diff src/share/vm/opto/subnode.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children 3288958bf319
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/subnode.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1206 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+// Optimization - Graph Style
+
+#include "incls/_precompiled.incl"
+#include "incls/_subnode.cpp.incl"
+#include "math.h"
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+// If right input is a constant 0, return the left input.
+Node *SubNode::Identity( PhaseTransform *phase ) {
+  assert(in(1) != this, "Must already have called Value");
+  assert(in(2) != this, "Must already have called Value");
+
+  // Remove double negation
+  const Type *zero = add_id();
+  if( phase->type( in(1) )->higher_equal( zero ) &&
+      in(2)->Opcode() == Opcode() &&
+      phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
+    return in(2)->in(2);
+  }
+
+  // Convert "(X+Y) - Y" into X
+  if( in(1)->Opcode() == Op_AddI ) {
+    if( phase->eqv(in(1)->in(2),in(2)) )
+      return in(1)->in(1);
+    // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
+    // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
+    // are originally used, although the optimizer sometimes jiggers things).
+    // This folding through an O2 removes a loop-exit use of a loop-varying
+    // value and generally lowers register pressure in and around the loop.
+    if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
+        phase->eqv(in(1)->in(2)->in(1),in(2)) )
+      return in(1)->in(1);
+  }
+
+  return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
+}
+
+//------------------------------Value------------------------------------------
+// A subtract node differences it's two inputs.
+const Type *SubNode::Value( PhaseTransform *phase ) const {
+  const Node* in1 = in(1);
+  const Node* in2 = in(2);
+  // Either input is TOP ==> the result is TOP
+  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
+  if( t1 == Type::TOP ) return Type::TOP;
+  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
+  if( t2 == Type::TOP ) return Type::TOP;
+
+  // Not correct for SubFnode and AddFNode (must check for infinity)
+  // Equal?  Subtract is zero
+  if (phase->eqv_uncast(in1, in2))  return add_id();
+
+  // Either input is BOTTOM ==> the result is the local BOTTOM
+  if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
+    return bottom_type();
+
+  return sub(t1,t2);            // Local flavor of type subtraction
+
+}
+
+//=============================================================================
+
+//------------------------------Helper function--------------------------------
+static bool ok_to_convert(Node* inc, Node* iv) {
+    // Do not collapse (x+c0)-y if "+" is a loop increment, because the
+    // "-" is loop invariant and collapsing extends the live-range of "x"
+    // to overlap with the "+", forcing another register to be used in
+    // the loop.
+    // This test will be clearer with '&&' (apply DeMorgan's rule)
+    // but I like the early cutouts that happen here.
+    const PhiNode *phi;
+    if( ( !inc->in(1)->is_Phi() ||
+          !(phi=inc->in(1)->as_Phi()) ||
+          phi->is_copy() ||
+          !phi->region()->is_CountedLoop() ||
+          inc != phi->region()->as_CountedLoop()->incr() )
+       &&
+        // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
+        // because "x" maybe invariant.
+        ( !iv->is_loop_iv() )
+      ) {
+      return true;
+    } else {
+      return false;
+    }
+}
+//------------------------------Ideal------------------------------------------
+Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
+  Node *in1 = in(1);
+  Node *in2 = in(2);
+  uint op1 = in1->Opcode();
+  uint op2 = in2->Opcode();
+
+#ifdef ASSERT
+  // Check for dead loop
+  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
+      ( op1 == Op_AddI || op1 == Op_SubI ) &&
+      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
+        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
+    assert(false, "dead loop in SubINode::Ideal");
+#endif
+
+  const Type *t2 = phase->type( in2 );
+  if( t2 == Type::TOP ) return NULL;
+  // Convert "x-c0" into "x+ -c0".
+  if( t2->base() == Type::Int ){        // Might be bottom or top...
+    const TypeInt *i = t2->is_int();
+    if( i->is_con() )
+      return new (phase->C, 3) AddINode(in1, phase->intcon(-i->get_con()));
+  }
+
+  // Convert "(x+c0) - y" into (x-y) + c0"
+  // Do not collapse (x+c0)-y if "+" is a loop increment or
+  // if "y" is a loop induction variable.
+  if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
+    const Type *tadd = phase->type( in1->in(2) );
+    if( tadd->singleton() && tadd != Type::TOP ) {
+      Node *sub2 = phase->transform( new (phase->C, 3) SubINode( in1->in(1), in2 ));
+      return new (phase->C, 3) AddINode( sub2, in1->in(2) );
+    }
+  }
+
+
+  // Convert "x - (y+c0)" into "(x-y) - c0"
+  // Need the same check as in above optimization but reversed.
+  if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
+    Node* in21 = in2->in(1);
+    Node* in22 = in2->in(2);
+    const TypeInt* tcon = phase->type(in22)->isa_int();
+    if (tcon != NULL && tcon->is_con()) {
+      Node* sub2 = phase->transform( new (phase->C, 3) SubINode(in1, in21) );
+      Node* neg_c0 = phase->intcon(- tcon->get_con());
+      return new (phase->C, 3) AddINode(sub2, neg_c0);
+    }
+  }
+
+  const Type *t1 = phase->type( in1 );
+  if( t1 == Type::TOP ) return NULL;
+
+#ifdef ASSERT
+  // Check for dead loop
+  if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
+      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
+        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
+    assert(false, "dead loop in SubINode::Ideal");
+#endif
+
+  // Convert "x - (x+y)" into "-y"
+  if( op2 == Op_AddI &&
+      phase->eqv( in1, in2->in(1) ) )
+    return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(2));
+  // Convert "(x-y) - x" into "-y"
+  if( op1 == Op_SubI &&
+      phase->eqv( in1->in(1), in2 ) )
+    return new (phase->C, 3) SubINode( phase->intcon(0),in1->in(2));
+  // Convert "x - (y+x)" into "-y"
+  if( op2 == Op_AddI &&
+      phase->eqv( in1, in2->in(2) ) )
+    return new (phase->C, 3) SubINode( phase->intcon(0),in2->in(1));
+
+  // Convert "0 - (x-y)" into "y-x"
+  if( t1 == TypeInt::ZERO && op2 == Op_SubI )
+    return new (phase->C, 3) SubINode( in2->in(2), in2->in(1) );
+
+  // Convert "0 - (x+con)" into "-con-x"
+  jint con;
+  if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
+      (con = in2->in(2)->find_int_con(0)) != 0 )
+    return new (phase->C, 3) SubINode( phase->intcon(-con), in2->in(1) );
+
+  // Convert "(X+A) - (X+B)" into "A - B"
+  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
+    return new (phase->C, 3) SubINode( in1->in(2), in2->in(2) );
+
+  // Convert "(A+X) - (B+X)" into "A - B"
+  if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
+    return new (phase->C, 3) SubINode( in1->in(1), in2->in(1) );
+
+  // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
+  // nicer to optimize than subtract.
+  if( op2 == Op_SubI && in2->outcnt() == 1) {
+    Node *add1 = phase->transform( new (phase->C, 3) AddINode( in1, in2->in(2) ) );
+    return new (phase->C, 3) SubINode( add1, in2->in(1) );
+  }
+
+  return NULL;
+}
+
+//------------------------------sub--------------------------------------------
+// A subtract node differences it's two inputs.
+const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
+  const TypeInt *r0 = t1->is_int(); // Handy access
+  const TypeInt *r1 = t2->is_int();
+  int32 lo = r0->_lo - r1->_hi;
+  int32 hi = r0->_hi - r1->_lo;
+
+  // We next check for 32-bit overflow.
+  // If that happens, we just assume all integers are possible.
+  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
+       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
+      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
+       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
+    return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
+  else                          // Overflow; assume all integers
+    return TypeInt::INT;
+}
+
+//=============================================================================
+//------------------------------Ideal------------------------------------------
+Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  Node *in1 = in(1);
+  Node *in2 = in(2);
+  uint op1 = in1->Opcode();
+  uint op2 = in2->Opcode();
+
+#ifdef ASSERT
+  // Check for dead loop
+  if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
+      ( op1 == Op_AddL || op1 == Op_SubL ) &&
+      ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
+        phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
+    assert(false, "dead loop in SubLNode::Ideal");
+#endif
+
+  if( phase->type( in2 ) == Type::TOP ) return NULL;
+  const TypeLong *i = phase->type( in2 )->isa_long();
+  // Convert "x-c0" into "x+ -c0".
+  if( i &&                      // Might be bottom or top...
+      i->is_con() )
+    return new (phase->C, 3) AddLNode(in1, phase->longcon(-i->get_con()));
+
+  // Convert "(x+c0) - y" into (x-y) + c0"
+  // Do not collapse (x+c0)-y if "+" is a loop increment or
+  // if "y" is a loop induction variable.
+  if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
+    Node *in11 = in1->in(1);
+    const Type *tadd = phase->type( in1->in(2) );
+    if( tadd->singleton() && tadd != Type::TOP ) {
+      Node *sub2 = phase->transform( new (phase->C, 3) SubLNode( in11, in2 ));
+      return new (phase->C, 3) AddLNode( sub2, in1->in(2) );
+    }
+  }
+
+  // Convert "x - (y+c0)" into "(x-y) - c0"
+  // Need the same check as in above optimization but reversed.
+  if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
+    Node* in21 = in2->in(1);
+    Node* in22 = in2->in(2);
+    const TypeLong* tcon = phase->type(in22)->isa_long();
+    if (tcon != NULL && tcon->is_con()) {
+      Node* sub2 = phase->transform( new (phase->C, 3) SubLNode(in1, in21) );
+      Node* neg_c0 = phase->longcon(- tcon->get_con());
+      return new (phase->C, 3) AddLNode(sub2, neg_c0);
+    }
+  }
+
+  const Type *t1 = phase->type( in1 );
+  if( t1 == Type::TOP ) return NULL;
+
+#ifdef ASSERT
+  // Check for dead loop
+  if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
+      ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
+        phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
+    assert(false, "dead loop in SubLNode::Ideal");
+#endif
+
+  // Convert "x - (x+y)" into "-y"
+  if( op2 == Op_AddL &&
+      phase->eqv( in1, in2->in(1) ) )
+    return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
+  // Convert "x - (y+x)" into "-y"
+  if( op2 == Op_AddL &&
+      phase->eqv( in1, in2->in(2) ) )
+    return new (phase->C, 3) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
+
+  // Convert "0 - (x-y)" into "y-x"
+  if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
+    return new (phase->C, 3) SubLNode( in2->in(2), in2->in(1) );
+
+  // Convert "(X+A) - (X+B)" into "A - B"
+  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
+    return new (phase->C, 3) SubLNode( in1->in(2), in2->in(2) );
+
+  // Convert "(A+X) - (B+X)" into "A - B"
+  if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
+    return new (phase->C, 3) SubLNode( in1->in(1), in2->in(1) );
+
+  // Convert "A-(B-C)" into (A+C)-B"
+  if( op2 == Op_SubL && in2->outcnt() == 1) {
+    Node *add1 = phase->transform( new (phase->C, 3) AddLNode( in1, in2->in(2) ) );
+    return new (phase->C, 3) SubLNode( add1, in2->in(1) );
+  }
+
+  return NULL;
+}
+
+//------------------------------sub--------------------------------------------
+// A subtract node differences it's two inputs.
+const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
+  const TypeLong *r0 = t1->is_long(); // Handy access
+  const TypeLong *r1 = t2->is_long();
+  jlong lo = r0->_lo - r1->_hi;
+  jlong hi = r0->_hi - r1->_lo;
+
+  // We next check for 32-bit overflow.
+  // If that happens, we just assume all integers are possible.
+  if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
+       ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
+      (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
+       ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
+    return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
+  else                          // Overflow; assume all integers
+    return TypeLong::LONG;
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// A subtract node differences its two inputs.
+const Type *SubFPNode::Value( PhaseTransform *phase ) const {
+  const Node* in1 = in(1);
+  const Node* in2 = in(2);
+  // Either input is TOP ==> the result is TOP
+  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
+  if( t1 == Type::TOP ) return Type::TOP;
+  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
+  if( t2 == Type::TOP ) return Type::TOP;
+
+  // if both operands are infinity of same sign, the result is NaN; do
+  // not replace with zero
+  if( (t1->is_finite() && t2->is_finite()) ) {
+    if( phase->eqv(in1, in2) ) return add_id();
+  }
+
+  // Either input is BOTTOM ==> the result is the local BOTTOM
+  const Type *bot = bottom_type();
+  if( (t1 == bot) || (t2 == bot) ||
+      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
+    return bot;
+
+  return sub(t1,t2);            // Local flavor of type subtraction
+}
+
+
+//=============================================================================
+//------------------------------Ideal------------------------------------------
+Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  const Type *t2 = phase->type( in(2) );
+  // Convert "x-c0" into "x+ -c0".
+  if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
+    // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
+  }
+
+  // Not associative because of boundary conditions (infinity)
+  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
+    // Convert "x - (x+y)" into "-y"
+    if( in(2)->is_Add() &&
+        phase->eqv(in(1),in(2)->in(1) ) )
+      return new (phase->C, 3) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
+  }
+
+  // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
+  // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
+  //if( phase->type(in(1)) == TypeF::ZERO )
+  //return new (phase->C, 2) NegFNode(in(2));
+
+  return NULL;
+}
+
+//------------------------------sub--------------------------------------------
+// A subtract node differences its two inputs.
+const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
+  // no folding if one of operands is infinity or NaN, do not do constant folding
+  if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
+    return TypeF::make( t1->getf() - t2->getf() );
+  }
+  else if( g_isnan(t1->getf()) ) {
+    return t1;
+  }
+  else if( g_isnan(t2->getf()) ) {
+    return t2;
+  }
+  else {
+    return Type::FLOAT;
+  }
+}
+
+//=============================================================================
+//------------------------------Ideal------------------------------------------
+Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  const Type *t2 = phase->type( in(2) );
+  // Convert "x-c0" into "x+ -c0".
+  if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
+    // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
+  }
+
+  // Not associative because of boundary conditions (infinity)
+  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
+    // Convert "x - (x+y)" into "-y"
+    if( in(2)->is_Add() &&
+        phase->eqv(in(1),in(2)->in(1) ) )
+      return new (phase->C, 3) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
+  }
+
+  // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
+  // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
+  //if( phase->type(in(1)) == TypeD::ZERO )
+  //return new (phase->C, 2) NegDNode(in(2));
+
+  return NULL;
+}
+
+//------------------------------sub--------------------------------------------
+// A subtract node differences its two inputs.
+const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
+  // no folding if one of operands is infinity or NaN, do not do constant folding
+  if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
+    return TypeD::make( t1->getd() - t2->getd() );
+  }
+  else if( g_isnan(t1->getd()) ) {
+    return t1;
+  }
+  else if( g_isnan(t2->getd()) ) {
+    return t2;
+  }
+  else {
+    return Type::DOUBLE;
+  }
+}
+
+//=============================================================================
+//------------------------------Idealize---------------------------------------
+// Unlike SubNodes, compare must still flatten return value to the
+// range -1, 0, 1.
+// And optimizations like those for (X + Y) - X fail if overflow happens.
+Node *CmpNode::Identity( PhaseTransform *phase ) {
+  return this;
+}
+
+//=============================================================================
+//------------------------------cmp--------------------------------------------
+// Simplify a CmpI (compare 2 integers) node, based on local information.
+// If both inputs are constants, compare them.
+const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
+  const TypeInt *r0 = t1->is_int(); // Handy access
+  const TypeInt *r1 = t2->is_int();
+
+  if( r0->_hi < r1->_lo )       // Range is always low?
+    return TypeInt::CC_LT;
+  else if( r0->_lo > r1->_hi )  // Range is always high?
+    return TypeInt::CC_GT;
+
+  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
+    assert(r0->get_con() == r1->get_con(), "must be equal");
+    return TypeInt::CC_EQ;      // Equal results.
+  } else if( r0->_hi == r1->_lo ) // Range is never high?
+    return TypeInt::CC_LE;
+  else if( r0->_lo == r1->_hi ) // Range is never low?
+    return TypeInt::CC_GE;
+  return TypeInt::CC;           // else use worst case results
+}
+
+// Simplify a CmpU (compare 2 integers) node, based on local information.
+// If both inputs are constants, compare them.
+const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
+  assert(!t1->isa_ptr(), "obsolete usage of CmpU");
+
+  // comparing two unsigned ints
+  const TypeInt *r0 = t1->is_int();   // Handy access
+  const TypeInt *r1 = t2->is_int();
+
+  // Current installed version
+  // Compare ranges for non-overlap
+  juint lo0 = r0->_lo;
+  juint hi0 = r0->_hi;
+  juint lo1 = r1->_lo;
+  juint hi1 = r1->_hi;
+
+  // If either one has both negative and positive values,
+  // it therefore contains both 0 and -1, and since [0..-1] is the
+  // full unsigned range, the type must act as an unsigned bottom.
+  bool bot0 = ((jint)(lo0 ^ hi0) < 0);
+  bool bot1 = ((jint)(lo1 ^ hi1) < 0);
+
+  if (bot0 || bot1) {
+    // All unsigned values are LE -1 and GE 0.
+    if (lo0 == 0 && hi0 == 0) {
+      return TypeInt::CC_LE;            //   0 <= bot
+    } else if (lo1 == 0 && hi1 == 0) {
+      return TypeInt::CC_GE;            // bot >= 0
+    }
+  } else {
+    // We can use ranges of the form [lo..hi] if signs are the same.
+    assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
+    // results are reversed, '-' > '+' for unsigned compare
+    if (hi0 < lo1) {
+      return TypeInt::CC_LT;            // smaller
+    } else if (lo0 > hi1) {
+      return TypeInt::CC_GT;            // greater
+    } else if (hi0 == lo1 && lo0 == hi1) {
+      return TypeInt::CC_EQ;            // Equal results
+    } else if (lo0 >= hi1) {
+      return TypeInt::CC_GE;
+    } else if (hi0 <= lo1) {
+      // Check for special case in Hashtable::get.  (See below.)
+      if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
+          in(1)->Opcode() == Op_ModI &&
+          in(1)->in(2) == in(2) )
+        return TypeInt::CC_LT;
+      return TypeInt::CC_LE;
+    }
+  }
+  // Check for special case in Hashtable::get - the hash index is
+  // mod'ed to the table size so the following range check is useless.
+  // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
+  // to be positive.
+  // (This is a gross hack, since the sub method never
+  // looks at the structure of the node in any other case.)
+  if ((jint)lo0 >= 0 && (jint)lo1 >= 0 &&
+      in(1)->Opcode() == Op_ModI &&
+      in(1)->in(2)->uncast() == in(2)->uncast())
+    return TypeInt::CC_LT;
+  return TypeInt::CC;                   // else use worst case results
+}
+
+//------------------------------Idealize---------------------------------------
+Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
+  if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
+    switch (in(1)->Opcode()) {
+    case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
+      return new (phase->C, 3) CmpLNode(in(1)->in(1),in(1)->in(2));
+    case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
+      return new (phase->C, 3) CmpFNode(in(1)->in(1),in(1)->in(2));
+    case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
+      return new (phase->C, 3) CmpDNode(in(1)->in(1),in(1)->in(2));
+    //case Op_SubI:
+      // If (x - y) cannot overflow, then ((x - y) <?> 0)
+      // can be turned into (x <?> y).
+      // This is handled (with more general cases) by Ideal_sub_algebra.
+    }
+  }
+  return NULL;                  // No change
+}
+
+
+//=============================================================================
+// Simplify a CmpL (compare 2 longs ) node, based on local information.
+// If both inputs are constants, compare them.
+const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
+  const TypeLong *r0 = t1->is_long(); // Handy access
+  const TypeLong *r1 = t2->is_long();
+
+  if( r0->_hi < r1->_lo )       // Range is always low?
+    return TypeInt::CC_LT;
+  else if( r0->_lo > r1->_hi )  // Range is always high?
+    return TypeInt::CC_GT;
+
+  else if( r0->is_con() && r1->is_con() ) { // comparing constants?
+    assert(r0->get_con() == r1->get_con(), "must be equal");
+    return TypeInt::CC_EQ;      // Equal results.
+  } else if( r0->_hi == r1->_lo ) // Range is never high?
+    return TypeInt::CC_LE;
+  else if( r0->_lo == r1->_hi ) // Range is never low?
+    return TypeInt::CC_GE;
+  return TypeInt::CC;           // else use worst case results
+}
+
+//=============================================================================
+//------------------------------sub--------------------------------------------
+// Simplify an CmpP (compare 2 pointers) node, based on local information.
+// If both inputs are constants, compare them.
+const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
+  const TypePtr *r0 = t1->is_ptr(); // Handy access
+  const TypePtr *r1 = t2->is_ptr();
+
+  // Undefined inputs makes for an undefined result
+  if( TypePtr::above_centerline(r0->_ptr) ||
+      TypePtr::above_centerline(r1->_ptr) )
+    return Type::TOP;
+
+  if (r0 == r1 && r0->singleton()) {
+    // Equal pointer constants (klasses, nulls, etc.)
+    return TypeInt::CC_EQ;
+  }
+
+  // See if it is 2 unrelated classes.
+  const TypeOopPtr* p0 = r0->isa_oopptr();
+  const TypeOopPtr* p1 = r1->isa_oopptr();
+  if (p0 && p1) {
+    ciKlass* klass0 = p0->klass();
+    bool    xklass0 = p0->klass_is_exact();
+    ciKlass* klass1 = p1->klass();
+    bool    xklass1 = p1->klass_is_exact();
+    int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
+    if (klass0 && klass1 &&
+        kps != 1 &&             // both or neither are klass pointers
+        !klass0->is_interface() && // do not trust interfaces
+        !klass1->is_interface()) {
+      // See if neither subclasses the other, or if the class on top
+      // is precise.  In either of these cases, the compare must fail.
+      if (klass0->equals(klass1)   ||   // if types are unequal but klasses are
+          !klass0->is_java_klass() ||   // types not part of Java language?
+          !klass1->is_java_klass()) {   // types not part of Java language?
+        // Do nothing; we know nothing for imprecise types
+      } else if (klass0->is_subtype_of(klass1)) {
+        // If klass1's type is PRECISE, then we can fail.
+        if (xklass1)  return TypeInt::CC_GT;
+      } else if (klass1->is_subtype_of(klass0)) {
+        // If klass0's type is PRECISE, then we can fail.
+        if (xklass0)  return TypeInt::CC_GT;
+      } else {                  // Neither subtypes the other
+        return TypeInt::CC_GT;  // ...so always fail
+      }
+    }
+  }
+
+  // Known constants can be compared exactly
+  // Null can be distinguished from any NotNull pointers
+  // Unknown inputs makes an unknown result
+  if( r0->singleton() ) {
+    intptr_t bits0 = r0->get_con();
+    if( r1->singleton() )
+      return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
+    return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
+  } else if( r1->singleton() ) {
+    intptr_t bits1 = r1->get_con();
+    return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
+  } else
+    return TypeInt::CC;
+}
+
+//------------------------------Ideal------------------------------------------
+// Check for the case of comparing an unknown klass loaded from the primary
+// super-type array vs a known klass with no subtypes.  This amounts to
+// checking to see an unknown klass subtypes a known klass with no subtypes;
+// this only happens on an exact match.  We can shorten this test by 1 load.
+Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
+  // Constant pointer on right?
+  const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
+  if (t2 == NULL || !t2->klass_is_exact())
+    return NULL;
+  // Get the constant klass we are comparing to.
+  ciKlass* superklass = t2->klass();
+
+  // Now check for LoadKlass on left.
+  Node* ldk1 = in(1);
+  if (ldk1->Opcode() != Op_LoadKlass)
+    return NULL;
+  // Take apart the address of the LoadKlass:
+  Node* adr1 = ldk1->in(MemNode::Address);
+  intptr_t con2 = 0;
+  Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
+  if (ldk2 == NULL)
+    return NULL;
+  if (con2 == oopDesc::klass_offset_in_bytes()) {
+    // We are inspecting an object's concrete class.
+    // Short-circuit the check if the query is abstract.
+    if (superklass->is_interface() ||
+        superklass->is_abstract()) {
+      // Make it come out always false:
+      this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
+      return this;
+    }
+  }
+
+  // Check for a LoadKlass from primary supertype array.
+  // Any nested loadklass from loadklass+con must be from the p.s. array.
+  if (ldk2->Opcode() != Op_LoadKlass)
+    return NULL;
+
+  // Verify that we understand the situation
+  if (con2 != (intptr_t) superklass->super_check_offset())
+    return NULL;                // Might be element-klass loading from array klass
+
+  // If 'superklass' has no subklasses and is not an interface, then we are
+  // assured that the only input which will pass the type check is
+  // 'superklass' itself.
+  //
+  // We could be more liberal here, and allow the optimization on interfaces
+  // which have a single implementor.  This would require us to increase the
+  // expressiveness of the add_dependency() mechanism.
+  // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
+
+  // Object arrays must have their base element have no subtypes
+  while (superklass->is_obj_array_klass()) {
+    ciType* elem = superklass->as_obj_array_klass()->element_type();
+    superklass = elem->as_klass();
+  }
+  if (superklass->is_instance_klass()) {
+    ciInstanceKlass* ik = superklass->as_instance_klass();
+    if (ik->has_subklass() || ik->is_interface())  return NULL;
+    // Add a dependency if there is a chance that a subclass will be added later.
+    if (!ik->is_final()) {
+      phase->C->dependencies()->assert_leaf_type(ik);
+    }
+  }
+
+  // Bypass the dependent load, and compare directly
+  this->set_req(1,ldk2);
+
+  return this;
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Simplify an CmpF (compare 2 floats ) node, based on local information.
+// If both inputs are constants, compare them.
+const Type *CmpFNode::Value( PhaseTransform *phase ) const {
+  const Node* in1 = in(1);
+  const Node* in2 = in(2);
+  // Either input is TOP ==> the result is TOP
+  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
+  if( t1 == Type::TOP ) return Type::TOP;
+  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
+  if( t2 == Type::TOP ) return Type::TOP;
+
+  // Not constants?  Don't know squat - even if they are the same
+  // value!  If they are NaN's they compare to LT instead of EQ.
+  const TypeF *tf1 = t1->isa_float_constant();
+  const TypeF *tf2 = t2->isa_float_constant();
+  if( !tf1 || !tf2 ) return TypeInt::CC;
+
+  // This implements the Java bytecode fcmpl, so unordered returns -1.
+  if( tf1->is_nan() || tf2->is_nan() )
+    return TypeInt::CC_LT;
+
+  if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
+  if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
+  assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
+  return TypeInt::CC_EQ;
+}
+
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Simplify an CmpD (compare 2 doubles ) node, based on local information.
+// If both inputs are constants, compare them.
+const Type *CmpDNode::Value( PhaseTransform *phase ) const {
+  const Node* in1 = in(1);
+  const Node* in2 = in(2);
+  // Either input is TOP ==> the result is TOP
+  const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
+  if( t1 == Type::TOP ) return Type::TOP;
+  const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
+  if( t2 == Type::TOP ) return Type::TOP;
+
+  // Not constants?  Don't know squat - even if they are the same
+  // value!  If they are NaN's they compare to LT instead of EQ.
+  const TypeD *td1 = t1->isa_double_constant();
+  const TypeD *td2 = t2->isa_double_constant();
+  if( !td1 || !td2 ) return TypeInt::CC;
+
+  // This implements the Java bytecode dcmpl, so unordered returns -1.
+  if( td1->is_nan() || td2->is_nan() )
+    return TypeInt::CC_LT;
+
+  if( td1->_d < td2->_d ) return TypeInt::CC_LT;
+  if( td1->_d > td2->_d ) return TypeInt::CC_GT;
+  assert( td1->_d == td2->_d, "do not understand FP behavior" );
+  return TypeInt::CC_EQ;
+}
+
+//------------------------------Ideal------------------------------------------
+Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
+  // Check if we can change this to a CmpF and remove a ConvD2F operation.
+  // Change  (CMPD (F2D (float)) (ConD value))
+  // To      (CMPF      (float)  (ConF value))
+  // Valid when 'value' does not lose precision as a float.
+  // Benefits: eliminates conversion, does not require 24-bit mode
+
+  // NaNs prevent commuting operands.  This transform works regardless of the
+  // order of ConD and ConvF2D inputs by preserving the original order.
+  int idx_f2d = 1;              // ConvF2D on left side?
+  if( in(idx_f2d)->Opcode() != Op_ConvF2D )
+    idx_f2d = 2;                // No, swap to check for reversed args
+  int idx_con = 3-idx_f2d;      // Check for the constant on other input
+
+  if( ConvertCmpD2CmpF &&
+      in(idx_f2d)->Opcode() == Op_ConvF2D &&
+      in(idx_con)->Opcode() == Op_ConD ) {
+    const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
+    double t2_value_as_double = t2->_d;
+    float  t2_value_as_float  = (float)t2_value_as_double;
+    if( t2_value_as_double == (double)t2_value_as_float ) {
+      // Test value can be represented as a float
+      // Eliminate the conversion to double and create new comparison
+      Node *new_in1 = in(idx_f2d)->in(1);
+      Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
+      if( idx_f2d != 1 ) {      // Must flip args to match original order
+        Node *tmp = new_in1;
+        new_in1 = new_in2;
+        new_in2 = tmp;
+      }
+      CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
+        ? new (phase->C, 3) CmpF3Node( new_in1, new_in2 )
+        : new (phase->C, 3) CmpFNode ( new_in1, new_in2 ) ;
+      return new_cmp;           // Changed to CmpFNode
+    }
+    // Testing value required the precision of a double
+  }
+  return NULL;                  // No change
+}
+
+
+//=============================================================================
+//------------------------------cc2logical-------------------------------------
+// Convert a condition code type to a logical type
+const Type *BoolTest::cc2logical( const Type *CC ) const {
+  if( CC == Type::TOP ) return Type::TOP;
+  if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
+  const TypeInt *ti = CC->is_int();
+  if( ti->is_con() ) {          // Only 1 kind of condition codes set?
+    // Match low order 2 bits
+    int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
+    if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
+    return TypeInt::make(tmp);       // Boolean result
+  }
+
+  if( CC == TypeInt::CC_GE ) {
+    if( _test == ge ) return TypeInt::ONE;
+    if( _test == lt ) return TypeInt::ZERO;
+  }
+  if( CC == TypeInt::CC_LE ) {
+    if( _test == le ) return TypeInt::ONE;
+    if( _test == gt ) return TypeInt::ZERO;
+  }
+
+  return TypeInt::BOOL;
+}
+
+//------------------------------dump_spec-------------------------------------
+// Print special per-node info
+#ifndef PRODUCT
+void BoolTest::dump_on(outputStream *st) const {
+  const char *msg[] = {"eq","gt","??","lt","ne","le","??","ge"};
+  st->print(msg[_test]);
+}
+#endif
+
+//=============================================================================
+uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
+uint BoolNode::size_of() const { return sizeof(BoolNode); }
+
+//------------------------------operator==-------------------------------------
+uint BoolNode::cmp( const Node &n ) const {
+  const BoolNode *b = (const BoolNode *)&n; // Cast up
+  return (_test._test == b->_test._test);
+}
+
+//------------------------------clone_cmp--------------------------------------
+// Clone a compare/bool tree
+static Node *clone_cmp( Node *cmp, Node *cmp1, Node *cmp2, PhaseGVN *gvn, BoolTest::mask test ) {
+  Node *ncmp = cmp->clone();
+  ncmp->set_req(1,cmp1);
+  ncmp->set_req(2,cmp2);
+  ncmp = gvn->transform( ncmp );
+  return new (gvn->C, 2) BoolNode( ncmp, test );
+}
+
+//-------------------------------make_predicate--------------------------------
+Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
+  if (test_value->is_Con())   return test_value;
+  if (test_value->is_Bool())  return test_value;
+  Compile* C = phase->C;
+  if (test_value->is_CMove() &&
+      test_value->in(CMoveNode::Condition)->is_Bool()) {
+    BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
+    const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
+    const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
+    if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
+      return bol;
+    } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
+      return phase->transform( bol->negate(phase) );
+    }
+    // Else fall through.  The CMove gets in the way of the test.
+    // It should be the case that make_predicate(bol->as_int_value()) == bol.
+  }
+  Node* cmp = new (C, 3) CmpINode(test_value, phase->intcon(0));
+  cmp = phase->transform(cmp);
+  Node* bol = new (C, 2) BoolNode(cmp, BoolTest::ne);
+  return phase->transform(bol);
+}
+
+//--------------------------------as_int_value---------------------------------
+Node* BoolNode::as_int_value(PhaseGVN* phase) {
+  // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
+  Node* cmov = CMoveNode::make(phase->C, NULL, this,
+                               phase->intcon(0), phase->intcon(1),
+                               TypeInt::BOOL);
+  return phase->transform(cmov);
+}
+
+//----------------------------------negate-------------------------------------
+BoolNode* BoolNode::negate(PhaseGVN* phase) {
+  Compile* C = phase->C;
+  return new (C, 2) BoolNode(in(1), _test.negate());
+}
+
+
+//------------------------------Ideal------------------------------------------
+Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
+  // This moves the constant to the right.  Helps value-numbering.
+  Node *cmp = in(1);
+  if( !cmp->is_Sub() ) return NULL;
+  int cop = cmp->Opcode();
+  if( cop == Op_FastLock || cop == Op_FastUnlock ) return NULL;
+  Node *cmp1 = cmp->in(1);
+  Node *cmp2 = cmp->in(2);
+  if( !cmp1 ) return NULL;
+
+  // Constant on left?
+  Node *con = cmp1;
+  uint op2 = cmp2->Opcode();
+  // Move constants to the right of compare's to canonicalize.
+  // Do not muck with Opaque1 nodes, as this indicates a loop
+  // guard that cannot change shape.
+  if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
+      // Because of NaN's, CmpD and CmpF are not commutative
+      cop != Op_CmpD && cop != Op_CmpF &&
+      // Protect against swapping inputs to a compare when it is used by a
+      // counted loop exit, which requires maintaining the loop-limit as in(2)
+      !is_counted_loop_exit_test() ) {
+    // Ok, commute the constant to the right of the cmp node.
+    // Clone the Node, getting a new Node of the same class
+    cmp = cmp->clone();
+    // Swap inputs to the clone
+    cmp->swap_edges(1, 2);
+    cmp = phase->transform( cmp );
+    return new (phase->C, 2) BoolNode( cmp, _test.commute() );
+  }
+
+  // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
+  // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
+  // test instead.
+  int cmp1_op = cmp1->Opcode();
+  const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
+  if (cmp2_type == NULL)  return NULL;
+  Node* j_xor = cmp1;
+  if( cmp2_type == TypeInt::ZERO &&
+      cmp1_op == Op_XorI &&
+      j_xor->in(1) != j_xor &&          // An xor of itself is dead
+      phase->type( j_xor->in(2) ) == TypeInt::ONE &&
+      (_test._test == BoolTest::eq ||
+       _test._test == BoolTest::ne) ) {
+    Node *ncmp = phase->transform(new (phase->C, 3) CmpINode(j_xor->in(1),cmp2));
+    return new (phase->C, 2) BoolNode( ncmp, _test.negate() );
+  }
+
+  // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
+  // This is a standard idiom for branching on a boolean value.
+  Node *c2b = cmp1;
+  if( cmp2_type == TypeInt::ZERO &&
+      cmp1_op == Op_Conv2B &&
+      (_test._test == BoolTest::eq ||
+       _test._test == BoolTest::ne) ) {
+    Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
+       ? (Node*)new (phase->C, 3) CmpINode(c2b->in(1),cmp2)
+       : (Node*)new (phase->C, 3) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
+    );
+    return new (phase->C, 2) BoolNode( ncmp, _test._test );
+  }
+
+  // Comparing a SubI against a zero is equal to comparing the SubI
+  // arguments directly.  This only works for eq and ne comparisons
+  // due to possible integer overflow.
+  if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
+        (cop == Op_CmpI) &&
+        (cmp1->Opcode() == Op_SubI) &&
+        ( cmp2_type == TypeInt::ZERO ) ) {
+    Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(1),cmp1->in(2)));
+    return new (phase->C, 2) BoolNode( ncmp, _test._test );
+  }
+
+  // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
+  // most general case because negating 0x80000000 does nothing.  Needed for
+  // the CmpF3/SubI/CmpI idiom.
+  if( cop == Op_CmpI &&
+      cmp1->Opcode() == Op_SubI &&
+      cmp2_type == TypeInt::ZERO &&
+      phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
+      phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
+    Node *ncmp = phase->transform( new (phase->C, 3) CmpINode(cmp1->in(2),cmp2));
+    return new (phase->C, 2) BoolNode( ncmp, _test.commute() );
+  }
+
+  //  The transformation below is not valid for either signed or unsigned
+  //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
+  //  This transformation can be resurrected when we are able to
+  //  make inferences about the range of values being subtracted from
+  //  (or added to) relative to the wraparound point.
+  //
+  //    // Remove +/-1's if possible.
+  //    // "X <= Y-1" becomes "X <  Y"
+  //    // "X+1 <= Y" becomes "X <  Y"
+  //    // "X <  Y+1" becomes "X <= Y"
+  //    // "X-1 <  Y" becomes "X <= Y"
+  //    // Do not this to compares off of the counted-loop-end.  These guys are
+  //    // checking the trip counter and they want to use the post-incremented
+  //    // counter.  If they use the PRE-incremented counter, then the counter has
+  //    // to be incremented in a private block on a loop backedge.
+  //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
+  //      return NULL;
+  //  #ifndef PRODUCT
+  //    // Do not do this in a wash GVN pass during verification.
+  //    // Gets triggered by too many simple optimizations to be bothered with
+  //    // re-trying it again and again.
+  //    if( !phase->allow_progress() ) return NULL;
+  //  #endif
+  //    // Not valid for unsigned compare because of corner cases in involving zero.
+  //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
+  //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
+  //    // "0 <=u Y" is always true).
+  //    if( cmp->Opcode() == Op_CmpU ) return NULL;
+  //    int cmp2_op = cmp2->Opcode();
+  //    if( _test._test == BoolTest::le ) {
+  //      if( cmp1_op == Op_AddI &&
+  //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
+  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
+  //      else if( cmp2_op == Op_AddI &&
+  //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
+  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
+  //    } else if( _test._test == BoolTest::lt ) {
+  //      if( cmp1_op == Op_AddI &&
+  //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
+  //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
+  //      else if( cmp2_op == Op_AddI &&
+  //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
+  //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
+  //    }
+
+  return NULL;
+}
+
+//------------------------------Value------------------------------------------
+// Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
+// based on local information.   If the input is constant, do it.
+const Type *BoolNode::Value( PhaseTransform *phase ) const {
+  return _test.cc2logical( phase->type( in(1) ) );
+}
+
+//------------------------------dump_spec--------------------------------------
+// Dump special per-node info
+#ifndef PRODUCT
+void BoolNode::dump_spec(outputStream *st) const {
+  st->print("[");
+  _test.dump_on(st);
+  st->print("]");
+}
+#endif
+
+//------------------------------is_counted_loop_exit_test--------------------------------------
+// Returns true if node is used by a counted loop node.
+bool BoolNode::is_counted_loop_exit_test() {
+  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
+    Node* use = fast_out(i);
+    if (use->is_CountedLoopEnd()) {
+      return true;
+    }
+  }
+  return false;
+}
+
+//=============================================================================
+//------------------------------NegNode----------------------------------------
+Node *NegFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  if( in(1)->Opcode() == Op_SubF )
+    return new (phase->C, 3) SubFNode( in(1)->in(2), in(1)->in(1) );
+  return NULL;
+}
+
+Node *NegDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+  if( in(1)->Opcode() == Op_SubD )
+    return new (phase->C, 3) SubDNode( in(1)->in(2), in(1)->in(1) );
+  return NULL;
+}
+
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute sqrt
+const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d = t1->getd();
+  if( d < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( sqrt( d ) );
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute cos
+const Type *CosDNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d = t1->getd();
+  if( d < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( SharedRuntime::dcos( d ) );
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute sin
+const Type *SinDNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d = t1->getd();
+  if( d < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( SharedRuntime::dsin( d ) );
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute tan
+const Type *TanDNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d = t1->getd();
+  if( d < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( SharedRuntime::dtan( d ) );
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute log
+const Type *LogDNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d = t1->getd();
+  if( d < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( SharedRuntime::dlog( d ) );
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute log10
+const Type *Log10DNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d = t1->getd();
+  if( d < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( SharedRuntime::dlog10( d ) );
+}
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute exp
+const Type *ExpDNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d = t1->getd();
+  if( d < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( SharedRuntime::dexp( d ) );
+}
+
+
+//=============================================================================
+//------------------------------Value------------------------------------------
+// Compute pow
+const Type *PowDNode::Value( PhaseTransform *phase ) const {
+  const Type *t1 = phase->type( in(1) );
+  if( t1 == Type::TOP ) return Type::TOP;
+  if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
+  const Type *t2 = phase->type( in(2) );
+  if( t2 == Type::TOP ) return Type::TOP;
+  if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
+  double d1 = t1->getd();
+  double d2 = t2->getd();
+  if( d1 < 0.0 ) return Type::DOUBLE;
+  if( d2 < 0.0 ) return Type::DOUBLE;
+  return TypeD::make( SharedRuntime::dpow( d1, d2 ) );
+}