bytecodes::_fadd:
+    b = pop();
+    a = pop();
+    c = _gvn.transform( new (C, 3) AddFNode(a,b) );
+    d = precision_rounding(c);
+    push( d );
+    break;
+
+  case Bytecodes::_fmul:
+    b = pop();
+    a = pop();
+    c = _gvn.transform( new (C, 3) MulFNode(a,b) );
+    d = precision_rounding(c);
+    push( d );
+    break;
+
+  case Bytecodes::_fdiv:
+    b = pop();
+    a = pop();
+    c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
+    d = precision_rounding(c);
+    push( d );
+    break;
+
+  case Bytecodes::_frem:
+    if (Matcher::has_match_rule(Op_ModF)) {
+      // Generate a ModF node.
+      b = pop();
+      a = pop();
+      c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
+      d = precision_rounding(c);
+      push( d );
+    }
+    else {
+      // Generate a call.
+      modf();
+    }
+    break;
+
+  case Bytecodes::_fcmpl:
+    b = pop();
+    a = pop();
+    c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
+    push(c);
+    break;
+  case Bytecodes::_fcmpg:
+    b = pop();
+    a = pop();
+
+    // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
+    // which negates the result sign except for unordered.  Flip the unordered
+    // as well by using CmpF3 which implements unordered-lesser instead of
+    // unordered-greater semantics.  Finally, commute the result bits.  Result
+    // is same as using a CmpF3Greater except we did it with CmpF3 alone.
+    c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
+    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
+    push(c);
+    break;
+
+  case Bytecodes::_f2i:
+    a = pop();
+    push(_gvn.transform(new (C, 2) ConvF2INode(a)));
+    break;
+
+  case Bytecodes::_d2i:
+    a = pop_pair();
+    b = _gvn.transform(new (C, 2) ConvD2INode(a));
+    push( b );
+    break;
+
+  case Bytecodes::_f2d:
+    a = pop();
+    b = _gvn.transform( new (C, 2) ConvF2DNode(a));
+    push_pair( b );
+    break;
+
+  case Bytecodes::_d2f:
+    a = pop_pair();
+    b = _gvn.transform( new (C, 2) ConvD2FNode(a));
+    // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
+    //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
+    push( b );
+    break;
+
+  case Bytecodes::_l2f:
+    if (Matcher::convL2FSupported()) {
+      a = pop_pair();
+      b = _gvn.transform( new (C, 2) ConvL2FNode(a));
+      // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
+      // Rather than storing the result into an FP register then pushing
+      // out to memory to round, the machine instruction that implements
+      // ConvL2D is responsible for rounding.
+      // c = precision_rounding(b);
+      c = _gvn.transform(b);
+      push(c);
+    } else {
+      l2f();
+    }
+    break;
+
+  case Bytecodes::_l2d:
+    a = pop_pair();
+    b = _gvn.transform( new (C, 2) ConvL2DNode(a));
+    // For i486.ad, rounding is always necessary (see _l2f above).
+    // c = dprecision_rounding(b);
+    c = _gvn.transform(b);
+    push_pair(c);
+    break;
+
+  case Bytecodes::_f2l:
+    a = pop();
+    b = _gvn.transform( new (C, 2) ConvF2LNode(a));
+    push_pair(b);
+    break;
+
+  case Bytecodes::_d2l:
+    a = pop_pair();
+    b = _gvn.transform( new (C, 2) ConvD2LNode(a));
+    push_pair(b);
+    break;
+
+  case Bytecodes::_dsub:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) SubDNode(a,b) );
+    d = dprecision_rounding(c);
+    push_pair( d );
+    break;
+
+  case Bytecodes::_dadd:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) AddDNode(a,b) );
+    d = dprecision_rounding(c);
+    push_pair( d );
+    break;
+
+  case Bytecodes::_dmul:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) MulDNode(a,b) );
+    d = dprecision_rounding(c);
+    push_pair( d );
+    break;
+
+  case Bytecodes::_ddiv:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
+    d = dprecision_rounding(c);
+    push_pair( d );
+    break;
+
+  case Bytecodes::_dneg:
+    a = pop_pair();
+    b = _gvn.transform(new (C, 2) NegDNode (a));
+    push_pair(b);
+    break;
+
+  case Bytecodes::_drem:
+    if (Matcher::has_match_rule(Op_ModD)) {
+      // Generate a ModD node.
+      b = pop_pair();
+      a = pop_pair();
+      // a % b
+
+      c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
+      d = dprecision_rounding(c);
+      push_pair( d );
+    }
+    else {
+      // Generate a call.
+      modd();
+    }
+    break;
+
+  case Bytecodes::_dcmpl:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
+    push(c);
+    break;
+
+  case Bytecodes::_dcmpg:
+    b = pop_pair();
+    a = pop_pair();
+    // Same as dcmpl but need to flip the unordered case.
+    // Commute the inputs, which negates the result sign except for unordered.
+    // Flip the unordered as well by using CmpD3 which implements
+    // unordered-lesser instead of unordered-greater semantics.
+    // Finally, negate the result bits.  Result is same as using a
+    // CmpD3Greater except we did it with CmpD3 alone.
+    c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
+    c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
+    push(c);
+    break;
+
+
+    // Note for longs -> lo word is on TOS, hi word is on TOS - 1
+  case Bytecodes::_land:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) AndLNode(a,b) );
+    push_pair(c);
+    break;
+  case Bytecodes::_lor:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) OrLNode(a,b) );
+    push_pair(c);
+    break;
+  case Bytecodes::_lxor:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) XorLNode(a,b) );
+    push_pair(c);
+    break;
+
+  case Bytecodes::_lshl:
+    b = pop();                  // the shift count
+    a = pop_pair();             // value to be shifted
+    c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
+    push_pair(c);
+    break;
+  case Bytecodes::_lshr:
+    b = pop();                  // the shift count
+    a = pop_pair();             // value to be shifted
+    c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
+    push_pair(c);
+    break;
+  case Bytecodes::_lushr:
+    b = pop();                  // the shift count
+    a = pop_pair();             // value to be shifted
+    c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
+    push_pair(c);
+    break;
+  case Bytecodes::_lmul:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) MulLNode(a,b) );
+    push_pair(c);
+    break;
+
+  case Bytecodes::_lrem:
+    // Must keep both values on the expression-stack during null-check
+    assert(peek(0) == top(), "long word order");
+    do_null_check(peek(1), T_LONG);
+    // Compile-time detect of null-exception?
+    if (stopped())  return;
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
+    push_pair(c);
+    break;
+
+  case Bytecodes::_ldiv:
+    // Must keep both values on the expression-stack during null-check
+    assert(peek(0) == top(), "long word order");
+    do_null_check(peek(1), T_LONG);
+    // Compile-time detect of null-exception?
+    if (stopped())  return;
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
+    push_pair(c);
+    break;
+
+  case Bytecodes::_ladd:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) AddLNode(a,b) );
+    push_pair(c);
+    break;
+  case Bytecodes::_lsub:
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) SubLNode(a,b) );
+    push_pair(c);
+    break;
+  case Bytecodes::_lcmp:
+    // Safepoints are now inserted _before_ branches.  The long-compare
+    // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
+    // slew of control flow.  These are usually followed by a CmpI vs zero and
+    // a branch; this pattern then optimizes to the obvious long-compare and
+    // branch.  However, if the branch is backwards there's a Safepoint
+    // inserted.  The inserted Safepoint captures the JVM state at the
+    // pre-branch point, i.e. it captures the 3-way value.  Thus if a
+    // long-compare is used to control a loop the debug info will force
+    // computation of the 3-way value, even though the generated code uses a
+    // long-compare and branch.  We try to rectify the situation by inserting
+    // a SafePoint here and have it dominate and kill the safepoint added at a
+    // following backwards branch.  At this point the JVM state merely holds 2
+    // longs but not the 3-way value.
+    if( UseLoopSafepoints ) {
+      switch( iter().next_bc() ) {
+      case Bytecodes::_ifgt:
+      case Bytecodes::_iflt:
+      case Bytecodes::_ifge:
+      case Bytecodes::_ifle:
+      case Bytecodes::_ifne:
+      case Bytecodes::_ifeq:
+        // If this is a backwards branch in the bytecodes, add Safepoint
+        maybe_add_safepoint(iter().next_get_dest());
+      }
+    }
+    b = pop_pair();
+    a = pop_pair();
+    c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
+    push(c);
+    break;
+
+  case Bytecodes::_lneg:
+    a = pop_pair();
+    b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
+    push_pair(b);
+    break;
+  case Bytecodes::_l2i:
+    a = pop_pair();
+    push( _gvn.transform( new (C, 2) ConvL2INode(a)));
+    break;
+  case Bytecodes::_i2l:
+    a = pop();
+    b = _gvn.transform( new (C, 2) ConvI2LNode(a));
+    push_pair(b);
+    break;
+  case Bytecodes::_i2b:
+    // Sign extend
+    a = pop();
+    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
+    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
+    push( a );
+    break;
+  case Bytecodes::_i2s:
+    a = pop();
+    a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
+    a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
+    push( a );
+    break;
+  case Bytecodes::_i2c:
+    a = pop();
+    push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
+    break;
+
+  case Bytecodes::_i2f:
+    a = pop();
+    b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
+    c = precision_rounding(b);
+    push (b);
+    break;
+
+  case Bytecodes::_i2d:
+    a = pop();
+    b = _gvn.transform( new (C, 2) ConvI2DNode(a));
+    push_pair(b);
+    break;
+
+  case Bytecodes::_iinc:        // Increment local
+    i = iter().get_index();     // Get local index
+    set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
+    break;
+
+  // Exit points of synchronized methods must have an unlock node
+  case Bytecodes::_return:
+    return_current(NULL);
+    break;
+
+  case Bytecodes::_ireturn:
+  case Bytecodes::_areturn:
+  case Bytecodes::_freturn:
+    return_current(pop());
+    break;
+  case Bytecodes::_lreturn:
+    return_current(pop_pair());
+    break;
+  case Bytecodes::_dreturn:
+    return_current(pop_pair());
+    break;
+
+  case Bytecodes::_athrow:
+    // null exception oop throws NULL pointer exception
+    do_null_check(peek(), T_OBJECT);
+    if (stopped())  return;
+    if (JvmtiExport::can_post_exceptions()) {
+      // "Full-speed throwing" is not necessary here,
+      // since we're notifying the VM on every throw.
+      uncommon_trap(Deoptimization::Reason_unhandled,
+                    Deoptimization::Action_none);
+      return;
+    }
+    // Hook the thrown exception directly to subsequent handlers.
+    if (BailoutToInterpreterForThrows) {
+      // Keep method interpreted from now on.
+      uncommon_trap(Deoptimization::Reason_unhandled,
+                    Deoptimization::Action_make_not_compilable);
+      return;
+    }
+    add_exception_state(make_exception_state(peek()));
+    break;
+
+  case Bytecodes::_goto:   // fall through
+  case Bytecodes::_goto_w: {
+    int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
+
+    // If this is a backwards branch in the bytecodes, add Safepoint
+    maybe_add_safepoint(target_bci);
+
+    // Update method data
+    profile_taken_branch(target_bci);
+
+    // Merge the current control into the target basic block
+    merge(target_bci);
+
+    // See if we can get some profile data and hand it off to the next block
+    Block *target_block = block()->successor_for_bci(target_bci);
+    if (target_block->pred_count() != 1)  break;
+    ciMethodData* methodData = method()->method_data();
+    if (!methodData->is_mature())  break;
+    ciProfileData* data = methodData->bci_to_data(bci());
+    assert( data->is_JumpData(), "" );
+    int taken = ((ciJumpData*)data)->taken();
+    taken = method()->scale_count(taken);
+    target_block->set_count(taken);
+    break;
+  }
+
+  case Bytecodes::_ifnull:
+    do_ifnull(BoolTest::eq);
+    break;
+  case Bytecodes::_ifnonnull:
+    do_ifnull(BoolTest::ne);
+    break;
+
+  case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
+  case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
+  handle_if_acmp:
+    // If this is a backwards branch in the bytecodes, add Safepoint
+    maybe_add_safepoint(iter().get_dest());
+    a = pop();
+    b = pop();
+    c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
+    do_if(btest, c);
+    break;
+
+  case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
+  case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
+  case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
+  case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
+  case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
+  case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
+  handle_ifxx:
+    // If this is a backwards branch in the bytecodes, add Safepoint
+    maybe_add_safepoint(iter().get_dest());
+    a = _gvn.intcon(0);
+    b = pop();
+    c = _gvn.transform( new (C, 3) CmpINode(b, a) );
+    do_if(btest, c);
+    break;
+
+  case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
+  case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
+  case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
+  case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
+  case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
+  case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
+  handle_if_icmp:
+    // If this is a backwards branch in the bytecodes, add Safepoint
+    maybe_add_safepoint(iter().get_dest());
+    a = pop();
+    b = pop();
+    c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
+    do_if(btest, c);
+    break;
+
+  case Bytecodes::_tableswitch:
+    do_tableswitch();
+    break;
+
+  case Bytecodes::_lookupswitch:
+    do_lookupswitch();
+    break;
+
+  case Bytecodes::_invokestatic:
+  case Bytecodes::_invokespecial:
+  case Bytecodes::_invokevirtual:
+  case Bytecodes::_invokeinterface:
+    do_call();
+    break;
+  case Bytecodes::_checkcast:
+    do_checkcast();
+    break;
+  case Bytecodes::_instanceof:
+    do_instanceof();
+    break;
+  case Bytecodes::_anewarray:
+    do_anewarray();
+    break;
+  case Bytecodes::_newarray:
+    do_newarray((BasicType)iter().get_index());
+    break;
+  case Bytecodes::_multianewarray:
+    do_multianewarray();
+    break;
+  case Bytecodes::_new:
+    do_new();
+    break;
+
+  case Bytecodes::_jsr:
+  case Bytecodes::_jsr_w:
+    do_jsr();
+    break;
+
+  case Bytecodes::_ret:
+    do_ret();
+    break;
+
+
+  case Bytecodes::_monitorenter:
+    do_monitor_enter();
+    break;
+
+  case Bytecodes::_monitorexit:
+    do_monitor_exit();
+    break;
+
+  case Bytecodes::_breakpoint:
+    // Breakpoint set concurrently to compile
+    // %%% use an uncommon trap?
+    C->record_failure("breakpoint in method");
+    return;
+
+  default:
+#ifndef PRODUCT
+    map()->dump(99);
+#endif
+    tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
+    ShouldNotReachHere();
+  }
+
+#ifndef PRODUCT
+  IdealGraphPrinter *printer = IdealGraphPrinter::printer();
+  if(printer) {
+    char buffer[256];
+    sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
+    bool old = printer->traverse_outs();
+    printer->set_traverse_outs(true);
+    printer->print_method(C, buffer, 3);
+    printer->set_traverse_outs(old);
+  }
+#endif
+}