diff src/share/vm/opto/type.cpp @ 0:a61af66fc99e jdk7-b24

Initial load
author duke
date Sat, 01 Dec 2007 00:00:00 +0000
parents
children b8f5ba577b02
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/share/vm/opto/type.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,3751 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+// Optimization - Graph Style
+
+#include "incls/_precompiled.incl"
+#include "incls/_type.cpp.incl"
+
+// Dictionary of types shared among compilations.
+Dict* Type::_shared_type_dict = NULL;
+
+// Array which maps compiler types to Basic Types
+const BasicType Type::_basic_type[Type::lastype] = {
+  T_ILLEGAL,    // Bad
+  T_ILLEGAL,    // Control
+  T_VOID,       // Top
+  T_INT,        // Int
+  T_LONG,       // Long
+  T_VOID,       // Half
+
+  T_ILLEGAL,    // Tuple
+  T_ARRAY,      // Array
+
+  T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
+  T_ADDRESS,    // RawPtr
+  T_OBJECT,     // OopPtr
+  T_OBJECT,     // InstPtr
+  T_OBJECT,     // AryPtr
+  T_OBJECT,     // KlassPtr
+
+  T_OBJECT,     // Function
+  T_ILLEGAL,    // Abio
+  T_ADDRESS,    // Return_Address
+  T_ILLEGAL,    // Memory
+  T_FLOAT,      // FloatTop
+  T_FLOAT,      // FloatCon
+  T_FLOAT,      // FloatBot
+  T_DOUBLE,     // DoubleTop
+  T_DOUBLE,     // DoubleCon
+  T_DOUBLE,     // DoubleBot
+  T_ILLEGAL,    // Bottom
+};
+
+// Map ideal registers (machine types) to ideal types
+const Type *Type::mreg2type[_last_machine_leaf];
+
+// Map basic types to canonical Type* pointers.
+const Type* Type::     _const_basic_type[T_CONFLICT+1];
+
+// Map basic types to constant-zero Types.
+const Type* Type::            _zero_type[T_CONFLICT+1];
+
+// Map basic types to array-body alias types.
+const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
+
+//=============================================================================
+// Convenience common pre-built types.
+const Type *Type::ABIO;         // State-of-machine only
+const Type *Type::BOTTOM;       // All values
+const Type *Type::CONTROL;      // Control only
+const Type *Type::DOUBLE;       // All doubles
+const Type *Type::FLOAT;        // All floats
+const Type *Type::HALF;         // Placeholder half of doublewide type
+const Type *Type::MEMORY;       // Abstract store only
+const Type *Type::RETURN_ADDRESS;
+const Type *Type::TOP;          // No values in set
+
+//------------------------------get_const_type---------------------------
+const Type* Type::get_const_type(ciType* type) {
+  if (type == NULL) {
+    return NULL;
+  } else if (type->is_primitive_type()) {
+    return get_const_basic_type(type->basic_type());
+  } else {
+    return TypeOopPtr::make_from_klass(type->as_klass());
+  }
+}
+
+//---------------------------array_element_basic_type---------------------------------
+// Mapping to the array element's basic type.
+BasicType Type::array_element_basic_type() const {
+  BasicType bt = basic_type();
+  if (bt == T_INT) {
+    if (this == TypeInt::INT)   return T_INT;
+    if (this == TypeInt::CHAR)  return T_CHAR;
+    if (this == TypeInt::BYTE)  return T_BYTE;
+    if (this == TypeInt::BOOL)  return T_BOOLEAN;
+    if (this == TypeInt::SHORT) return T_SHORT;
+    return T_VOID;
+  }
+  return bt;
+}
+
+//---------------------------get_typeflow_type---------------------------------
+// Import a type produced by ciTypeFlow.
+const Type* Type::get_typeflow_type(ciType* type) {
+  switch (type->basic_type()) {
+
+  case ciTypeFlow::StateVector::T_BOTTOM:
+    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
+    return Type::BOTTOM;
+
+  case ciTypeFlow::StateVector::T_TOP:
+    assert(type == ciTypeFlow::StateVector::top_type(), "");
+    return Type::TOP;
+
+  case ciTypeFlow::StateVector::T_NULL:
+    assert(type == ciTypeFlow::StateVector::null_type(), "");
+    return TypePtr::NULL_PTR;
+
+  case ciTypeFlow::StateVector::T_LONG2:
+    // The ciTypeFlow pass pushes a long, then the half.
+    // We do the same.
+    assert(type == ciTypeFlow::StateVector::long2_type(), "");
+    return TypeInt::TOP;
+
+  case ciTypeFlow::StateVector::T_DOUBLE2:
+    // The ciTypeFlow pass pushes double, then the half.
+    // Our convention is the same.
+    assert(type == ciTypeFlow::StateVector::double2_type(), "");
+    return Type::TOP;
+
+  case T_ADDRESS:
+    assert(type->is_return_address(), "");
+    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
+
+  default:
+    // make sure we did not mix up the cases:
+    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
+    assert(type != ciTypeFlow::StateVector::top_type(), "");
+    assert(type != ciTypeFlow::StateVector::null_type(), "");
+    assert(type != ciTypeFlow::StateVector::long2_type(), "");
+    assert(type != ciTypeFlow::StateVector::double2_type(), "");
+    assert(!type->is_return_address(), "");
+
+    return Type::get_const_type(type);
+  }
+}
+
+
+//------------------------------make-------------------------------------------
+// Create a simple Type, with default empty symbol sets.  Then hashcons it
+// and look for an existing copy in the type dictionary.
+const Type *Type::make( enum TYPES t ) {
+  return (new Type(t))->hashcons();
+}
+
+//------------------------------cmp--------------------------------------------
+int Type::cmp( const Type *const t1, const Type *const t2 ) {
+  if( t1->_base != t2->_base )
+    return 1;                   // Missed badly
+  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
+  return !t1->eq(t2);           // Return ZERO if equal
+}
+
+//------------------------------hash-------------------------------------------
+int Type::uhash( const Type *const t ) {
+  return t->hash();
+}
+
+//--------------------------Initialize_shared----------------------------------
+void Type::Initialize_shared(Compile* current) {
+  // This method does not need to be locked because the first system
+  // compilations (stub compilations) occur serially.  If they are
+  // changed to proceed in parallel, then this section will need
+  // locking.
+
+  Arena* save = current->type_arena();
+  Arena* shared_type_arena = new Arena();
+
+  current->set_type_arena(shared_type_arena);
+  _shared_type_dict =
+    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
+                                  shared_type_arena, 128 );
+  current->set_type_dict(_shared_type_dict);
+
+  // Make shared pre-built types.
+  CONTROL = make(Control);      // Control only
+  TOP     = make(Top);          // No values in set
+  MEMORY  = make(Memory);       // Abstract store only
+  ABIO    = make(Abio);         // State-of-machine only
+  RETURN_ADDRESS=make(Return_Address);
+  FLOAT   = make(FloatBot);     // All floats
+  DOUBLE  = make(DoubleBot);    // All doubles
+  BOTTOM  = make(Bottom);       // Everything
+  HALF    = make(Half);         // Placeholder half of doublewide type
+
+  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
+  TypeF::ONE  = TypeF::make(1.0); // Float 1
+
+  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
+  TypeD::ONE  = TypeD::make(1.0); // Double 1
+
+  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
+  TypeInt::ZERO    = TypeInt::make( 0);  //  0
+  TypeInt::ONE     = TypeInt::make( 1);  //  1
+  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
+  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
+  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
+  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
+  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
+  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
+  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
+  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
+  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
+  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
+  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
+  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
+  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
+  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
+  // CmpL is overloaded both as the bytecode computation returning
+  // a trinary (-1,0,+1) integer result AND as an efficient long
+  // compare returning optimizer ideal-type flags.
+  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
+  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
+  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
+  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
+
+  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
+  TypeLong::ZERO    = TypeLong::make( 0);        //  0
+  TypeLong::ONE     = TypeLong::make( 1);        //  1
+  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
+  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
+  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
+  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
+
+  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
+  fboth[0] = Type::CONTROL;
+  fboth[1] = Type::CONTROL;
+  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
+
+  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
+  ffalse[0] = Type::CONTROL;
+  ffalse[1] = Type::TOP;
+  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
+
+  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
+  fneither[0] = Type::TOP;
+  fneither[1] = Type::TOP;
+  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
+
+  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
+  ftrue[0] = Type::TOP;
+  ftrue[1] = Type::CONTROL;
+  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
+
+  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
+  floop[0] = Type::CONTROL;
+  floop[1] = TypeInt::INT;
+  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
+
+  TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
+  TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
+  TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
+
+  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
+  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
+
+  mreg2type[Op_Node] = Type::BOTTOM;
+  mreg2type[Op_Set ] = 0;
+  mreg2type[Op_RegI] = TypeInt::INT;
+  mreg2type[Op_RegP] = TypePtr::BOTTOM;
+  mreg2type[Op_RegF] = Type::FLOAT;
+  mreg2type[Op_RegD] = Type::DOUBLE;
+  mreg2type[Op_RegL] = TypeLong::LONG;
+  mreg2type[Op_RegFlags] = TypeInt::CC;
+
+  const Type **fmembar = TypeTuple::fields(0);
+  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
+
+  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
+  fsc[0] = TypeInt::CC;
+  fsc[1] = Type::MEMORY;
+  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
+
+  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
+  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
+  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
+  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
+                                           false, 0, oopDesc::mark_offset_in_bytes());
+  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
+                                           false, 0, oopDesc::klass_offset_in_bytes());
+  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
+
+  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
+  // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
+  TypeAryPtr::OOPS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
+  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
+  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
+  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
+  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
+  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
+  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
+  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
+
+  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
+  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS;   // arrays are stored in oop arrays
+  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
+  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
+  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
+  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
+  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
+  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
+  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
+  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
+
+  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
+  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
+
+  const Type **fi2c = TypeTuple::fields(2);
+  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
+  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
+  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
+
+  const Type **intpair = TypeTuple::fields(2);
+  intpair[0] = TypeInt::INT;
+  intpair[1] = TypeInt::INT;
+  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
+
+  const Type **longpair = TypeTuple::fields(2);
+  longpair[0] = TypeLong::LONG;
+  longpair[1] = TypeLong::LONG;
+  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
+
+  _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
+  _const_basic_type[T_CHAR]    = TypeInt::CHAR;
+  _const_basic_type[T_BYTE]    = TypeInt::BYTE;
+  _const_basic_type[T_SHORT]   = TypeInt::SHORT;
+  _const_basic_type[T_INT]     = TypeInt::INT;
+  _const_basic_type[T_LONG]    = TypeLong::LONG;
+  _const_basic_type[T_FLOAT]   = Type::FLOAT;
+  _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
+  _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
+  _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
+  _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
+  _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
+  _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
+
+  _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
+  _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
+  _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
+  _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
+  _zero_type[T_INT]     = TypeInt::ZERO;
+  _zero_type[T_LONG]    = TypeLong::ZERO;
+  _zero_type[T_FLOAT]   = TypeF::ZERO;
+  _zero_type[T_DOUBLE]  = TypeD::ZERO;
+  _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
+  _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
+  _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
+  _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
+
+  // get_zero_type() should not happen for T_CONFLICT
+  _zero_type[T_CONFLICT]= NULL;
+
+  // Restore working type arena.
+  current->set_type_arena(save);
+  current->set_type_dict(NULL);
+}
+
+//------------------------------Initialize-------------------------------------
+void Type::Initialize(Compile* current) {
+  assert(current->type_arena() != NULL, "must have created type arena");
+
+  if (_shared_type_dict == NULL) {
+    Initialize_shared(current);
+  }
+
+  Arena* type_arena = current->type_arena();
+
+  // Create the hash-cons'ing dictionary with top-level storage allocation
+  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
+  current->set_type_dict(tdic);
+
+  // Transfer the shared types.
+  DictI i(_shared_type_dict);
+  for( ; i.test(); ++i ) {
+    Type* t = (Type*)i._value;
+    tdic->Insert(t,t);  // New Type, insert into Type table
+  }
+}
+
+//------------------------------hashcons---------------------------------------
+// Do the hash-cons trick.  If the Type already exists in the type table,
+// delete the current Type and return the existing Type.  Otherwise stick the
+// current Type in the Type table.
+const Type *Type::hashcons(void) {
+  debug_only(base());           // Check the assertion in Type::base().
+  // Look up the Type in the Type dictionary
+  Dict *tdic = type_dict();
+  Type* old = (Type*)(tdic->Insert(this, this, false));
+  if( old ) {                   // Pre-existing Type?
+    if( old != this )           // Yes, this guy is not the pre-existing?
+      delete this;              // Yes, Nuke this guy
+    assert( old->_dual, "" );
+    return old;                 // Return pre-existing
+  }
+
+  // Every type has a dual (to make my lattice symmetric).
+  // Since we just discovered a new Type, compute its dual right now.
+  assert( !_dual, "" );         // No dual yet
+  _dual = xdual();              // Compute the dual
+  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
+    _dual = this;
+    return this;
+  }
+  assert( !_dual->_dual, "" );  // No reverse dual yet
+  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
+  // New Type, insert into Type table
+  tdic->Insert((void*)_dual,(void*)_dual);
+  ((Type*)_dual)->_dual = this; // Finish up being symmetric
+#ifdef ASSERT
+  Type *dual_dual = (Type*)_dual->xdual();
+  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
+  delete dual_dual;
+#endif
+  return this;                  // Return new Type
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool Type::eq( const Type * ) const {
+  return true;                  // Nothing else can go wrong
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int Type::hash(void) const {
+  return _base;
+}
+
+//------------------------------is_finite--------------------------------------
+// Has a finite value
+bool Type::is_finite() const {
+  return false;
+}
+
+//------------------------------is_nan-----------------------------------------
+// Is not a number (NaN)
+bool Type::is_nan()    const {
+  return false;
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
+// commutative and the lattice is symmetric.
+const Type *Type::meet( const Type *t ) const {
+  const Type *mt = xmeet(t);
+#ifdef ASSERT
+  assert( mt == t->xmeet(this), "meet not commutative" );
+  const Type* dual_join = mt->_dual;
+  const Type *t2t    = dual_join->xmeet(t->_dual);
+  const Type *t2this = dual_join->xmeet(   _dual);
+
+  // Interface meet Oop is Not Symmetric:
+  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
+  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
+  const TypeInstPtr* this_inst = this->isa_instptr();
+  const TypeInstPtr*    t_inst =    t->isa_instptr();
+  bool interface_vs_oop = false;
+  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
+    bool this_interface = this_inst->klass()->is_interface();
+    bool    t_interface =    t_inst->klass()->is_interface();
+    interface_vs_oop = this_interface ^ t_interface;
+  }
+  const Type *tdual = t->_dual;
+  const Type *thisdual = _dual;
+  // strip out instances
+  if (t2t->isa_oopptr() != NULL) {
+    t2t = t2t->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
+  }
+  if (t2this->isa_oopptr() != NULL) {
+    t2this = t2this->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
+  }
+  if (tdual->isa_oopptr() != NULL) {
+    tdual = tdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
+  }
+  if (thisdual->isa_oopptr() != NULL) {
+    thisdual = thisdual->isa_oopptr()->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
+  }
+
+  if( !interface_vs_oop && (t2t != tdual || t2this != thisdual) ) {
+    tty->print_cr("=== Meet Not Symmetric ===");
+    tty->print("t   =                   ");         t->dump(); tty->cr();
+    tty->print("this=                   ");            dump(); tty->cr();
+    tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
+
+    tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
+    tty->print("this_dual=              ");     _dual->dump(); tty->cr();
+    tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
+
+    tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
+    tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
+
+    fatal("meet not symmetric" );
+  }
+#endif
+  return mt;
+}
+
+//------------------------------xmeet------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *Type::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Meeting TOP with anything?
+  if( _base == Top ) return t;
+
+  // Meeting BOTTOM with anything?
+  if( _base == Bottom ) return BOTTOM;
+
+  // Current "this->_base" is one of: Bad, Multi, Control, Top,
+  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
+  switch (t->base()) {  // Switch on original type
+
+  // Cut in half the number of cases I must handle.  Only need cases for when
+  // the given enum "t->type" is less than or equal to the local enum "type".
+  case FloatCon:
+  case DoubleCon:
+  case Int:
+  case Long:
+    return t->xmeet(this);
+
+  case OopPtr:
+    return t->xmeet(this);
+
+  case InstPtr:
+    return t->xmeet(this);
+
+  case KlassPtr:
+    return t->xmeet(this);
+
+  case AryPtr:
+    return t->xmeet(this);
+
+  case Bad:                     // Type check
+  default:                      // Bogus type not in lattice
+    typerr(t);
+    return Type::BOTTOM;
+
+  case Bottom:                  // Ye Olde Default
+    return t;
+
+  case FloatTop:
+    if( _base == FloatTop ) return this;
+  case FloatBot:                // Float
+    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
+    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
+    typerr(t);
+    return Type::BOTTOM;
+
+  case DoubleTop:
+    if( _base == DoubleTop ) return this;
+  case DoubleBot:               // Double
+    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
+    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
+    typerr(t);
+    return Type::BOTTOM;
+
+  // These next few cases must match exactly or it is a compile-time error.
+  case Control:                 // Control of code
+  case Abio:                    // State of world outside of program
+  case Memory:
+    if( _base == t->_base )  return this;
+    typerr(t);
+    return Type::BOTTOM;
+
+  case Top:                     // Top of the lattice
+    return this;
+  }
+
+  // The type is unchanged
+  return this;
+}
+
+//-----------------------------filter------------------------------------------
+const Type *Type::filter( const Type *kills ) const {
+  const Type* ft = join(kills);
+  if (ft->empty())
+    return Type::TOP;           // Canonical empty value
+  return ft;
+}
+
+//------------------------------xdual------------------------------------------
+// Compute dual right now.
+const Type::TYPES Type::dual_type[Type::lastype] = {
+  Bad,          // Bad
+  Control,      // Control
+  Bottom,       // Top
+  Bad,          // Int - handled in v-call
+  Bad,          // Long - handled in v-call
+  Half,         // Half
+
+  Bad,          // Tuple - handled in v-call
+  Bad,          // Array - handled in v-call
+
+  Bad,          // AnyPtr - handled in v-call
+  Bad,          // RawPtr - handled in v-call
+  Bad,          // OopPtr - handled in v-call
+  Bad,          // InstPtr - handled in v-call
+  Bad,          // AryPtr - handled in v-call
+  Bad,          // KlassPtr - handled in v-call
+
+  Bad,          // Function - handled in v-call
+  Abio,         // Abio
+  Return_Address,// Return_Address
+  Memory,       // Memory
+  FloatBot,     // FloatTop
+  FloatCon,     // FloatCon
+  FloatTop,     // FloatBot
+  DoubleBot,    // DoubleTop
+  DoubleCon,    // DoubleCon
+  DoubleTop,    // DoubleBot
+  Top           // Bottom
+};
+
+const Type *Type::xdual() const {
+  // Note: the base() accessor asserts the sanity of _base.
+  assert(dual_type[base()] != Bad, "implement with v-call");
+  return new Type(dual_type[_base]);
+}
+
+//------------------------------has_memory-------------------------------------
+bool Type::has_memory() const {
+  Type::TYPES tx = base();
+  if (tx == Memory) return true;
+  if (tx == Tuple) {
+    const TypeTuple *t = is_tuple();
+    for (uint i=0; i < t->cnt(); i++) {
+      tx = t->field_at(i)->base();
+      if (tx == Memory)  return true;
+    }
+  }
+  return false;
+}
+
+#ifndef PRODUCT
+//------------------------------dump2------------------------------------------
+void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
+  st->print(msg[_base]);
+}
+
+//------------------------------dump-------------------------------------------
+void Type::dump_on(outputStream *st) const {
+  ResourceMark rm;
+  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
+  dump2(d,1, st);
+}
+
+//------------------------------data-------------------------------------------
+const char * const Type::msg[Type::lastype] = {
+  "bad","control","top","int:","long:","half",
+  "tuple:", "aryptr",
+  "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
+  "func", "abIO", "return_address", "memory",
+  "float_top", "ftcon:", "float",
+  "double_top", "dblcon:", "double",
+  "bottom"
+};
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants (Ldi nodes).  Singletons are integer, float or double constants.
+bool Type::singleton(void) const {
+  return _base == Top || _base == Half;
+}
+
+//------------------------------empty------------------------------------------
+// TRUE if Type is a type with no values, FALSE otherwise.
+bool Type::empty(void) const {
+  switch (_base) {
+  case DoubleTop:
+  case FloatTop:
+  case Top:
+    return true;
+
+  case Half:
+  case Abio:
+  case Return_Address:
+  case Memory:
+  case Bottom:
+  case FloatBot:
+  case DoubleBot:
+    return false;  // never a singleton, therefore never empty
+  }
+
+  ShouldNotReachHere();
+  return false;
+}
+
+//------------------------------dump_stats-------------------------------------
+// Dump collected statistics to stderr
+#ifndef PRODUCT
+void Type::dump_stats() {
+  tty->print("Types made: %d\n", type_dict()->Size());
+}
+#endif
+
+//------------------------------typerr-----------------------------------------
+void Type::typerr( const Type *t ) const {
+#ifndef PRODUCT
+  tty->print("\nError mixing types: ");
+  dump();
+  tty->print(" and ");
+  t->dump();
+  tty->print("\n");
+#endif
+  ShouldNotReachHere();
+}
+
+//------------------------------isa_oop_ptr------------------------------------
+// Return true if type is an oop pointer type.  False for raw pointers.
+static char isa_oop_ptr_tbl[Type::lastype] = {
+  0,0,0,0,0,0,0/*tuple*/, 0/*ary*/,
+  0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
+  0/*func*/,0,0/*return_address*/,0,
+  /*floats*/0,0,0, /*doubles*/0,0,0,
+  0
+};
+bool Type::isa_oop_ptr() const {
+  return isa_oop_ptr_tbl[_base] != 0;
+}
+
+//------------------------------dump_stats-------------------------------------
+// // Check that arrays match type enum
+#ifndef PRODUCT
+void Type::verify_lastype() {
+  // Check that arrays match enumeration
+  assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
+  assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
+  // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
+  assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
+  assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
+}
+#endif
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypeF *TypeF::ZERO;       // Floating point zero
+const TypeF *TypeF::ONE;        // Floating point one
+
+//------------------------------make-------------------------------------------
+// Create a float constant
+const TypeF *TypeF::make(float f) {
+  return (TypeF*)(new TypeF(f))->hashcons();
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeF::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is FloatCon
+  switch (t->base()) {          // Switch on original type
+  case AnyPtr:                  // Mixing with oops happens when javac
+  case RawPtr:                  // reuses local variables
+  case OopPtr:
+  case InstPtr:
+  case KlassPtr:
+  case AryPtr:
+  case Int:
+  case Long:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+
+  case FloatBot:
+    return t;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case FloatCon:                // Float-constant vs Float-constant?
+    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
+                                // must compare bitwise as positive zero, negative zero and NaN have
+                                // all the same representation in C++
+      return FLOAT;             // Return generic float
+                                // Equal constants
+  case Top:
+  case FloatTop:
+    break;                      // Return the float constant
+  }
+  return this;                  // Return the float constant
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: symmetric
+const Type *TypeF::xdual() const {
+  return this;
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeF::eq( const Type *t ) const {
+  if( g_isnan(_f) ||
+      g_isnan(t->getf()) ) {
+    // One or both are NANs.  If both are NANs return true, else false.
+    return (g_isnan(_f) && g_isnan(t->getf()));
+  }
+  if (_f == t->getf()) {
+    // (NaN is impossible at this point, since it is not equal even to itself)
+    if (_f == 0.0) {
+      // difference between positive and negative zero
+      if (jint_cast(_f) != jint_cast(t->getf()))  return false;
+    }
+    return true;
+  }
+  return false;
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeF::hash(void) const {
+  return *(int*)(&_f);
+}
+
+//------------------------------is_finite--------------------------------------
+// Has a finite value
+bool TypeF::is_finite() const {
+  return g_isfinite(getf()) != 0;
+}
+
+//------------------------------is_nan-----------------------------------------
+// Is not a number (NaN)
+bool TypeF::is_nan()    const {
+  return g_isnan(getf()) != 0;
+}
+
+//------------------------------dump2------------------------------------------
+// Dump float constant Type
+#ifndef PRODUCT
+void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
+  Type::dump2(d,depth, st);
+  st->print("%f", _f);
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants (Ldi nodes).  Singletons are integer, float or double constants
+// or a single symbol.
+bool TypeF::singleton(void) const {
+  return true;                  // Always a singleton
+}
+
+bool TypeF::empty(void) const {
+  return false;                 // always exactly a singleton
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypeD *TypeD::ZERO;       // Floating point zero
+const TypeD *TypeD::ONE;        // Floating point one
+
+//------------------------------make-------------------------------------------
+const TypeD *TypeD::make(double d) {
+  return (TypeD*)(new TypeD(d))->hashcons();
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeD::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is DoubleCon
+  switch (t->base()) {          // Switch on original type
+  case AnyPtr:                  // Mixing with oops happens when javac
+  case RawPtr:                  // reuses local variables
+  case OopPtr:
+  case InstPtr:
+  case KlassPtr:
+  case AryPtr:
+  case Int:
+  case Long:
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+
+  case DoubleBot:
+    return t;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case DoubleCon:               // Double-constant vs Double-constant?
+    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
+      return DOUBLE;            // Return generic double
+  case Top:
+  case DoubleTop:
+    break;
+  }
+  return this;                  // Return the double constant
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: symmetric
+const Type *TypeD::xdual() const {
+  return this;
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeD::eq( const Type *t ) const {
+  if( g_isnan(_d) ||
+      g_isnan(t->getd()) ) {
+    // One or both are NANs.  If both are NANs return true, else false.
+    return (g_isnan(_d) && g_isnan(t->getd()));
+  }
+  if (_d == t->getd()) {
+    // (NaN is impossible at this point, since it is not equal even to itself)
+    if (_d == 0.0) {
+      // difference between positive and negative zero
+      if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
+    }
+    return true;
+  }
+  return false;
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeD::hash(void) const {
+  return *(int*)(&_d);
+}
+
+//------------------------------is_finite--------------------------------------
+// Has a finite value
+bool TypeD::is_finite() const {
+  return g_isfinite(getd()) != 0;
+}
+
+//------------------------------is_nan-----------------------------------------
+// Is not a number (NaN)
+bool TypeD::is_nan()    const {
+  return g_isnan(getd()) != 0;
+}
+
+//------------------------------dump2------------------------------------------
+// Dump double constant Type
+#ifndef PRODUCT
+void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
+  Type::dump2(d,depth,st);
+  st->print("%f", _d);
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants (Ldi nodes).  Singletons are integer, float or double constants
+// or a single symbol.
+bool TypeD::singleton(void) const {
+  return true;                  // Always a singleton
+}
+
+bool TypeD::empty(void) const {
+  return false;                 // always exactly a singleton
+}
+
+//=============================================================================
+// Convience common pre-built types.
+const TypeInt *TypeInt::MINUS_1;// -1
+const TypeInt *TypeInt::ZERO;   // 0
+const TypeInt *TypeInt::ONE;    // 1
+const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
+const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
+const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
+const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
+const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
+const TypeInt *TypeInt::CC_LE;  // [-1,0]
+const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
+const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
+const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
+const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
+const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
+const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
+const TypeInt *TypeInt::INT;    // 32-bit integers
+const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
+
+//------------------------------TypeInt----------------------------------------
+TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
+}
+
+//------------------------------make-------------------------------------------
+const TypeInt *TypeInt::make( jint lo ) {
+  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
+}
+
+#define SMALLINT ((juint)3)  // a value too insignificant to consider widening
+
+const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
+  // Certain normalizations keep us sane when comparing types.
+  // The 'SMALLINT' covers constants and also CC and its relatives.
+  assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
+  if (lo <= hi) {
+    if ((juint)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
+    if ((juint)(hi - lo) >= max_juint)  w = Type::WidenMax; // plain int
+  }
+  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type representation object
+// with reference count equal to the number of Types pointing at it.
+// Caller should wrap a Types around it.
+const Type *TypeInt::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type?
+
+  // Currently "this->_base" is a TypeInt
+  switch (t->base()) {          // Switch on original type
+  case AnyPtr:                  // Mixing with oops happens when javac
+  case RawPtr:                  // reuses local variables
+  case OopPtr:
+  case InstPtr:
+  case KlassPtr:
+  case AryPtr:
+  case Long:
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+  default:                      // All else is a mistake
+    typerr(t);
+  case Top:                     // No change
+    return this;
+  case Int:                     // Int vs Int?
+    break;
+  }
+
+  // Expand covered set
+  const TypeInt *r = t->is_int();
+  // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
+  return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: reverse hi & lo; flip widen
+const Type *TypeInt::xdual() const {
+  return new TypeInt(_hi,_lo,WidenMax-_widen);
+}
+
+//------------------------------widen------------------------------------------
+// Only happens for optimistic top-down optimizations.
+const Type *TypeInt::widen( const Type *old ) const {
+  // Coming from TOP or such; no widening
+  if( old->base() != Int ) return this;
+  const TypeInt *ot = old->is_int();
+
+  // If new guy is equal to old guy, no widening
+  if( _lo == ot->_lo && _hi == ot->_hi )
+    return old;
+
+  // If new guy contains old, then we widened
+  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
+    // New contains old
+    // If new guy is already wider than old, no widening
+    if( _widen > ot->_widen ) return this;
+    // If old guy was a constant, do not bother
+    if (ot->_lo == ot->_hi)  return this;
+    // Now widen new guy.
+    // Check for widening too far
+    if (_widen == WidenMax) {
+      if (min_jint < _lo && _hi < max_jint) {
+        // If neither endpoint is extremal yet, push out the endpoint
+        // which is closer to its respective limit.
+        if (_lo >= 0 ||                 // easy common case
+            (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
+          // Try to widen to an unsigned range type of 31 bits:
+          return make(_lo, max_jint, WidenMax);
+        } else {
+          return make(min_jint, _hi, WidenMax);
+        }
+      }
+      return TypeInt::INT;
+    }
+    // Returned widened new guy
+    return make(_lo,_hi,_widen+1);
+  }
+
+  // If old guy contains new, then we probably widened too far & dropped to
+  // bottom.  Return the wider fellow.
+  if ( ot->_lo <= _lo && ot->_hi >= _hi )
+    return old;
+
+  //fatal("Integer value range is not subset");
+  //return this;
+  return TypeInt::INT;
+}
+
+//------------------------------narrow---------------------------------------
+// Only happens for pessimistic optimizations.
+const Type *TypeInt::narrow( const Type *old ) const {
+  if (_lo >= _hi)  return this;   // already narrow enough
+  if (old == NULL)  return this;
+  const TypeInt* ot = old->isa_int();
+  if (ot == NULL)  return this;
+  jint olo = ot->_lo;
+  jint ohi = ot->_hi;
+
+  // If new guy is equal to old guy, no narrowing
+  if (_lo == olo && _hi == ohi)  return old;
+
+  // If old guy was maximum range, allow the narrowing
+  if (olo == min_jint && ohi == max_jint)  return this;
+
+  if (_lo < olo || _hi > ohi)
+    return this;                // doesn't narrow; pretty wierd
+
+  // The new type narrows the old type, so look for a "death march".
+  // See comments on PhaseTransform::saturate.
+  juint nrange = _hi - _lo;
+  juint orange = ohi - olo;
+  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
+    // Use the new type only if the range shrinks a lot.
+    // We do not want the optimizer computing 2^31 point by point.
+    return old;
+  }
+
+  return this;
+}
+
+//-----------------------------filter------------------------------------------
+const Type *TypeInt::filter( const Type *kills ) const {
+  const TypeInt* ft = join(kills)->isa_int();
+  if (ft == NULL || ft->_lo > ft->_hi)
+    return Type::TOP;           // Canonical empty value
+  if (ft->_widen < this->_widen) {
+    // Do not allow the value of kill->_widen to affect the outcome.
+    // The widen bits must be allowed to run freely through the graph.
+    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
+  }
+  return ft;
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeInt::eq( const Type *t ) const {
+  const TypeInt *r = t->is_int(); // Handy access
+  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeInt::hash(void) const {
+  return _lo+_hi+_widen+(int)Type::Int;
+}
+
+//------------------------------is_finite--------------------------------------
+// Has a finite value
+bool TypeInt::is_finite() const {
+  return true;
+}
+
+//------------------------------dump2------------------------------------------
+// Dump TypeInt
+#ifndef PRODUCT
+static const char* intname(char* buf, jint n) {
+  if (n == min_jint)
+    return "min";
+  else if (n < min_jint + 10000)
+    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
+  else if (n == max_jint)
+    return "max";
+  else if (n > max_jint - 10000)
+    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
+  else
+    sprintf(buf, INT32_FORMAT, n);
+  return buf;
+}
+
+void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
+  char buf[40], buf2[40];
+  if (_lo == min_jint && _hi == max_jint)
+    st->print("int");
+  else if (is_con())
+    st->print("int:%s", intname(buf, get_con()));
+  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
+    st->print("bool");
+  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
+    st->print("byte");
+  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
+    st->print("char");
+  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
+    st->print("short");
+  else if (_hi == max_jint)
+    st->print("int:>=%s", intname(buf, _lo));
+  else if (_lo == min_jint)
+    st->print("int:<=%s", intname(buf, _hi));
+  else
+    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
+
+  if (_widen != 0 && this != TypeInt::INT)
+    st->print(":%.*s", _widen, "wwww");
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants.
+bool TypeInt::singleton(void) const {
+  return _lo >= _hi;
+}
+
+bool TypeInt::empty(void) const {
+  return _lo > _hi;
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypeLong *TypeLong::MINUS_1;// -1
+const TypeLong *TypeLong::ZERO; // 0
+const TypeLong *TypeLong::ONE;  // 1
+const TypeLong *TypeLong::POS;  // >=0
+const TypeLong *TypeLong::LONG; // 64-bit integers
+const TypeLong *TypeLong::INT;  // 32-bit subrange
+const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
+
+//------------------------------TypeLong---------------------------------------
+TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
+}
+
+//------------------------------make-------------------------------------------
+const TypeLong *TypeLong::make( jlong lo ) {
+  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
+}
+
+const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
+  // Certain normalizations keep us sane when comparing types.
+  // The '1' covers constants.
+  if (lo <= hi) {
+    if ((julong)(hi - lo) <= SMALLINT)    w = Type::WidenMin;
+    if ((julong)(hi - lo) >= max_julong)  w = Type::WidenMax; // plain long
+  }
+  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
+}
+
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type representation object
+// with reference count equal to the number of Types pointing at it.
+// Caller should wrap a Types around it.
+const Type *TypeLong::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type?
+
+  // Currently "this->_base" is a TypeLong
+  switch (t->base()) {          // Switch on original type
+  case AnyPtr:                  // Mixing with oops happens when javac
+  case RawPtr:                  // reuses local variables
+  case OopPtr:
+  case InstPtr:
+  case KlassPtr:
+  case AryPtr:
+  case Int:
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+  default:                      // All else is a mistake
+    typerr(t);
+  case Top:                     // No change
+    return this;
+  case Long:                    // Long vs Long?
+    break;
+  }
+
+  // Expand covered set
+  const TypeLong *r = t->is_long(); // Turn into a TypeLong
+  // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
+  return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: reverse hi & lo; flip widen
+const Type *TypeLong::xdual() const {
+  return new TypeLong(_hi,_lo,WidenMax-_widen);
+}
+
+//------------------------------widen------------------------------------------
+// Only happens for optimistic top-down optimizations.
+const Type *TypeLong::widen( const Type *old ) const {
+  // Coming from TOP or such; no widening
+  if( old->base() != Long ) return this;
+  const TypeLong *ot = old->is_long();
+
+  // If new guy is equal to old guy, no widening
+  if( _lo == ot->_lo && _hi == ot->_hi )
+    return old;
+
+  // If new guy contains old, then we widened
+  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
+    // New contains old
+    // If new guy is already wider than old, no widening
+    if( _widen > ot->_widen ) return this;
+    // If old guy was a constant, do not bother
+    if (ot->_lo == ot->_hi)  return this;
+    // Now widen new guy.
+    // Check for widening too far
+    if (_widen == WidenMax) {
+      if (min_jlong < _lo && _hi < max_jlong) {
+        // If neither endpoint is extremal yet, push out the endpoint
+        // which is closer to its respective limit.
+        if (_lo >= 0 ||                 // easy common case
+            (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
+          // Try to widen to an unsigned range type of 32/63 bits:
+          if (_hi < max_juint)
+            return make(_lo, max_juint, WidenMax);
+          else
+            return make(_lo, max_jlong, WidenMax);
+        } else {
+          return make(min_jlong, _hi, WidenMax);
+        }
+      }
+      return TypeLong::LONG;
+    }
+    // Returned widened new guy
+    return make(_lo,_hi,_widen+1);
+  }
+
+  // If old guy contains new, then we probably widened too far & dropped to
+  // bottom.  Return the wider fellow.
+  if ( ot->_lo <= _lo && ot->_hi >= _hi )
+    return old;
+
+  //  fatal("Long value range is not subset");
+  // return this;
+  return TypeLong::LONG;
+}
+
+//------------------------------narrow----------------------------------------
+// Only happens for pessimistic optimizations.
+const Type *TypeLong::narrow( const Type *old ) const {
+  if (_lo >= _hi)  return this;   // already narrow enough
+  if (old == NULL)  return this;
+  const TypeLong* ot = old->isa_long();
+  if (ot == NULL)  return this;
+  jlong olo = ot->_lo;
+  jlong ohi = ot->_hi;
+
+  // If new guy is equal to old guy, no narrowing
+  if (_lo == olo && _hi == ohi)  return old;
+
+  // If old guy was maximum range, allow the narrowing
+  if (olo == min_jlong && ohi == max_jlong)  return this;
+
+  if (_lo < olo || _hi > ohi)
+    return this;                // doesn't narrow; pretty wierd
+
+  // The new type narrows the old type, so look for a "death march".
+  // See comments on PhaseTransform::saturate.
+  julong nrange = _hi - _lo;
+  julong orange = ohi - olo;
+  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
+    // Use the new type only if the range shrinks a lot.
+    // We do not want the optimizer computing 2^31 point by point.
+    return old;
+  }
+
+  return this;
+}
+
+//-----------------------------filter------------------------------------------
+const Type *TypeLong::filter( const Type *kills ) const {
+  const TypeLong* ft = join(kills)->isa_long();
+  if (ft == NULL || ft->_lo > ft->_hi)
+    return Type::TOP;           // Canonical empty value
+  if (ft->_widen < this->_widen) {
+    // Do not allow the value of kill->_widen to affect the outcome.
+    // The widen bits must be allowed to run freely through the graph.
+    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
+  }
+  return ft;
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeLong::eq( const Type *t ) const {
+  const TypeLong *r = t->is_long(); // Handy access
+  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeLong::hash(void) const {
+  return (int)(_lo+_hi+_widen+(int)Type::Long);
+}
+
+//------------------------------is_finite--------------------------------------
+// Has a finite value
+bool TypeLong::is_finite() const {
+  return true;
+}
+
+//------------------------------dump2------------------------------------------
+// Dump TypeLong
+#ifndef PRODUCT
+static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
+  if (n > x) {
+    if (n >= x + 10000)  return NULL;
+    sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
+  } else if (n < x) {
+    if (n <= x - 10000)  return NULL;
+    sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
+  } else {
+    return xname;
+  }
+  return buf;
+}
+
+static const char* longname(char* buf, jlong n) {
+  const char* str;
+  if (n == min_jlong)
+    return "min";
+  else if (n < min_jlong + 10000)
+    sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
+  else if (n == max_jlong)
+    return "max";
+  else if (n > max_jlong - 10000)
+    sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
+  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
+    return str;
+  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
+    return str;
+  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
+    return str;
+  else
+    sprintf(buf, INT64_FORMAT, n);
+  return buf;
+}
+
+void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
+  char buf[80], buf2[80];
+  if (_lo == min_jlong && _hi == max_jlong)
+    st->print("long");
+  else if (is_con())
+    st->print("long:%s", longname(buf, get_con()));
+  else if (_hi == max_jlong)
+    st->print("long:>=%s", longname(buf, _lo));
+  else if (_lo == min_jlong)
+    st->print("long:<=%s", longname(buf, _hi));
+  else
+    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
+
+  if (_widen != 0 && this != TypeLong::LONG)
+    st->print(":%.*s", _widen, "wwww");
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants
+bool TypeLong::singleton(void) const {
+  return _lo >= _hi;
+}
+
+bool TypeLong::empty(void) const {
+  return _lo > _hi;
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
+const TypeTuple *TypeTuple::IFFALSE;
+const TypeTuple *TypeTuple::IFTRUE;
+const TypeTuple *TypeTuple::IFNEITHER;
+const TypeTuple *TypeTuple::LOOPBODY;
+const TypeTuple *TypeTuple::MEMBAR;
+const TypeTuple *TypeTuple::STORECONDITIONAL;
+const TypeTuple *TypeTuple::START_I2C;
+const TypeTuple *TypeTuple::INT_PAIR;
+const TypeTuple *TypeTuple::LONG_PAIR;
+
+
+//------------------------------make-------------------------------------------
+// Make a TypeTuple from the range of a method signature
+const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
+  ciType* return_type = sig->return_type();
+  uint total_fields = TypeFunc::Parms + return_type->size();
+  const Type **field_array = fields(total_fields);
+  switch (return_type->basic_type()) {
+  case T_LONG:
+    field_array[TypeFunc::Parms]   = TypeLong::LONG;
+    field_array[TypeFunc::Parms+1] = Type::HALF;
+    break;
+  case T_DOUBLE:
+    field_array[TypeFunc::Parms]   = Type::DOUBLE;
+    field_array[TypeFunc::Parms+1] = Type::HALF;
+    break;
+  case T_OBJECT:
+  case T_ARRAY:
+  case T_BOOLEAN:
+  case T_CHAR:
+  case T_FLOAT:
+  case T_BYTE:
+  case T_SHORT:
+  case T_INT:
+    field_array[TypeFunc::Parms] = get_const_type(return_type);
+    break;
+  case T_VOID:
+    break;
+  default:
+    ShouldNotReachHere();
+  }
+  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
+}
+
+// Make a TypeTuple from the domain of a method signature
+const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
+  uint total_fields = TypeFunc::Parms + sig->size();
+
+  uint pos = TypeFunc::Parms;
+  const Type **field_array;
+  if (recv != NULL) {
+    total_fields++;
+    field_array = fields(total_fields);
+    // Use get_const_type here because it respects UseUniqueSubclasses:
+    field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
+  } else {
+    field_array = fields(total_fields);
+  }
+
+  int i = 0;
+  while (pos < total_fields) {
+    ciType* type = sig->type_at(i);
+
+    switch (type->basic_type()) {
+    case T_LONG:
+      field_array[pos++] = TypeLong::LONG;
+      field_array[pos++] = Type::HALF;
+      break;
+    case T_DOUBLE:
+      field_array[pos++] = Type::DOUBLE;
+      field_array[pos++] = Type::HALF;
+      break;
+    case T_OBJECT:
+    case T_ARRAY:
+    case T_BOOLEAN:
+    case T_CHAR:
+    case T_FLOAT:
+    case T_BYTE:
+    case T_SHORT:
+    case T_INT:
+      field_array[pos++] = get_const_type(type);
+      break;
+    default:
+      ShouldNotReachHere();
+    }
+    i++;
+  }
+  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
+}
+
+const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
+  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
+}
+
+//------------------------------fields-----------------------------------------
+// Subroutine call type with space allocated for argument types
+const Type **TypeTuple::fields( uint arg_cnt ) {
+  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
+  flds[TypeFunc::Control  ] = Type::CONTROL;
+  flds[TypeFunc::I_O      ] = Type::ABIO;
+  flds[TypeFunc::Memory   ] = Type::MEMORY;
+  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
+  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
+
+  return flds;
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeTuple::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is Tuple
+  switch (t->base()) {          // switch on original type
+
+  case Bottom:                  // Ye Olde Default
+    return t;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case Tuple: {                 // Meeting 2 signatures?
+    const TypeTuple *x = t->is_tuple();
+    assert( _cnt == x->_cnt, "" );
+    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
+    for( uint i=0; i<_cnt; i++ )
+      fields[i] = field_at(i)->xmeet( x->field_at(i) );
+    return TypeTuple::make(_cnt,fields);
+  }
+  case Top:
+    break;
+  }
+  return this;                  // Return the double constant
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: compute field-by-field dual
+const Type *TypeTuple::xdual() const {
+  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
+  for( uint i=0; i<_cnt; i++ )
+    fields[i] = _fields[i]->dual();
+  return new TypeTuple(_cnt,fields);
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeTuple::eq( const Type *t ) const {
+  const TypeTuple *s = (const TypeTuple *)t;
+  if (_cnt != s->_cnt)  return false;  // Unequal field counts
+  for (uint i = 0; i < _cnt; i++)
+    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
+      return false;             // Missed
+  return true;
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeTuple::hash(void) const {
+  intptr_t sum = _cnt;
+  for( uint i=0; i<_cnt; i++ )
+    sum += (intptr_t)_fields[i];     // Hash on pointers directly
+  return sum;
+}
+
+//------------------------------dump2------------------------------------------
+// Dump signature Type
+#ifndef PRODUCT
+void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
+  st->print("{");
+  if( !depth || d[this] ) {     // Check for recursive print
+    st->print("...}");
+    return;
+  }
+  d.Insert((void*)this, (void*)this);   // Stop recursion
+  if( _cnt ) {
+    uint i;
+    for( i=0; i<_cnt-1; i++ ) {
+      st->print("%d:", i);
+      _fields[i]->dump2(d, depth-1, st);
+      st->print(", ");
+    }
+    st->print("%d:", i);
+    _fields[i]->dump2(d, depth-1, st);
+  }
+  st->print("}");
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants (Ldi nodes).  Singletons are integer, float or double constants
+// or a single symbol.
+bool TypeTuple::singleton(void) const {
+  return false;                 // Never a singleton
+}
+
+bool TypeTuple::empty(void) const {
+  for( uint i=0; i<_cnt; i++ ) {
+    if (_fields[i]->empty())  return true;
+  }
+  return false;
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+
+inline const TypeInt* normalize_array_size(const TypeInt* size) {
+  // Certain normalizations keep us sane when comparing types.
+  // We do not want arrayOop variables to differ only by the wideness
+  // of their index types.  Pick minimum wideness, since that is the
+  // forced wideness of small ranges anyway.
+  if (size->_widen != Type::WidenMin)
+    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
+  else
+    return size;
+}
+
+//------------------------------make-------------------------------------------
+const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
+  size = normalize_array_size(size);
+  return (TypeAry*)(new TypeAry(elem,size))->hashcons();
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeAry::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is Ary
+  switch (t->base()) {          // switch on original type
+
+  case Bottom:                  // Ye Olde Default
+    return t;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case Array: {                 // Meeting 2 arrays?
+    const TypeAry *a = t->is_ary();
+    return TypeAry::make(_elem->meet(a->_elem),
+                         _size->xmeet(a->_size)->is_int());
+  }
+  case Top:
+    break;
+  }
+  return this;                  // Return the double constant
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: compute field-by-field dual
+const Type *TypeAry::xdual() const {
+  const TypeInt* size_dual = _size->dual()->is_int();
+  size_dual = normalize_array_size(size_dual);
+  return new TypeAry( _elem->dual(), size_dual);
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeAry::eq( const Type *t ) const {
+  const TypeAry *a = (const TypeAry*)t;
+  return _elem == a->_elem &&
+    _size == a->_size;
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeAry::hash(void) const {
+  return (intptr_t)_elem + (intptr_t)_size;
+}
+
+//------------------------------dump2------------------------------------------
+#ifndef PRODUCT
+void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
+  _elem->dump2(d, depth, st);
+  st->print("[");
+  _size->dump2(d, depth, st);
+  st->print("]");
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants (Ldi nodes).  Singletons are integer, float or double constants
+// or a single symbol.
+bool TypeAry::singleton(void) const {
+  return false;                 // Never a singleton
+}
+
+bool TypeAry::empty(void) const {
+  return _elem->empty() || _size->empty();
+}
+
+//--------------------------ary_must_be_exact----------------------------------
+bool TypeAry::ary_must_be_exact() const {
+  if (!UseExactTypes)       return false;
+  // This logic looks at the element type of an array, and returns true
+  // if the element type is either a primitive or a final instance class.
+  // In such cases, an array built on this ary must have no subclasses.
+  if (_elem == BOTTOM)      return false;  // general array not exact
+  if (_elem == TOP   )      return false;  // inverted general array not exact
+  const TypeOopPtr*  toop = _elem->isa_oopptr();
+  if (!toop)                return true;   // a primitive type, like int
+  ciKlass* tklass = toop->klass();
+  if (tklass == NULL)       return false;  // unloaded class
+  if (!tklass->is_loaded()) return false;  // unloaded class
+  const TypeInstPtr* tinst = _elem->isa_instptr();
+  if (tinst)                return tklass->as_instance_klass()->is_final();
+  const TypeAryPtr*  tap = _elem->isa_aryptr();
+  if (tap)                  return tap->ary()->ary_must_be_exact();
+  return false;
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypePtr *TypePtr::NULL_PTR;
+const TypePtr *TypePtr::NOTNULL;
+const TypePtr *TypePtr::BOTTOM;
+
+//------------------------------meet-------------------------------------------
+// Meet over the PTR enum
+const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
+  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
+  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
+  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
+  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
+  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
+  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
+  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
+};
+
+//------------------------------make-------------------------------------------
+const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
+  return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
+}
+
+//------------------------------cast_to_ptr_type-------------------------------
+const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
+  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
+  if( ptr == _ptr ) return this;
+  return make(_base, ptr, _offset);
+}
+
+//------------------------------get_con----------------------------------------
+intptr_t TypePtr::get_con() const {
+  assert( _ptr == Null, "" );
+  return _offset;
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypePtr::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is AnyPtr
+  switch (t->base()) {          // switch on original type
+  case Int:                     // Mixing ints & oops happens when javac
+  case Long:                    // reuses local variables
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+  case Top:
+    return this;
+
+  case AnyPtr: {                // Meeting to AnyPtrs
+    const TypePtr *tp = t->is_ptr();
+    return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
+  }
+  case RawPtr:                  // For these, flip the call around to cut down
+  case OopPtr:
+  case InstPtr:                 // on the cases I have to handle.
+  case KlassPtr:
+  case AryPtr:
+    return t->xmeet(this);      // Call in reverse direction
+  default:                      // All else is a mistake
+    typerr(t);
+
+  }
+  return this;
+}
+
+//------------------------------meet_offset------------------------------------
+int TypePtr::meet_offset( int offset ) const {
+  // Either is 'TOP' offset?  Return the other offset!
+  if( _offset == OffsetTop ) return offset;
+  if( offset == OffsetTop ) return _offset;
+  // If either is different, return 'BOTTOM' offset
+  if( _offset != offset ) return OffsetBot;
+  return _offset;
+}
+
+//------------------------------dual_offset------------------------------------
+int TypePtr::dual_offset( ) const {
+  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
+  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
+  return _offset;               // Map everything else into self
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: compute field-by-field dual
+const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
+  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
+};
+const Type *TypePtr::xdual() const {
+  return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
+}
+
+//------------------------------add_offset-------------------------------------
+const TypePtr *TypePtr::add_offset( int offset ) const {
+  if( offset == 0 ) return this; // No change
+  if( _offset == OffsetBot ) return this;
+  if(  offset == OffsetBot ) offset = OffsetBot;
+  else if( _offset == OffsetTop || offset == OffsetTop ) offset = OffsetTop;
+  else offset += _offset;
+  return make( AnyPtr, _ptr, offset );
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypePtr::eq( const Type *t ) const {
+  const TypePtr *a = (const TypePtr*)t;
+  return _ptr == a->ptr() && _offset == a->offset();
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypePtr::hash(void) const {
+  return _ptr + _offset;
+}
+
+//------------------------------dump2------------------------------------------
+const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
+  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
+};
+
+#ifndef PRODUCT
+void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
+  if( _ptr == Null ) st->print("NULL");
+  else st->print("%s *", ptr_msg[_ptr]);
+  if( _offset == OffsetTop ) st->print("+top");
+  else if( _offset == OffsetBot ) st->print("+bot");
+  else if( _offset ) st->print("+%d", _offset);
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants
+bool TypePtr::singleton(void) const {
+  // TopPTR, Null, AnyNull, Constant are all singletons
+  return (_offset != OffsetBot) && !below_centerline(_ptr);
+}
+
+bool TypePtr::empty(void) const {
+  return (_offset == OffsetTop) || above_centerline(_ptr);
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypeRawPtr *TypeRawPtr::BOTTOM;
+const TypeRawPtr *TypeRawPtr::NOTNULL;
+
+//------------------------------make-------------------------------------------
+const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
+  assert( ptr != Constant, "what is the constant?" );
+  assert( ptr != Null, "Use TypePtr for NULL" );
+  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
+}
+
+const TypeRawPtr *TypeRawPtr::make( address bits ) {
+  assert( bits, "Use TypePtr for NULL" );
+  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
+}
+
+//------------------------------cast_to_ptr_type-------------------------------
+const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
+  assert( ptr != Constant, "what is the constant?" );
+  assert( ptr != Null, "Use TypePtr for NULL" );
+  assert( _bits==0, "Why cast a constant address?");
+  if( ptr == _ptr ) return this;
+  return make(ptr);
+}
+
+//------------------------------get_con----------------------------------------
+intptr_t TypeRawPtr::get_con() const {
+  assert( _ptr == Null || _ptr == Constant, "" );
+  return (intptr_t)_bits;
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeRawPtr::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is RawPtr
+  switch( t->base() ) {         // switch on original type
+  case Bottom:                  // Ye Olde Default
+    return t;
+  case Top:
+    return this;
+  case AnyPtr:                  // Meeting to AnyPtrs
+    break;
+  case RawPtr: {                // might be top, bot, any/not or constant
+    enum PTR tptr = t->is_ptr()->ptr();
+    enum PTR ptr = meet_ptr( tptr );
+    if( ptr == Constant ) {     // Cannot be equal constants, so...
+      if( tptr == Constant && _ptr != Constant)  return t;
+      if( _ptr == Constant && tptr != Constant)  return this;
+      ptr = NotNull;            // Fall down in lattice
+    }
+    return make( ptr );
+  }
+
+  case OopPtr:
+  case InstPtr:
+  case KlassPtr:
+  case AryPtr:
+    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
+  default:                      // All else is a mistake
+    typerr(t);
+  }
+
+  // Found an AnyPtr type vs self-RawPtr type
+  const TypePtr *tp = t->is_ptr();
+  switch (tp->ptr()) {
+  case TypePtr::TopPTR:  return this;
+  case TypePtr::BotPTR:  return t;
+  case TypePtr::Null:
+    if( _ptr == TypePtr::TopPTR ) return t;
+    return TypeRawPtr::BOTTOM;
+  case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
+  case TypePtr::AnyNull:
+    if( _ptr == TypePtr::Constant) return this;
+    return make( meet_ptr(TypePtr::AnyNull) );
+  default: ShouldNotReachHere();
+  }
+  return this;
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: compute field-by-field dual
+const Type *TypeRawPtr::xdual() const {
+  return new TypeRawPtr( dual_ptr(), _bits );
+}
+
+//------------------------------add_offset-------------------------------------
+const TypePtr *TypeRawPtr::add_offset( int offset ) const {
+  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
+  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
+  if( offset == 0 ) return this; // No change
+  switch (_ptr) {
+  case TypePtr::TopPTR:
+  case TypePtr::BotPTR:
+  case TypePtr::NotNull:
+    return this;
+  case TypePtr::Null:
+  case TypePtr::Constant:
+    return make( _bits+offset );
+  default:  ShouldNotReachHere();
+  }
+  return NULL;                  // Lint noise
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeRawPtr::eq( const Type *t ) const {
+  const TypeRawPtr *a = (const TypeRawPtr*)t;
+  return _bits == a->_bits && TypePtr::eq(t);
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeRawPtr::hash(void) const {
+  return (intptr_t)_bits + TypePtr::hash();
+}
+
+//------------------------------dump2------------------------------------------
+#ifndef PRODUCT
+void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
+  if( _ptr == Constant )
+    st->print(INTPTR_FORMAT, _bits);
+  else
+    st->print("rawptr:%s", ptr_msg[_ptr]);
+}
+#endif
+
+//=============================================================================
+// Convenience common pre-built type.
+const TypeOopPtr *TypeOopPtr::BOTTOM;
+
+//------------------------------make-------------------------------------------
+const TypeOopPtr *TypeOopPtr::make(PTR ptr,
+                                   int offset) {
+  assert(ptr != Constant, "no constant generic pointers");
+  ciKlass*  k = ciKlassKlass::make();
+  bool      xk = false;
+  ciObject* o = NULL;
+  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, UNKNOWN_INSTANCE))->hashcons();
+}
+
+
+//------------------------------cast_to_ptr_type-------------------------------
+const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
+  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
+  if( ptr == _ptr ) return this;
+  return make(ptr, _offset);
+}
+
+//-----------------------------cast_to_instance-------------------------------
+const TypeOopPtr *TypeOopPtr::cast_to_instance(int instance_id) const {
+  // There are no instances of a general oop.
+  // Return self unchanged.
+  return this;
+}
+
+//-----------------------------cast_to_exactness-------------------------------
+const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
+  // There is no such thing as an exact general oop.
+  // Return self unchanged.
+  return this;
+}
+
+
+//------------------------------as_klass_type----------------------------------
+// Return the klass type corresponding to this instance or array type.
+// It is the type that is loaded from an object of this type.
+const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
+  ciKlass* k = klass();
+  bool    xk = klass_is_exact();
+  if (k == NULL || !k->is_java_klass())
+    return TypeKlassPtr::OBJECT;
+  else
+    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
+}
+
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeOopPtr::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is OopPtr
+  switch (t->base()) {          // switch on original type
+
+  case Int:                     // Mixing ints & oops happens when javac
+  case Long:                    // reuses local variables
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+  case Top:
+    return this;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case RawPtr:
+    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
+
+  case AnyPtr: {
+    // Found an AnyPtr type vs self-OopPtr type
+    const TypePtr *tp = t->is_ptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    switch (tp->ptr()) {
+    case Null:
+      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
+      // else fall through:
+    case TopPTR:
+    case AnyNull:
+      return make(ptr, offset);
+    case BotPTR:
+    case NotNull:
+      return TypePtr::make(AnyPtr, ptr, offset);
+    default: typerr(t);
+    }
+  }
+
+  case OopPtr: {                 // Meeting to other OopPtrs
+    const TypeOopPtr *tp = t->is_oopptr();
+    return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
+  }
+
+  case InstPtr:                  // For these, flip the call around to cut down
+  case KlassPtr:                 // on the cases I have to handle.
+  case AryPtr:
+    return t->xmeet(this);      // Call in reverse direction
+
+  } // End of switch
+  return this;                  // Return the double constant
+}
+
+
+//------------------------------xdual------------------------------------------
+// Dual of a pure heap pointer.  No relevant klass or oop information.
+const Type *TypeOopPtr::xdual() const {
+  assert(klass() == ciKlassKlass::make(), "no klasses here");
+  assert(const_oop() == NULL,             "no constants here");
+  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance()  );
+}
+
+//--------------------------make_from_klass_common-----------------------------
+// Computes the element-type given a klass.
+const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
+  assert(klass->is_java_klass(), "must be java language klass");
+  if (klass->is_instance_klass()) {
+    Compile* C = Compile::current();
+    Dependencies* deps = C->dependencies();
+    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
+    // Element is an instance
+    bool klass_is_exact = false;
+    if (klass->is_loaded()) {
+      // Try to set klass_is_exact.
+      ciInstanceKlass* ik = klass->as_instance_klass();
+      klass_is_exact = ik->is_final();
+      if (!klass_is_exact && klass_change
+          && deps != NULL && UseUniqueSubclasses) {
+        ciInstanceKlass* sub = ik->unique_concrete_subklass();
+        if (sub != NULL) {
+          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
+          klass = ik = sub;
+          klass_is_exact = sub->is_final();
+        }
+      }
+      if (!klass_is_exact && try_for_exact
+          && deps != NULL && UseExactTypes) {
+        if (!ik->is_interface() && !ik->has_subklass()) {
+          // Add a dependence; if concrete subclass added we need to recompile
+          deps->assert_leaf_type(ik);
+          klass_is_exact = true;
+        }
+      }
+    }
+    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
+  } else if (klass->is_obj_array_klass()) {
+    // Element is an object array. Recursively call ourself.
+    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
+    bool xk = etype->klass_is_exact();
+    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
+    // We used to pass NotNull in here, asserting that the sub-arrays
+    // are all not-null.  This is not true in generally, as code can
+    // slam NULLs down in the subarrays.
+    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
+    return arr;
+  } else if (klass->is_type_array_klass()) {
+    // Element is an typeArray
+    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
+    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
+    // We used to pass NotNull in here, asserting that the array pointer
+    // is not-null. That was not true in general.
+    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
+    return arr;
+  } else {
+    ShouldNotReachHere();
+    return NULL;
+  }
+}
+
+//------------------------------make_from_constant-----------------------------
+// Make a java pointer from an oop constant
+const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
+  if (o->is_method_data() || o->is_method()) {
+    // Treat much like a typeArray of bytes, like below, but fake the type...
+    assert(o->has_encoding(), "must be a perm space object");
+    const Type* etype = (Type*)get_const_basic_type(T_BYTE);
+    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
+    ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
+    assert(o->has_encoding(), "method data oops should be tenured");
+    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
+    return arr;
+  } else {
+    assert(o->is_java_object(), "must be java language object");
+    assert(!o->is_null_object(), "null object not yet handled here.");
+    ciKlass *klass = o->klass();
+    if (klass->is_instance_klass()) {
+      // Element is an instance
+      if (!o->has_encoding()) {  // not a perm-space constant
+        // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
+        return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
+      }
+      return TypeInstPtr::make(o);
+    } else if (klass->is_obj_array_klass()) {
+      // Element is an object array. Recursively call ourself.
+      const Type *etype =
+        TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
+      const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
+      // We used to pass NotNull in here, asserting that the sub-arrays
+      // are all not-null.  This is not true in generally, as code can
+      // slam NULLs down in the subarrays.
+      if (!o->has_encoding()) {  // not a perm-space constant
+        // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
+        return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
+      }
+      const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
+      return arr;
+    } else if (klass->is_type_array_klass()) {
+      // Element is an typeArray
+      const Type* etype =
+        (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
+      const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
+      // We used to pass NotNull in here, asserting that the array pointer
+      // is not-null. That was not true in general.
+      if (!o->has_encoding()) {  // not a perm-space constant
+        // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
+        return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
+      }
+      const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
+      return arr;
+    }
+  }
+
+  ShouldNotReachHere();
+  return NULL;
+}
+
+//------------------------------get_con----------------------------------------
+intptr_t TypeOopPtr::get_con() const {
+  assert( _ptr == Null || _ptr == Constant, "" );
+  assert( _offset >= 0, "" );
+
+  if (_offset != 0) {
+    // After being ported to the compiler interface, the compiler no longer
+    // directly manipulates the addresses of oops.  Rather, it only has a pointer
+    // to a handle at compile time.  This handle is embedded in the generated
+    // code and dereferenced at the time the nmethod is made.  Until that time,
+    // it is not reasonable to do arithmetic with the addresses of oops (we don't
+    // have access to the addresses!).  This does not seem to currently happen,
+    // but this assertion here is to help prevent its occurrance.
+    tty->print_cr("Found oop constant with non-zero offset");
+    ShouldNotReachHere();
+  }
+
+  return (intptr_t)const_oop()->encoding();
+}
+
+
+//-----------------------------filter------------------------------------------
+// Do not allow interface-vs.-noninterface joins to collapse to top.
+const Type *TypeOopPtr::filter( const Type *kills ) const {
+
+  const Type* ft = join(kills);
+  const TypeInstPtr* ftip = ft->isa_instptr();
+  const TypeInstPtr* ktip = kills->isa_instptr();
+
+  if (ft->empty()) {
+    // Check for evil case of 'this' being a class and 'kills' expecting an
+    // interface.  This can happen because the bytecodes do not contain
+    // enough type info to distinguish a Java-level interface variable
+    // from a Java-level object variable.  If we meet 2 classes which
+    // both implement interface I, but their meet is at 'j/l/O' which
+    // doesn't implement I, we have no way to tell if the result should
+    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
+    // into a Phi which "knows" it's an Interface type we'll have to
+    // uplift the type.
+    if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
+      return kills;             // Uplift to interface
+
+    return Type::TOP;           // Canonical empty value
+  }
+
+  // If we have an interface-typed Phi or cast and we narrow to a class type,
+  // the join should report back the class.  However, if we have a J/L/Object
+  // class-typed Phi and an interface flows in, it's possible that the meet &
+  // join report an interface back out.  This isn't possible but happens
+  // because the type system doesn't interact well with interfaces.
+  if (ftip != NULL && ktip != NULL &&
+      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
+      ktip->is_loaded() && !ktip->klass()->is_interface()) {
+    // Happens in a CTW of rt.jar, 320-341, no extra flags
+    return ktip->cast_to_ptr_type(ftip->ptr());
+  }
+
+  return ft;
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeOopPtr::eq( const Type *t ) const {
+  const TypeOopPtr *a = (const TypeOopPtr*)t;
+  if (_klass_is_exact != a->_klass_is_exact ||
+      _instance_id != a->_instance_id)  return false;
+  ciObject* one = const_oop();
+  ciObject* two = a->const_oop();
+  if (one == NULL || two == NULL) {
+    return (one == two) && TypePtr::eq(t);
+  } else {
+    return one->equals(two) && TypePtr::eq(t);
+  }
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeOopPtr::hash(void) const {
+  return
+    (const_oop() ? const_oop()->hash() : 0) +
+    _klass_is_exact +
+    _instance_id +
+    TypePtr::hash();
+}
+
+//------------------------------dump2------------------------------------------
+#ifndef PRODUCT
+void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
+  st->print("oopptr:%s", ptr_msg[_ptr]);
+  if( _klass_is_exact ) st->print(":exact");
+  if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
+  switch( _offset ) {
+  case OffsetTop: st->print("+top"); break;
+  case OffsetBot: st->print("+any"); break;
+  case         0: break;
+  default:        st->print("+%d",_offset); break;
+  }
+  if (_instance_id != UNKNOWN_INSTANCE)
+    st->print(",iid=%d",_instance_id);
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants
+bool TypeOopPtr::singleton(void) const {
+  // detune optimizer to not generate constant oop + constant offset as a constant!
+  // TopPTR, Null, AnyNull, Constant are all singletons
+  return (_offset == 0) && !below_centerline(_ptr);
+}
+
+//------------------------------xadd_offset------------------------------------
+int TypeOopPtr::xadd_offset( int offset ) const {
+  // Adding to 'TOP' offset?  Return 'TOP'!
+  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
+  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
+  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
+
+  // assert( _offset >= 0 && _offset+offset >= 0, "" );
+  // It is possible to construct a negative offset during PhaseCCP
+
+  return _offset+offset;        // Sum valid offsets
+}
+
+//------------------------------add_offset-------------------------------------
+const TypePtr *TypeOopPtr::add_offset( int offset ) const {
+  return make( _ptr, xadd_offset(offset) );
+}
+
+int TypeOopPtr::meet_instance(int iid) const {
+  if (iid == 0) {
+    return (_instance_id < 0)  ? _instance_id : UNKNOWN_INSTANCE;
+  } else if (_instance_id == UNKNOWN_INSTANCE) {
+    return (iid < 0)  ? iid : UNKNOWN_INSTANCE;
+  } else {
+    return (_instance_id == iid) ? iid : UNKNOWN_INSTANCE;
+  }
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypeInstPtr *TypeInstPtr::NOTNULL;
+const TypeInstPtr *TypeInstPtr::BOTTOM;
+const TypeInstPtr *TypeInstPtr::MIRROR;
+const TypeInstPtr *TypeInstPtr::MARK;
+const TypeInstPtr *TypeInstPtr::KLASS;
+
+//------------------------------TypeInstPtr-------------------------------------
+TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
+ : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
+   assert(k != NULL &&
+          (k->is_loaded() || o == NULL),
+          "cannot have constants with non-loaded klass");
+};
+
+//------------------------------make-------------------------------------------
+const TypeInstPtr *TypeInstPtr::make(PTR ptr,
+                                     ciKlass* k,
+                                     bool xk,
+                                     ciObject* o,
+                                     int offset,
+                                     int instance_id) {
+  assert( !k->is_loaded() || k->is_instance_klass() ||
+          k->is_method_klass(), "Must be for instance or method");
+  // Either const_oop() is NULL or else ptr is Constant
+  assert( (!o && ptr != Constant) || (o && ptr == Constant),
+          "constant pointers must have a value supplied" );
+  // Ptr is never Null
+  assert( ptr != Null, "NULL pointers are not typed" );
+
+  if (instance_id != UNKNOWN_INSTANCE)
+    xk = true;  // instances are always exactly typed
+  if (!UseExactTypes)  xk = false;
+  if (ptr == Constant) {
+    // Note:  This case includes meta-object constants, such as methods.
+    xk = true;
+  } else if (k->is_loaded()) {
+    ciInstanceKlass* ik = k->as_instance_klass();
+    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
+    if (xk && ik->is_interface())  xk = false;  // no exact interface
+  }
+
+  // Now hash this baby
+  TypeInstPtr *result =
+    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
+
+  return result;
+}
+
+
+//------------------------------cast_to_ptr_type-------------------------------
+const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
+  if( ptr == _ptr ) return this;
+  // Reconstruct _sig info here since not a problem with later lazy
+  // construction, _sig will show up on demand.
+  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset);
+}
+
+
+//-----------------------------cast_to_exactness-------------------------------
+const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
+  if( klass_is_exact == _klass_is_exact ) return this;
+  if (!UseExactTypes)  return this;
+  if (!_klass->is_loaded())  return this;
+  ciInstanceKlass* ik = _klass->as_instance_klass();
+  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
+  if( ik->is_interface() )              return this;  // cannot set xk
+  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
+}
+
+//-----------------------------cast_to_instance-------------------------------
+const TypeOopPtr *TypeInstPtr::cast_to_instance(int instance_id) const {
+  if( instance_id == _instance_id) return this;
+  bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
+
+  return make(ptr(), klass(), exact, const_oop(), _offset, instance_id);
+}
+
+//------------------------------xmeet_unloaded---------------------------------
+// Compute the MEET of two InstPtrs when at least one is unloaded.
+// Assume classes are different since called after check for same name/class-loader
+const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
+    int off = meet_offset(tinst->offset());
+    PTR ptr = meet_ptr(tinst->ptr());
+
+    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
+    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
+    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
+      //
+      // Meet unloaded class with java/lang/Object
+      //
+      // Meet
+      //          |                     Unloaded Class
+      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
+      //  ===================================================================
+      //   TOP    | ..........................Unloaded......................|
+      //  AnyNull |  U-AN    |................Unloaded......................|
+      // Constant | ... O-NN .................................. |   O-BOT   |
+      //  NotNull | ... O-NN .................................. |   O-BOT   |
+      //  BOTTOM  | ........................Object-BOTTOM ..................|
+      //
+      assert(loaded->ptr() != TypePtr::Null, "insanity check");
+      //
+      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
+      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
+      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
+      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
+        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
+        else                                      { return TypeInstPtr::NOTNULL; }
+      }
+      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
+
+      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
+    }
+
+    // Both are unloaded, not the same class, not Object
+    // Or meet unloaded with a different loaded class, not java/lang/Object
+    if( ptr != TypePtr::BotPTR ) {
+      return TypeInstPtr::NOTNULL;
+    }
+    return TypeInstPtr::BOTTOM;
+}
+
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeInstPtr::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is Pointer
+  switch (t->base()) {          // switch on original type
+
+  case Int:                     // Mixing ints & oops happens when javac
+  case Long:                    // reuses local variables
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+  case Top:
+    return this;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case RawPtr: return TypePtr::BOTTOM;
+
+  case AryPtr: {                // All arrays inherit from Object class
+    const TypeAryPtr *tp = t->is_aryptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    int iid = meet_instance(tp->instance_id());
+    switch (ptr) {
+    case TopPTR:
+    case AnyNull:                // Fall 'down' to dual of object klass
+      if (klass()->equals(ciEnv::current()->Object_klass())) {
+        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
+      } else {
+        // cannot subclass, so the meet has to fall badly below the centerline
+        ptr = NotNull;
+        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid);
+      }
+    case Constant:
+    case NotNull:
+    case BotPTR:                // Fall down to object klass
+      // LCA is object_klass, but if we subclass from the top we can do better
+      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
+        // If 'this' (InstPtr) is above the centerline and it is Object class
+        // then we can subclass in the Java class heirarchy.
+        if (klass()->equals(ciEnv::current()->Object_klass())) {
+          // that is, tp's array type is a subtype of my klass
+          return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, iid);
+        }
+      }
+      // The other case cannot happen, since I cannot be a subtype of an array.
+      // The meet falls down to Object class below centerline.
+      if( ptr == Constant )
+         ptr = NotNull;
+      return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, iid );
+    default: typerr(t);
+    }
+  }
+
+  case OopPtr: {                // Meeting to OopPtrs
+    // Found a OopPtr type vs self-InstPtr type
+    const TypePtr *tp = t->is_oopptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    switch (tp->ptr()) {
+    case TopPTR:
+    case AnyNull:
+      return make(ptr, klass(), klass_is_exact(),
+                  (ptr == Constant ? const_oop() : NULL), offset);
+    case NotNull:
+    case BotPTR:
+      return TypeOopPtr::make(ptr, offset);
+    default: typerr(t);
+    }
+  }
+
+  case AnyPtr: {                // Meeting to AnyPtrs
+    // Found an AnyPtr type vs self-InstPtr type
+    const TypePtr *tp = t->is_ptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    switch (tp->ptr()) {
+    case Null:
+      if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
+    case TopPTR:
+    case AnyNull:
+      return make( ptr, klass(), klass_is_exact(),
+                   (ptr == Constant ? const_oop() : NULL), offset );
+    case NotNull:
+    case BotPTR:
+      return TypePtr::make( AnyPtr, ptr, offset );
+    default: typerr(t);
+    }
+  }
+
+  /*
+                 A-top         }
+               /   |   \       }  Tops
+           B-top A-any C-top   }
+              | /  |  \ |      }  Any-nulls
+           B-any   |   C-any   }
+              |    |    |
+           B-con A-con C-con   } constants; not comparable across classes
+              |    |    |
+           B-not   |   C-not   }
+              | \  |  / |      }  not-nulls
+           B-bot A-not C-bot   }
+               \   |   /       }  Bottoms
+                 A-bot         }
+  */
+
+  case InstPtr: {                // Meeting 2 Oops?
+    // Found an InstPtr sub-type vs self-InstPtr type
+    const TypeInstPtr *tinst = t->is_instptr();
+    int off = meet_offset( tinst->offset() );
+    PTR ptr = meet_ptr( tinst->ptr() );
+    int instance_id = meet_instance(tinst->instance_id());
+
+    // Check for easy case; klasses are equal (and perhaps not loaded!)
+    // If we have constants, then we created oops so classes are loaded
+    // and we can handle the constants further down.  This case handles
+    // both-not-loaded or both-loaded classes
+    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
+      return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
+    }
+
+    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
+    ciKlass* tinst_klass = tinst->klass();
+    ciKlass* this_klass  = this->klass();
+    bool tinst_xk = tinst->klass_is_exact();
+    bool this_xk  = this->klass_is_exact();
+    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
+      // One of these classes has not been loaded
+      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
+#ifndef PRODUCT
+      if( PrintOpto && Verbose ) {
+        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
+        tty->print("  this == "); this->dump(); tty->cr();
+        tty->print(" tinst == "); tinst->dump(); tty->cr();
+      }
+#endif
+      return unloaded_meet;
+    }
+
+    // Handle mixing oops and interfaces first.
+    if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
+      ciKlass *tmp = tinst_klass; // Swap interface around
+      tinst_klass = this_klass;
+      this_klass = tmp;
+      bool tmp2 = tinst_xk;
+      tinst_xk = this_xk;
+      this_xk = tmp2;
+    }
+    if (tinst_klass->is_interface() &&
+        !(this_klass->is_interface() ||
+          // Treat java/lang/Object as an honorary interface,
+          // because we need a bottom for the interface hierarchy.
+          this_klass == ciEnv::current()->Object_klass())) {
+      // Oop meets interface!
+
+      // See if the oop subtypes (implements) interface.
+      ciKlass *k;
+      bool xk;
+      if( this_klass->is_subtype_of( tinst_klass ) ) {
+        // Oop indeed subtypes.  Now keep oop or interface depending
+        // on whether we are both above the centerline or either is
+        // below the centerline.  If we are on the centerline
+        // (e.g., Constant vs. AnyNull interface), use the constant.
+        k  = below_centerline(ptr) ? tinst_klass : this_klass;
+        // If we are keeping this_klass, keep its exactness too.
+        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
+      } else {                  // Does not implement, fall to Object
+        // Oop does not implement interface, so mixing falls to Object
+        // just like the verifier does (if both are above the
+        // centerline fall to interface)
+        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
+        xk = above_centerline(ptr) ? tinst_xk : false;
+        // Watch out for Constant vs. AnyNull interface.
+        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
+      }
+      ciObject* o = NULL;  // the Constant value, if any
+      if (ptr == Constant) {
+        // Find out which constant.
+        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
+      }
+      return make( ptr, k, xk, o, off );
+    }
+
+    // Either oop vs oop or interface vs interface or interface vs Object
+
+    // !!! Here's how the symmetry requirement breaks down into invariants:
+    // If we split one up & one down AND they subtype, take the down man.
+    // If we split one up & one down AND they do NOT subtype, "fall hard".
+    // If both are up and they subtype, take the subtype class.
+    // If both are up and they do NOT subtype, "fall hard".
+    // If both are down and they subtype, take the supertype class.
+    // If both are down and they do NOT subtype, "fall hard".
+    // Constants treated as down.
+
+    // Now, reorder the above list; observe that both-down+subtype is also
+    // "fall hard"; "fall hard" becomes the default case:
+    // If we split one up & one down AND they subtype, take the down man.
+    // If both are up and they subtype, take the subtype class.
+
+    // If both are down and they subtype, "fall hard".
+    // If both are down and they do NOT subtype, "fall hard".
+    // If both are up and they do NOT subtype, "fall hard".
+    // If we split one up & one down AND they do NOT subtype, "fall hard".
+
+    // If a proper subtype is exact, and we return it, we return it exactly.
+    // If a proper supertype is exact, there can be no subtyping relationship!
+    // If both types are equal to the subtype, exactness is and-ed below the
+    // centerline and or-ed above it.  (N.B. Constants are always exact.)
+
+    // Check for subtyping:
+    ciKlass *subtype = NULL;
+    bool subtype_exact = false;
+    if( tinst_klass->equals(this_klass) ) {
+      subtype = this_klass;
+      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
+    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
+      subtype = this_klass;     // Pick subtyping class
+      subtype_exact = this_xk;
+    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
+      subtype = tinst_klass;    // Pick subtyping class
+      subtype_exact = tinst_xk;
+    }
+
+    if( subtype ) {
+      if( above_centerline(ptr) ) { // both are up?
+        this_klass = tinst_klass = subtype;
+        this_xk = tinst_xk = subtype_exact;
+      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
+        this_klass = tinst_klass; // tinst is down; keep down man
+        this_xk = tinst_xk;
+      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
+        tinst_klass = this_klass; // this is down; keep down man
+        tinst_xk = this_xk;
+      } else {
+        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
+      }
+    }
+
+    // Check for classes now being equal
+    if (tinst_klass->equals(this_klass)) {
+      // If the klasses are equal, the constants may still differ.  Fall to
+      // NotNull if they do (neither constant is NULL; that is a special case
+      // handled elsewhere).
+      ciObject* o = NULL;             // Assume not constant when done
+      ciObject* this_oop  = const_oop();
+      ciObject* tinst_oop = tinst->const_oop();
+      if( ptr == Constant ) {
+        if (this_oop != NULL && tinst_oop != NULL &&
+            this_oop->equals(tinst_oop) )
+          o = this_oop;
+        else if (above_centerline(this ->_ptr))
+          o = tinst_oop;
+        else if (above_centerline(tinst ->_ptr))
+          o = this_oop;
+        else
+          ptr = NotNull;
+      }
+      return make( ptr, this_klass, this_xk, o, off, instance_id );
+    } // Else classes are not equal
+
+    // Since klasses are different, we require a LCA in the Java
+    // class hierarchy - which means we have to fall to at least NotNull.
+    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
+      ptr = NotNull;
+
+    // Now we find the LCA of Java classes
+    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
+    return make( ptr, k, false, NULL, off );
+  } // End of case InstPtr
+
+  case KlassPtr:
+    return TypeInstPtr::BOTTOM;
+
+  } // End of switch
+  return this;                  // Return the double constant
+}
+
+
+//------------------------java_mirror_type--------------------------------------
+ciType* TypeInstPtr::java_mirror_type() const {
+  // must be a singleton type
+  if( const_oop() == NULL )  return NULL;
+
+  // must be of type java.lang.Class
+  if( klass() != ciEnv::current()->Class_klass() )  return NULL;
+
+  return const_oop()->as_instance()->java_mirror_type();
+}
+
+
+//------------------------------xdual------------------------------------------
+// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
+// inheritence mechanism.
+const Type *TypeInstPtr::xdual() const {
+  return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance()  );
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeInstPtr::eq( const Type *t ) const {
+  const TypeInstPtr *p = t->is_instptr();
+  return
+    klass()->equals(p->klass()) &&
+    TypeOopPtr::eq(p);          // Check sub-type stuff
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeInstPtr::hash(void) const {
+  int hash = klass()->hash() + TypeOopPtr::hash();
+  return hash;
+}
+
+//------------------------------dump2------------------------------------------
+// Dump oop Type
+#ifndef PRODUCT
+void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
+  // Print the name of the klass.
+  klass()->print_name_on(st);
+
+  switch( _ptr ) {
+  case Constant:
+    // TO DO: Make CI print the hex address of the underlying oop.
+    if (WizardMode || Verbose) {
+      const_oop()->print_oop(st);
+    }
+  case BotPTR:
+    if (!WizardMode && !Verbose) {
+      if( _klass_is_exact ) st->print(":exact");
+      break;
+    }
+  case TopPTR:
+  case AnyNull:
+  case NotNull:
+    st->print(":%s", ptr_msg[_ptr]);
+    if( _klass_is_exact ) st->print(":exact");
+    break;
+  }
+
+  if( _offset ) {               // Dump offset, if any
+    if( _offset == OffsetBot )      st->print("+any");
+    else if( _offset == OffsetTop ) st->print("+unknown");
+    else st->print("+%d", _offset);
+  }
+
+  st->print(" *");
+  if (_instance_id != UNKNOWN_INSTANCE)
+    st->print(",iid=%d",_instance_id);
+}
+#endif
+
+//------------------------------add_offset-------------------------------------
+const TypePtr *TypeInstPtr::add_offset( int offset ) const {
+  return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
+}
+
+//=============================================================================
+// Convenience common pre-built types.
+const TypeAryPtr *TypeAryPtr::RANGE;
+const TypeAryPtr *TypeAryPtr::OOPS;
+const TypeAryPtr *TypeAryPtr::BYTES;
+const TypeAryPtr *TypeAryPtr::SHORTS;
+const TypeAryPtr *TypeAryPtr::CHARS;
+const TypeAryPtr *TypeAryPtr::INTS;
+const TypeAryPtr *TypeAryPtr::LONGS;
+const TypeAryPtr *TypeAryPtr::FLOATS;
+const TypeAryPtr *TypeAryPtr::DOUBLES;
+
+//------------------------------make-------------------------------------------
+const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
+  assert(!(k == NULL && ary->_elem->isa_int()),
+         "integral arrays must be pre-equipped with a class");
+  if (!xk)  xk = ary->ary_must_be_exact();
+  if (instance_id != UNKNOWN_INSTANCE)
+    xk = true;  // instances are always exactly typed
+  if (!UseExactTypes)  xk = (ptr == Constant);
+  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
+}
+
+//------------------------------make-------------------------------------------
+const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
+  assert(!(k == NULL && ary->_elem->isa_int()),
+         "integral arrays must be pre-equipped with a class");
+  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
+  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
+  if (instance_id != UNKNOWN_INSTANCE)
+    xk = true;  // instances are always exactly typed
+  if (!UseExactTypes)  xk = (ptr == Constant);
+  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
+}
+
+//------------------------------cast_to_ptr_type-------------------------------
+const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
+  if( ptr == _ptr ) return this;
+  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset);
+}
+
+
+//-----------------------------cast_to_exactness-------------------------------
+const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
+  if( klass_is_exact == _klass_is_exact ) return this;
+  if (!UseExactTypes)  return this;
+  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
+  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
+}
+
+//-----------------------------cast_to_instance-------------------------------
+const TypeOopPtr *TypeAryPtr::cast_to_instance(int instance_id) const {
+  if( instance_id == _instance_id) return this;
+  bool exact = (instance_id == UNKNOWN_INSTANCE) ? _klass_is_exact : true;
+  return make(ptr(), const_oop(), _ary, klass(), exact, _offset, instance_id);
+}
+
+//-----------------------------narrow_size_type-------------------------------
+// Local cache for arrayOopDesc::max_array_length(etype),
+// which is kind of slow (and cached elsewhere by other users).
+static jint max_array_length_cache[T_CONFLICT+1];
+static jint max_array_length(BasicType etype) {
+  jint& cache = max_array_length_cache[etype];
+  jint res = cache;
+  if (res == 0) {
+    switch (etype) {
+    case T_CONFLICT:
+    case T_ILLEGAL:
+    case T_VOID:
+      etype = T_BYTE;           // will produce conservatively high value
+    }
+    cache = res = arrayOopDesc::max_array_length(etype);
+  }
+  return res;
+}
+
+// Narrow the given size type to the index range for the given array base type.
+// Return NULL if the resulting int type becomes empty.
+const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size, BasicType elem) {
+  jint hi = size->_hi;
+  jint lo = size->_lo;
+  jint min_lo = 0;
+  jint max_hi = max_array_length(elem);
+  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
+  bool chg = false;
+  if (lo < min_lo) { lo = min_lo; chg = true; }
+  if (hi > max_hi) { hi = max_hi; chg = true; }
+  if (lo > hi)
+    return NULL;
+  if (!chg)
+    return size;
+  return TypeInt::make(lo, hi, Type::WidenMin);
+}
+
+//-------------------------------cast_to_size----------------------------------
+const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
+  assert(new_size != NULL, "");
+  new_size = narrow_size_type(new_size, elem()->basic_type());
+  if (new_size == NULL)       // Negative length arrays will produce weird
+    new_size = TypeInt::ZERO; // intermediate dead fast-path goo
+  if (new_size == size())  return this;
+  const TypeAry* new_ary = TypeAry::make(elem(), new_size);
+  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset);
+}
+
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeAryPtr::eq( const Type *t ) const {
+  const TypeAryPtr *p = t->is_aryptr();
+  return
+    _ary == p->_ary &&  // Check array
+    TypeOopPtr::eq(p);  // Check sub-parts
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeAryPtr::hash(void) const {
+  return (intptr_t)_ary + TypeOopPtr::hash();
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeAryPtr::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+  // Current "this->_base" is Pointer
+  switch (t->base()) {          // switch on original type
+
+  // Mixing ints & oops happens when javac reuses local variables
+  case Int:
+  case Long:
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+  case Top:
+    return this;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case OopPtr: {                // Meeting to OopPtrs
+    // Found a OopPtr type vs self-AryPtr type
+    const TypePtr *tp = t->is_oopptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    switch (tp->ptr()) {
+    case TopPTR:
+    case AnyNull:
+      return make(ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset);
+    case BotPTR:
+    case NotNull:
+      return TypeOopPtr::make(ptr, offset);
+    default: ShouldNotReachHere();
+    }
+  }
+
+  case AnyPtr: {                // Meeting two AnyPtrs
+    // Found an AnyPtr type vs self-AryPtr type
+    const TypePtr *tp = t->is_ptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    switch (tp->ptr()) {
+    case TopPTR:
+      return this;
+    case BotPTR:
+    case NotNull:
+      return TypePtr::make(AnyPtr, ptr, offset);
+    case Null:
+      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
+    case AnyNull:
+      return make( ptr, (ptr == Constant ? const_oop() : NULL), _ary, _klass, _klass_is_exact, offset );
+    default: ShouldNotReachHere();
+    }
+  }
+
+  case RawPtr: return TypePtr::BOTTOM;
+
+  case AryPtr: {                // Meeting 2 references?
+    const TypeAryPtr *tap = t->is_aryptr();
+    int off = meet_offset(tap->offset());
+    const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
+    PTR ptr = meet_ptr(tap->ptr());
+    int iid = meet_instance(tap->instance_id());
+    ciKlass* lazy_klass = NULL;
+    if (tary->_elem->isa_int()) {
+      // Integral array element types have irrelevant lattice relations.
+      // It is the klass that determines array layout, not the element type.
+      if (_klass == NULL)
+        lazy_klass = tap->_klass;
+      else if (tap->_klass == NULL || tap->_klass == _klass) {
+        lazy_klass = _klass;
+      } else {
+        // Something like byte[int+] meets char[int+].
+        // This must fall to bottom, not (int[-128..65535])[int+].
+        tary = TypeAry::make(Type::BOTTOM, tary->_size);
+      }
+    }
+    bool xk;
+    switch (tap->ptr()) {
+    case AnyNull:
+    case TopPTR:
+      // Compute new klass on demand, do not use tap->_klass
+      xk = (tap->_klass_is_exact | this->_klass_is_exact);
+      return make( ptr, const_oop(), tary, lazy_klass, xk, off );
+    case Constant: {
+      ciObject* o = const_oop();
+      if( _ptr == Constant ) {
+        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
+          ptr = NotNull;
+          o = NULL;
+        }
+      } else if( above_centerline(_ptr) ) {
+        o = tap->const_oop();
+      }
+      xk = true;
+      return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off );
+    }
+    case NotNull:
+    case BotPTR:
+      // Compute new klass on demand, do not use tap->_klass
+      if (above_centerline(this->_ptr))
+            xk = tap->_klass_is_exact;
+      else if (above_centerline(tap->_ptr))
+            xk = this->_klass_is_exact;
+      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
+              (klass() == tap->klass()); // Only precise for identical arrays
+      return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, iid );
+    default: ShouldNotReachHere();
+    }
+  }
+
+  // All arrays inherit from Object class
+  case InstPtr: {
+    const TypeInstPtr *tp = t->is_instptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    int iid = meet_instance(tp->instance_id());
+    switch (ptr) {
+    case TopPTR:
+    case AnyNull:                // Fall 'down' to dual of object klass
+      if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
+        return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
+      } else {
+        // cannot subclass, so the meet has to fall badly below the centerline
+        ptr = NotNull;
+        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
+      }
+    case Constant:
+    case NotNull:
+    case BotPTR:                // Fall down to object klass
+      // LCA is object_klass, but if we subclass from the top we can do better
+      if (above_centerline(tp->ptr())) {
+        // If 'tp'  is above the centerline and it is Object class
+        // then we can subclass in the Java class heirarchy.
+        if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
+          // that is, my array type is a subtype of 'tp' klass
+          return make( ptr, _ary, _klass, _klass_is_exact, offset, iid );
+        }
+      }
+      // The other case cannot happen, since t cannot be a subtype of an array.
+      // The meet falls down to Object class below centerline.
+      if( ptr == Constant )
+         ptr = NotNull;
+      return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, iid);
+    default: typerr(t);
+    }
+  }
+
+  case KlassPtr:
+    return TypeInstPtr::BOTTOM;
+
+  }
+  return this;                  // Lint noise
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: compute field-by-field dual
+const Type *TypeAryPtr::xdual() const {
+  return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance() );
+}
+
+//------------------------------dump2------------------------------------------
+#ifndef PRODUCT
+void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
+  _ary->dump2(d,depth,st);
+  switch( _ptr ) {
+  case Constant:
+    const_oop()->print(st);
+    break;
+  case BotPTR:
+    if (!WizardMode && !Verbose) {
+      if( _klass_is_exact ) st->print(":exact");
+      break;
+    }
+  case TopPTR:
+  case AnyNull:
+  case NotNull:
+    st->print(":%s", ptr_msg[_ptr]);
+    if( _klass_is_exact ) st->print(":exact");
+    break;
+  }
+
+  st->print("*");
+  if (_instance_id != UNKNOWN_INSTANCE)
+    st->print(",iid=%d",_instance_id);
+  if( !_offset ) return;
+  if( _offset == OffsetTop )      st->print("+undefined");
+  else if( _offset == OffsetBot ) st->print("+any");
+  else if( _offset < 12 )         st->print("+%d",_offset);
+  else                            st->print("[%d]", (_offset-12)/4 );
+}
+#endif
+
+bool TypeAryPtr::empty(void) const {
+  if (_ary->empty())       return true;
+  return TypeOopPtr::empty();
+}
+
+//------------------------------add_offset-------------------------------------
+const TypePtr *TypeAryPtr::add_offset( int offset ) const {
+  return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
+}
+
+
+//=============================================================================
+// Convenience common pre-built types.
+
+// Not-null object klass or below
+const TypeKlassPtr *TypeKlassPtr::OBJECT;
+const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
+
+//------------------------------TypeKlasPtr------------------------------------
+TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
+  : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
+}
+
+//------------------------------make-------------------------------------------
+// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
+const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
+  assert( k != NULL, "Expect a non-NULL klass");
+  assert(k->is_instance_klass() || k->is_array_klass() ||
+         k->is_method_klass(), "Incorrect type of klass oop");
+  TypeKlassPtr *r =
+    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
+
+  return r;
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeKlassPtr::eq( const Type *t ) const {
+  const TypeKlassPtr *p = t->is_klassptr();
+  return
+    klass()->equals(p->klass()) &&
+    TypeOopPtr::eq(p);
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeKlassPtr::hash(void) const {
+  return klass()->hash() + TypeOopPtr::hash();
+}
+
+
+//------------------------------klass------------------------------------------
+// Return the defining klass for this class
+ciKlass* TypeAryPtr::klass() const {
+  if( _klass ) return _klass;   // Return cached value, if possible
+
+  // Oops, need to compute _klass and cache it
+  ciKlass* k_ary = NULL;
+  const TypeInstPtr *tinst;
+  const TypeAryPtr *tary;
+  // Get element klass
+  if ((tinst = elem()->isa_instptr()) != NULL) {
+    // Compute array klass from element klass
+    k_ary = ciObjArrayKlass::make(tinst->klass());
+  } else if ((tary = elem()->isa_aryptr()) != NULL) {
+    // Compute array klass from element klass
+    ciKlass* k_elem = tary->klass();
+    // If element type is something like bottom[], k_elem will be null.
+    if (k_elem != NULL)
+      k_ary = ciObjArrayKlass::make(k_elem);
+  } else if ((elem()->base() == Type::Top) ||
+             (elem()->base() == Type::Bottom)) {
+    // element type of Bottom occurs from meet of basic type
+    // and object; Top occurs when doing join on Bottom.
+    // Leave k_ary at NULL.
+  } else {
+    // Cannot compute array klass directly from basic type,
+    // since subtypes of TypeInt all have basic type T_INT.
+    assert(!elem()->isa_int(),
+           "integral arrays must be pre-equipped with a class");
+    // Compute array klass directly from basic type
+    k_ary = ciTypeArrayKlass::make(elem()->basic_type());
+  }
+
+  if( this != TypeAryPtr::OOPS )
+    // The _klass field acts as a cache of the underlying
+    // ciKlass for this array type.  In order to set the field,
+    // we need to cast away const-ness.
+    //
+    // IMPORTANT NOTE: we *never* set the _klass field for the
+    // type TypeAryPtr::OOPS.  This Type is shared between all
+    // active compilations.  However, the ciKlass which represents
+    // this Type is *not* shared between compilations, so caching
+    // this value would result in fetching a dangling pointer.
+    //
+    // Recomputing the underlying ciKlass for each request is
+    // a bit less efficient than caching, but calls to
+    // TypeAryPtr::OOPS->klass() are not common enough to matter.
+    ((TypeAryPtr*)this)->_klass = k_ary;
+  return k_ary;
+}
+
+
+//------------------------------add_offset-------------------------------------
+// Access internals of klass object
+const TypePtr *TypeKlassPtr::add_offset( int offset ) const {
+  return make( _ptr, klass(), xadd_offset(offset) );
+}
+
+//------------------------------cast_to_ptr_type-------------------------------
+const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
+  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
+  if( ptr == _ptr ) return this;
+  return make(ptr, _klass, _offset);
+}
+
+
+//-----------------------------cast_to_exactness-------------------------------
+const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
+  if( klass_is_exact == _klass_is_exact ) return this;
+  if (!UseExactTypes)  return this;
+  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
+}
+
+
+//-----------------------------as_instance_type--------------------------------
+// Corresponding type for an instance of the given class.
+// It will be NotNull, and exact if and only if the klass type is exact.
+const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
+  ciKlass* k = klass();
+  bool    xk = klass_is_exact();
+  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
+  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
+  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
+  return toop->cast_to_exactness(xk)->is_oopptr();
+}
+
+
+//------------------------------xmeet------------------------------------------
+// Compute the MEET of two types, return a new Type object.
+const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is Pointer
+  switch (t->base()) {          // switch on original type
+
+  case Int:                     // Mixing ints & oops happens when javac
+  case Long:                    // reuses local variables
+  case FloatTop:
+  case FloatCon:
+  case FloatBot:
+  case DoubleTop:
+  case DoubleCon:
+  case DoubleBot:
+  case Bottom:                  // Ye Olde Default
+    return Type::BOTTOM;
+  case Top:
+    return this;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case RawPtr: return TypePtr::BOTTOM;
+
+  case OopPtr: {                // Meeting to OopPtrs
+    // Found a OopPtr type vs self-KlassPtr type
+    const TypePtr *tp = t->is_oopptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    switch (tp->ptr()) {
+    case TopPTR:
+    case AnyNull:
+      return make(ptr, klass(), offset);
+    case BotPTR:
+    case NotNull:
+      return TypePtr::make(AnyPtr, ptr, offset);
+    default: typerr(t);
+    }
+  }
+
+  case AnyPtr: {                // Meeting to AnyPtrs
+    // Found an AnyPtr type vs self-KlassPtr type
+    const TypePtr *tp = t->is_ptr();
+    int offset = meet_offset(tp->offset());
+    PTR ptr = meet_ptr(tp->ptr());
+    switch (tp->ptr()) {
+    case TopPTR:
+      return this;
+    case Null:
+      if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
+    case AnyNull:
+      return make( ptr, klass(), offset );
+    case BotPTR:
+    case NotNull:
+      return TypePtr::make(AnyPtr, ptr, offset);
+    default: typerr(t);
+    }
+  }
+
+  case AryPtr:                  // Meet with AryPtr
+  case InstPtr:                 // Meet with InstPtr
+    return TypeInstPtr::BOTTOM;
+
+  //
+  //             A-top         }
+  //           /   |   \       }  Tops
+  //       B-top A-any C-top   }
+  //          | /  |  \ |      }  Any-nulls
+  //       B-any   |   C-any   }
+  //          |    |    |
+  //       B-con A-con C-con   } constants; not comparable across classes
+  //          |    |    |
+  //       B-not   |   C-not   }
+  //          | \  |  / |      }  not-nulls
+  //       B-bot A-not C-bot   }
+  //           \   |   /       }  Bottoms
+  //             A-bot         }
+  //
+
+  case KlassPtr: {  // Meet two KlassPtr types
+    const TypeKlassPtr *tkls = t->is_klassptr();
+    int  off     = meet_offset(tkls->offset());
+    PTR  ptr     = meet_ptr(tkls->ptr());
+
+    // Check for easy case; klasses are equal (and perhaps not loaded!)
+    // If we have constants, then we created oops so classes are loaded
+    // and we can handle the constants further down.  This case handles
+    // not-loaded classes
+    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
+      return make( ptr, klass(), off );
+    }
+
+    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
+    ciKlass* tkls_klass = tkls->klass();
+    ciKlass* this_klass = this->klass();
+    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
+    assert( this_klass->is_loaded(), "This class should have been loaded.");
+
+    // If 'this' type is above the centerline and is a superclass of the
+    // other, we can treat 'this' as having the same type as the other.
+    if ((above_centerline(this->ptr())) &&
+        tkls_klass->is_subtype_of(this_klass)) {
+      this_klass = tkls_klass;
+    }
+    // If 'tinst' type is above the centerline and is a superclass of the
+    // other, we can treat 'tinst' as having the same type as the other.
+    if ((above_centerline(tkls->ptr())) &&
+        this_klass->is_subtype_of(tkls_klass)) {
+      tkls_klass = this_klass;
+    }
+
+    // Check for classes now being equal
+    if (tkls_klass->equals(this_klass)) {
+      // If the klasses are equal, the constants may still differ.  Fall to
+      // NotNull if they do (neither constant is NULL; that is a special case
+      // handled elsewhere).
+      ciObject* o = NULL;             // Assume not constant when done
+      ciObject* this_oop = const_oop();
+      ciObject* tkls_oop = tkls->const_oop();
+      if( ptr == Constant ) {
+        if (this_oop != NULL && tkls_oop != NULL &&
+            this_oop->equals(tkls_oop) )
+          o = this_oop;
+        else if (above_centerline(this->ptr()))
+          o = tkls_oop;
+        else if (above_centerline(tkls->ptr()))
+          o = this_oop;
+        else
+          ptr = NotNull;
+      }
+      return make( ptr, this_klass, off );
+    } // Else classes are not equal
+
+    // Since klasses are different, we require the LCA in the Java
+    // class hierarchy - which means we have to fall to at least NotNull.
+    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
+      ptr = NotNull;
+    // Now we find the LCA of Java classes
+    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
+    return   make( ptr, k, off );
+  } // End of case KlassPtr
+
+  } // End of switch
+  return this;                  // Return the double constant
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: compute field-by-field dual
+const Type    *TypeKlassPtr::xdual() const {
+  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
+}
+
+//------------------------------dump2------------------------------------------
+// Dump Klass Type
+#ifndef PRODUCT
+void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
+  switch( _ptr ) {
+  case Constant:
+    st->print("precise ");
+  case NotNull:
+    {
+      const char *name = klass()->name()->as_utf8();
+      if( name ) {
+        st->print("klass %s: " INTPTR_FORMAT, name, klass());
+      } else {
+        ShouldNotReachHere();
+      }
+    }
+  case BotPTR:
+    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
+  case TopPTR:
+  case AnyNull:
+    st->print(":%s", ptr_msg[_ptr]);
+    if( _klass_is_exact ) st->print(":exact");
+    break;
+  }
+
+  if( _offset ) {               // Dump offset, if any
+    if( _offset == OffsetBot )      { st->print("+any"); }
+    else if( _offset == OffsetTop ) { st->print("+unknown"); }
+    else                            { st->print("+%d", _offset); }
+  }
+
+  st->print(" *");
+}
+#endif
+
+
+
+//=============================================================================
+// Convenience common pre-built types.
+
+//------------------------------make-------------------------------------------
+const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
+  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
+}
+
+//------------------------------make-------------------------------------------
+const TypeFunc *TypeFunc::make(ciMethod* method) {
+  Compile* C = Compile::current();
+  const TypeFunc* tf = C->last_tf(method); // check cache
+  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
+  const TypeTuple *domain;
+  if (method->flags().is_static()) {
+    domain = TypeTuple::make_domain(NULL, method->signature());
+  } else {
+    domain = TypeTuple::make_domain(method->holder(), method->signature());
+  }
+  const TypeTuple *range  = TypeTuple::make_range(method->signature());
+  tf = TypeFunc::make(domain, range);
+  C->set_last_tf(method, tf);  // fill cache
+  return tf;
+}
+
+//------------------------------meet-------------------------------------------
+// Compute the MEET of two types.  It returns a new Type object.
+const Type *TypeFunc::xmeet( const Type *t ) const {
+  // Perform a fast test for common case; meeting the same types together.
+  if( this == t ) return this;  // Meeting same type-rep?
+
+  // Current "this->_base" is Func
+  switch (t->base()) {          // switch on original type
+
+  case Bottom:                  // Ye Olde Default
+    return t;
+
+  default:                      // All else is a mistake
+    typerr(t);
+
+  case Top:
+    break;
+  }
+  return this;                  // Return the double constant
+}
+
+//------------------------------xdual------------------------------------------
+// Dual: compute field-by-field dual
+const Type *TypeFunc::xdual() const {
+  return this;
+}
+
+//------------------------------eq---------------------------------------------
+// Structural equality check for Type representations
+bool TypeFunc::eq( const Type *t ) const {
+  const TypeFunc *a = (const TypeFunc*)t;
+  return _domain == a->_domain &&
+    _range == a->_range;
+}
+
+//------------------------------hash-------------------------------------------
+// Type-specific hashing function.
+int TypeFunc::hash(void) const {
+  return (intptr_t)_domain + (intptr_t)_range;
+}
+
+//------------------------------dump2------------------------------------------
+// Dump Function Type
+#ifndef PRODUCT
+void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
+  if( _range->_cnt <= Parms )
+    st->print("void");
+  else {
+    uint i;
+    for (i = Parms; i < _range->_cnt-1; i++) {
+      _range->field_at(i)->dump2(d,depth,st);
+      st->print("/");
+    }
+    _range->field_at(i)->dump2(d,depth,st);
+  }
+  st->print(" ");
+  st->print("( ");
+  if( !depth || d[this] ) {     // Check for recursive dump
+    st->print("...)");
+    return;
+  }
+  d.Insert((void*)this,(void*)this);    // Stop recursion
+  if (Parms < _domain->_cnt)
+    _domain->field_at(Parms)->dump2(d,depth-1,st);
+  for (uint i = Parms+1; i < _domain->_cnt; i++) {
+    st->print(", ");
+    _domain->field_at(i)->dump2(d,depth-1,st);
+  }
+  st->print(" )");
+}
+
+//------------------------------print_flattened--------------------------------
+// Print a 'flattened' signature
+static const char * const flat_type_msg[Type::lastype] = {
+  "bad","control","top","int","long","_",
+  "tuple:", "array:",
+  "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
+  "func", "abIO", "return_address", "mem",
+  "float_top", "ftcon:", "flt",
+  "double_top", "dblcon:", "dbl",
+  "bottom"
+};
+
+void TypeFunc::print_flattened() const {
+  if( _range->_cnt <= Parms )
+    tty->print("void");
+  else {
+    uint i;
+    for (i = Parms; i < _range->_cnt-1; i++)
+      tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
+    tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
+  }
+  tty->print(" ( ");
+  if (Parms < _domain->_cnt)
+    tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
+  for (uint i = Parms+1; i < _domain->_cnt; i++)
+    tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
+  tty->print(" )");
+}
+#endif
+
+//------------------------------singleton--------------------------------------
+// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
+// constants (Ldi nodes).  Singletons are integer, float or double constants
+// or a single symbol.
+bool TypeFunc::singleton(void) const {
+  return false;                 // Never a singleton
+}
+
+bool TypeFunc::empty(void) const {
+  return false;                 // Never empty
+}
+
+
+BasicType TypeFunc::return_type() const{
+  if (range()->cnt() == TypeFunc::Parms) {
+    return T_VOID;
+  }
+  return range()->field_at(TypeFunc::Parms)->basic_type();
+}