diff src/cpu/x86/vm/assembler_x86.cpp @ 304:dc7f315e41f7

5108146: Merge i486 and amd64 cpu directories 6459804: Want client (c1) compiler for x86_64 (amd64) for faster start-up Reviewed-by: kvn
author never
date Wed, 27 Aug 2008 00:21:55 -0700
parents src/cpu/x86/vm/assembler_x86_32.cpp@d1605aabd0a1
children f8199438385b
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/cpu/x86/vm/assembler_x86.cpp	Wed Aug 27 00:21:55 2008 -0700
@@ -0,0 +1,7503 @@
+/*
+ * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_assembler_x86.cpp.incl"
+
+// Implementation of AddressLiteral
+
+AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
+  _is_lval = false;
+  _target = target;
+  switch (rtype) {
+  case relocInfo::oop_type:
+    // Oops are a special case. Normally they would be their own section
+    // but in cases like icBuffer they are literals in the code stream that
+    // we don't have a section for. We use none so that we get a literal address
+    // which is always patchable.
+    break;
+  case relocInfo::external_word_type:
+    _rspec = external_word_Relocation::spec(target);
+    break;
+  case relocInfo::internal_word_type:
+    _rspec = internal_word_Relocation::spec(target);
+    break;
+  case relocInfo::opt_virtual_call_type:
+    _rspec = opt_virtual_call_Relocation::spec();
+    break;
+  case relocInfo::static_call_type:
+    _rspec = static_call_Relocation::spec();
+    break;
+  case relocInfo::runtime_call_type:
+    _rspec = runtime_call_Relocation::spec();
+    break;
+  case relocInfo::poll_type:
+  case relocInfo::poll_return_type:
+    _rspec = Relocation::spec_simple(rtype);
+    break;
+  case relocInfo::none:
+    break;
+  default:
+    ShouldNotReachHere();
+    break;
+  }
+}
+
+// Implementation of Address
+
+#ifdef _LP64
+
+Address Address::make_array(ArrayAddress adr) {
+  // Not implementable on 64bit machines
+  // Should have been handled higher up the call chain.
+  ShouldNotReachHere();
+  return Address();
+}
+
+// exceedingly dangerous constructor
+Address::Address(int disp, address loc, relocInfo::relocType rtype) {
+  _base  = noreg;
+  _index = noreg;
+  _scale = no_scale;
+  _disp  = disp;
+  switch (rtype) {
+    case relocInfo::external_word_type:
+      _rspec = external_word_Relocation::spec(loc);
+      break;
+    case relocInfo::internal_word_type:
+      _rspec = internal_word_Relocation::spec(loc);
+      break;
+    case relocInfo::runtime_call_type:
+      // HMM
+      _rspec = runtime_call_Relocation::spec();
+      break;
+    case relocInfo::poll_type:
+    case relocInfo::poll_return_type:
+      _rspec = Relocation::spec_simple(rtype);
+      break;
+    case relocInfo::none:
+      break;
+    default:
+      ShouldNotReachHere();
+  }
+}
+#else // LP64
+
+Address Address::make_array(ArrayAddress adr) {
+  AddressLiteral base = adr.base();
+  Address index = adr.index();
+  assert(index._disp == 0, "must not have disp"); // maybe it can?
+  Address array(index._base, index._index, index._scale, (intptr_t) base.target());
+  array._rspec = base._rspec;
+  return array;
+}
+
+// exceedingly dangerous constructor
+Address::Address(address loc, RelocationHolder spec) {
+  _base  = noreg;
+  _index = noreg;
+  _scale = no_scale;
+  _disp  = (intptr_t) loc;
+  _rspec = spec;
+}
+
+#endif // _LP64
+
+
+
+// Convert the raw encoding form into the form expected by the constructor for
+// Address.  An index of 4 (rsp) corresponds to having no index, so convert
+// that to noreg for the Address constructor.
+Address Address::make_raw(int base, int index, int scale, int disp) {
+  bool valid_index = index != rsp->encoding();
+  if (valid_index) {
+    Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
+    return madr;
+  } else {
+    Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
+    return madr;
+  }
+}
+
+// Implementation of Assembler
+
+int AbstractAssembler::code_fill_byte() {
+  return (u_char)'\xF4'; // hlt
+}
+
+// make this go away someday
+void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
+  if (rtype == relocInfo::none)
+        emit_long(data);
+  else  emit_data(data, Relocation::spec_simple(rtype), format);
+}
+
+void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
+  assert(imm_operand == 0, "default format must be immediate in this file");
+  assert(inst_mark() != NULL, "must be inside InstructionMark");
+  if (rspec.type() !=  relocInfo::none) {
+    #ifdef ASSERT
+      check_relocation(rspec, format);
+    #endif
+    // Do not use AbstractAssembler::relocate, which is not intended for
+    // embedded words.  Instead, relocate to the enclosing instruction.
+
+    // hack. call32 is too wide for mask so use disp32
+    if (format == call32_operand)
+      code_section()->relocate(inst_mark(), rspec, disp32_operand);
+    else
+      code_section()->relocate(inst_mark(), rspec, format);
+  }
+  emit_long(data);
+}
+
+static int encode(Register r) {
+  int enc = r->encoding();
+  if (enc >= 8) {
+    enc -= 8;
+  }
+  return enc;
+}
+
+static int encode(XMMRegister r) {
+  int enc = r->encoding();
+  if (enc >= 8) {
+    enc -= 8;
+  }
+  return enc;
+}
+
+void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
+  assert(dst->has_byte_register(), "must have byte register");
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert(isByte(imm8), "not a byte");
+  assert((op1 & 0x01) == 0, "should be 8bit operation");
+  emit_byte(op1);
+  emit_byte(op2 | encode(dst));
+  emit_byte(imm8);
+}
+
+
+void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  if (is8bit(imm32)) {
+    emit_byte(op1 | 0x02); // set sign bit
+    emit_byte(op2 | encode(dst));
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(op1);
+    emit_byte(op2 | encode(dst));
+    emit_long(imm32);
+  }
+}
+
+// immediate-to-memory forms
+void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  if (is8bit(imm32)) {
+    emit_byte(op1 | 0x02); // set sign bit
+    emit_operand(rm, adr, 1);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(op1);
+    emit_operand(rm, adr, 4);
+    emit_long(imm32);
+  }
+}
+
+void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
+  LP64_ONLY(ShouldNotReachHere());
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  assert((op1 & 0x01) == 1, "should be 32bit operation");
+  assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
+  InstructionMark im(this);
+  emit_byte(op1);
+  emit_byte(op2 | encode(dst));
+  emit_data((intptr_t)obj, relocInfo::oop_type, 0);
+}
+
+
+void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
+  assert(isByte(op1) && isByte(op2), "wrong opcode");
+  emit_byte(op1);
+  emit_byte(op2 | encode(dst) << 3 | encode(src));
+}
+
+
+void Assembler::emit_operand(Register reg, Register base, Register index,
+                             Address::ScaleFactor scale, int disp,
+                             RelocationHolder const& rspec,
+                             int rip_relative_correction) {
+  relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
+
+  // Encode the registers as needed in the fields they are used in
+
+  int regenc = encode(reg) << 3;
+  int indexenc = index->is_valid() ? encode(index) << 3 : 0;
+  int baseenc = base->is_valid() ? encode(base) : 0;
+
+  if (base->is_valid()) {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      // [base + index*scale + disp]
+      if (disp == 0 && rtype == relocInfo::none  &&
+          base != rbp LP64_ONLY(&& base != r13)) {
+        // [base + index*scale]
+        // [00 reg 100][ss index base]
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x04 | regenc);
+        emit_byte(scale << 6 | indexenc | baseenc);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + index*scale + imm8]
+        // [01 reg 100][ss index base] imm8
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x44 | regenc);
+        emit_byte(scale << 6 | indexenc | baseenc);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + index*scale + disp32]
+        // [10 reg 100][ss index base] disp32
+        assert(index != rsp, "illegal addressing mode");
+        emit_byte(0x84 | regenc);
+        emit_byte(scale << 6 | indexenc | baseenc);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else if (base == rsp LP64_ONLY(|| base == r12)) {
+      // [rsp + disp]
+      if (disp == 0 && rtype == relocInfo::none) {
+        // [rsp]
+        // [00 reg 100][00 100 100]
+        emit_byte(0x04 | regenc);
+        emit_byte(0x24);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [rsp + imm8]
+        // [01 reg 100][00 100 100] disp8
+        emit_byte(0x44 | regenc);
+        emit_byte(0x24);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [rsp + imm32]
+        // [10 reg 100][00 100 100] disp32
+        emit_byte(0x84 | regenc);
+        emit_byte(0x24);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    } else {
+      // [base + disp]
+      assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
+      if (disp == 0 && rtype == relocInfo::none &&
+          base != rbp LP64_ONLY(&& base != r13)) {
+        // [base]
+        // [00 reg base]
+        emit_byte(0x00 | regenc | baseenc);
+      } else if (is8bit(disp) && rtype == relocInfo::none) {
+        // [base + disp8]
+        // [01 reg base] disp8
+        emit_byte(0x40 | regenc | baseenc);
+        emit_byte(disp & 0xFF);
+      } else {
+        // [base + disp32]
+        // [10 reg base] disp32
+        emit_byte(0x80 | regenc | baseenc);
+        emit_data(disp, rspec, disp32_operand);
+      }
+    }
+  } else {
+    if (index->is_valid()) {
+      assert(scale != Address::no_scale, "inconsistent address");
+      // [index*scale + disp]
+      // [00 reg 100][ss index 101] disp32
+      assert(index != rsp, "illegal addressing mode");
+      emit_byte(0x04 | regenc);
+      emit_byte(scale << 6 | indexenc | 0x05);
+      emit_data(disp, rspec, disp32_operand);
+    } else if (rtype != relocInfo::none ) {
+      // [disp] (64bit) RIP-RELATIVE (32bit) abs
+      // [00 000 101] disp32
+
+      emit_byte(0x05 | regenc);
+      // Note that the RIP-rel. correction applies to the generated
+      // disp field, but _not_ to the target address in the rspec.
+
+      // disp was created by converting the target address minus the pc
+      // at the start of the instruction. That needs more correction here.
+      // intptr_t disp = target - next_ip;
+      assert(inst_mark() != NULL, "must be inside InstructionMark");
+      address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
+      int64_t adjusted = disp;
+      // Do rip-rel adjustment for 64bit
+      LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
+      assert(is_simm32(adjusted),
+             "must be 32bit offset (RIP relative address)");
+      emit_data((int32_t) adjusted, rspec, disp32_operand);
+
+    } else {
+      // 32bit never did this, did everything as the rip-rel/disp code above
+      // [disp] ABSOLUTE
+      // [00 reg 100][00 100 101] disp32
+      emit_byte(0x04 | regenc);
+      emit_byte(0x25);
+      emit_data(disp, rspec, disp32_operand);
+    }
+  }
+}
+
+void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
+                             Address::ScaleFactor scale, int disp,
+                             RelocationHolder const& rspec) {
+  emit_operand((Register)reg, base, index, scale, disp, rspec);
+}
+
+// Secret local extension to Assembler::WhichOperand:
+#define end_pc_operand (_WhichOperand_limit)
+
+address Assembler::locate_operand(address inst, WhichOperand which) {
+  // Decode the given instruction, and return the address of
+  // an embedded 32-bit operand word.
+
+  // If "which" is disp32_operand, selects the displacement portion
+  // of an effective address specifier.
+  // If "which" is imm64_operand, selects the trailing immediate constant.
+  // If "which" is call32_operand, selects the displacement of a call or jump.
+  // Caller is responsible for ensuring that there is such an operand,
+  // and that it is 32/64 bits wide.
+
+  // If "which" is end_pc_operand, find the end of the instruction.
+
+  address ip = inst;
+  bool is_64bit = false;
+
+  debug_only(bool has_disp32 = false);
+  int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
+
+  again_after_prefix:
+  switch (0xFF & *ip++) {
+
+  // These convenience macros generate groups of "case" labels for the switch.
+#define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
+#define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
+             case (x)+4: case (x)+5: case (x)+6: case (x)+7
+#define REP16(x) REP8((x)+0): \
+              case REP8((x)+8)
+
+  case CS_segment:
+  case SS_segment:
+  case DS_segment:
+  case ES_segment:
+  case FS_segment:
+  case GS_segment:
+    // Seems dubious
+    LP64_ONLY(assert(false, "shouldn't have that prefix"));
+    assert(ip == inst+1, "only one prefix allowed");
+    goto again_after_prefix;
+
+  case 0x67:
+  case REX:
+  case REX_B:
+  case REX_X:
+  case REX_XB:
+  case REX_R:
+  case REX_RB:
+  case REX_RX:
+  case REX_RXB:
+    NOT_LP64(assert(false, "64bit prefixes"));
+    goto again_after_prefix;
+
+  case REX_W:
+  case REX_WB:
+  case REX_WX:
+  case REX_WXB:
+  case REX_WR:
+  case REX_WRB:
+  case REX_WRX:
+  case REX_WRXB:
+    NOT_LP64(assert(false, "64bit prefixes"));
+    is_64bit = true;
+    goto again_after_prefix;
+
+  case 0xFF: // pushq a; decl a; incl a; call a; jmp a
+  case 0x88: // movb a, r
+  case 0x89: // movl a, r
+  case 0x8A: // movb r, a
+  case 0x8B: // movl r, a
+  case 0x8F: // popl a
+    debug_only(has_disp32 = true);
+    break;
+
+  case 0x68: // pushq #32
+    if (which == end_pc_operand) {
+      return ip + 4;
+    }
+    assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
+    return ip;                  // not produced by emit_operand
+
+  case 0x66: // movw ... (size prefix)
+    again_after_size_prefix2:
+    switch (0xFF & *ip++) {
+    case REX:
+    case REX_B:
+    case REX_X:
+    case REX_XB:
+    case REX_R:
+    case REX_RB:
+    case REX_RX:
+    case REX_RXB:
+    case REX_W:
+    case REX_WB:
+    case REX_WX:
+    case REX_WXB:
+    case REX_WR:
+    case REX_WRB:
+    case REX_WRX:
+    case REX_WRXB:
+      NOT_LP64(assert(false, "64bit prefix found"));
+      goto again_after_size_prefix2;
+    case 0x8B: // movw r, a
+    case 0x89: // movw a, r
+      debug_only(has_disp32 = true);
+      break;
+    case 0xC7: // movw a, #16
+      debug_only(has_disp32 = true);
+      tail_size = 2;  // the imm16
+      break;
+    case 0x0F: // several SSE/SSE2 variants
+      ip--;    // reparse the 0x0F
+      goto again_after_prefix;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case REP8(0xB8): // movl/q r, #32/#64(oop?)
+    if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
+    // these asserts are somewhat nonsensical
+#ifndef _LP64
+    assert(which == imm_operand || which == disp32_operand, "");
+#else
+    assert((which == call32_operand || which == imm_operand) && is_64bit ||
+           which == narrow_oop_operand && !is_64bit, "");
+#endif // _LP64
+    return ip;
+
+  case 0x69: // imul r, a, #32
+  case 0xC7: // movl a, #32(oop?)
+    tail_size = 4;
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  case 0x0F: // movx..., etc.
+    switch (0xFF & *ip++) {
+    case 0x12: // movlps
+    case 0x28: // movaps
+    case 0x2E: // ucomiss
+    case 0x2F: // comiss
+    case 0x54: // andps
+    case 0x55: // andnps
+    case 0x56: // orps
+    case 0x57: // xorps
+    case 0x6E: // movd
+    case 0x7E: // movd
+    case 0xAE: // ldmxcsr   a
+      // 64bit side says it these have both operands but that doesn't
+      // appear to be true
+      debug_only(has_disp32 = true);
+      break;
+
+    case 0xAD: // shrd r, a, %cl
+    case 0xAF: // imul r, a
+    case 0xBE: // movsbl r, a (movsxb)
+    case 0xBF: // movswl r, a (movsxw)
+    case 0xB6: // movzbl r, a (movzxb)
+    case 0xB7: // movzwl r, a (movzxw)
+    case REP16(0x40): // cmovl cc, r, a
+    case 0xB0: // cmpxchgb
+    case 0xB1: // cmpxchg
+    case 0xC1: // xaddl
+    case 0xC7: // cmpxchg8
+    case REP16(0x90): // setcc a
+      debug_only(has_disp32 = true);
+      // fall out of the switch to decode the address
+      break;
+
+    case 0xAC: // shrd r, a, #8
+      debug_only(has_disp32 = true);
+      tail_size = 1;  // the imm8
+      break;
+
+    case REP16(0x80): // jcc rdisp32
+      if (which == end_pc_operand)  return ip + 4;
+      assert(which == call32_operand, "jcc has no disp32 or imm");
+      return ip;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case 0x81: // addl a, #32; addl r, #32
+    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
+    // on 32bit in the case of cmpl, the imm might be an oop
+    tail_size = 4;
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  case 0x83: // addl a, #8; addl r, #8
+    // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    tail_size = 1;
+    break;
+
+  case 0x9B:
+    switch (0xFF & *ip++) {
+    case 0xD9: // fnstcw a
+      debug_only(has_disp32 = true);
+      break;
+    default:
+      ShouldNotReachHere();
+    }
+    break;
+
+  case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
+  case REP4(0x10): // adc...
+  case REP4(0x20): // and...
+  case REP4(0x30): // xor...
+  case REP4(0x08): // or...
+  case REP4(0x18): // sbb...
+  case REP4(0x28): // sub...
+  case 0xF7: // mull a
+  case 0x8D: // lea r, a
+  case 0x87: // xchg r, a
+  case REP4(0x38): // cmp...
+  case 0x85: // test r, a
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
+  case 0xC6: // movb a, #8
+  case 0x80: // cmpb a, #8
+  case 0x6B: // imul r, a, #8
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    tail_size = 1; // the imm8
+    break;
+
+  case 0xE8: // call rdisp32
+  case 0xE9: // jmp  rdisp32
+    if (which == end_pc_operand)  return ip + 4;
+    assert(which == call32_operand, "call has no disp32 or imm");
+    return ip;
+
+  case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
+  case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
+  case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
+  case 0xDD: // fld_d a; fst_d a; fstp_d a
+  case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
+  case 0xDF: // fild_d a; fistp_d a
+  case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
+  case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
+  case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
+    debug_only(has_disp32 = true);
+    break;
+
+  case 0xF3:                    // For SSE
+  case 0xF2:                    // For SSE2
+    switch (0xFF & *ip++) {
+    case REX:
+    case REX_B:
+    case REX_X:
+    case REX_XB:
+    case REX_R:
+    case REX_RB:
+    case REX_RX:
+    case REX_RXB:
+    case REX_W:
+    case REX_WB:
+    case REX_WX:
+    case REX_WXB:
+    case REX_WR:
+    case REX_WRB:
+    case REX_WRX:
+    case REX_WRXB:
+      NOT_LP64(assert(false, "found 64bit prefix"));
+      ip++;
+    default:
+      ip++;
+    }
+    debug_only(has_disp32 = true); // has both kinds of operands!
+    break;
+
+  default:
+    ShouldNotReachHere();
+
+#undef REP8
+#undef REP16
+  }
+
+  assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
+#ifdef _LP64
+  assert(which != imm_operand, "instruction is not a movq reg, imm64");
+#else
+  // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
+  assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
+#endif // LP64
+  assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
+
+  // parse the output of emit_operand
+  int op2 = 0xFF & *ip++;
+  int base = op2 & 0x07;
+  int op3 = -1;
+  const int b100 = 4;
+  const int b101 = 5;
+  if (base == b100 && (op2 >> 6) != 3) {
+    op3 = 0xFF & *ip++;
+    base = op3 & 0x07;   // refetch the base
+  }
+  // now ip points at the disp (if any)
+
+  switch (op2 >> 6) {
+  case 0:
+    // [00 reg  100][ss index base]
+    // [00 reg  100][00   100  esp]
+    // [00 reg base]
+    // [00 reg  100][ss index  101][disp32]
+    // [00 reg  101]               [disp32]
+
+    if (base == b101) {
+      if (which == disp32_operand)
+        return ip;              // caller wants the disp32
+      ip += 4;                  // skip the disp32
+    }
+    break;
+
+  case 1:
+    // [01 reg  100][ss index base][disp8]
+    // [01 reg  100][00   100  esp][disp8]
+    // [01 reg base]               [disp8]
+    ip += 1;                    // skip the disp8
+    break;
+
+  case 2:
+    // [10 reg  100][ss index base][disp32]
+    // [10 reg  100][00   100  esp][disp32]
+    // [10 reg base]               [disp32]
+    if (which == disp32_operand)
+      return ip;                // caller wants the disp32
+    ip += 4;                    // skip the disp32
+    break;
+
+  case 3:
+    // [11 reg base]  (not a memory addressing mode)
+    break;
+  }
+
+  if (which == end_pc_operand) {
+    return ip + tail_size;
+  }
+
+#ifdef _LP64
+  assert(false, "fix locate_operand");
+#else
+  assert(which == imm_operand, "instruction has only an imm field");
+#endif // LP64
+  return ip;
+}
+
+address Assembler::locate_next_instruction(address inst) {
+  // Secretly share code with locate_operand:
+  return locate_operand(inst, end_pc_operand);
+}
+
+
+#ifdef ASSERT
+void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
+  address inst = inst_mark();
+  assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
+  address opnd;
+
+  Relocation* r = rspec.reloc();
+  if (r->type() == relocInfo::none) {
+    return;
+  } else if (r->is_call() || format == call32_operand) {
+    // assert(format == imm32_operand, "cannot specify a nonzero format");
+    opnd = locate_operand(inst, call32_operand);
+  } else if (r->is_data()) {
+    assert(format == imm_operand || format == disp32_operand
+           LP64_ONLY(|| format == narrow_oop_operand), "format ok");
+    opnd = locate_operand(inst, (WhichOperand)format);
+  } else {
+    assert(format == imm_operand, "cannot specify a format");
+    return;
+  }
+  assert(opnd == pc(), "must put operand where relocs can find it");
+}
+#endif // ASSERT
+
+void Assembler::emit_operand32(Register reg, Address adr) {
+  assert(reg->encoding() < 8, "no extended registers");
+  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
+  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
+               adr._rspec);
+}
+
+void Assembler::emit_operand(Register reg, Address adr,
+                             int rip_relative_correction) {
+  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
+               adr._rspec,
+               rip_relative_correction);
+}
+
+void Assembler::emit_operand(XMMRegister reg, Address adr) {
+  emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
+               adr._rspec);
+}
+
+// MMX operations
+void Assembler::emit_operand(MMXRegister reg, Address adr) {
+  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
+  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
+}
+
+// work around gcc (3.2.1-7a) bug
+void Assembler::emit_operand(Address adr, MMXRegister reg) {
+  assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
+  emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
+}
+
+
+void Assembler::emit_farith(int b1, int b2, int i) {
+  assert(isByte(b1) && isByte(b2), "wrong opcode");
+  assert(0 <= i &&  i < 8, "illegal stack offset");
+  emit_byte(b1);
+  emit_byte(b2 + i);
+}
+
+
+// Now the Assembler instruction (identical for 32/64 bits)
+
+void Assembler::adcl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xD0, dst, imm32);
+}
+
+void Assembler::adcl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x13);
+  emit_operand(dst, src);
+}
+
+void Assembler::adcl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x13, 0xC0, dst, src);
+}
+
+void Assembler::addl(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_arith_operand(0x81, rax, dst, imm32);
+}
+
+void Assembler::addl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x01);
+  emit_operand(src, dst);
+}
+
+void Assembler::addl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xC0, dst, imm32);
+}
+
+void Assembler::addl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x03);
+  emit_operand(dst, src);
+}
+
+void Assembler::addl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x03, 0xC0, dst, src);
+}
+
+void Assembler::addr_nop_4() {
+  // 4 bytes: NOP DWORD PTR [EAX+0]
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
+  emit_byte(0);    // 8-bits offset (1 byte)
+}
+
+void Assembler::addr_nop_5() {
+  // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
+  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
+  emit_byte(0);    // 8-bits offset (1 byte)
+}
+
+void Assembler::addr_nop_7() {
+  // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
+  emit_long(0);    // 32-bits offset (4 bytes)
+}
+
+void Assembler::addr_nop_8() {
+  // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
+  emit_byte(0x0F);
+  emit_byte(0x1F);
+  emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
+  emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
+  emit_long(0);    // 32-bits offset (4 bytes)
+}
+
+void Assembler::addsd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::addsd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_operand(dst, src);
+}
+
+void Assembler::addss(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::addss(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x58);
+  emit_operand(dst, src);
+}
+
+void Assembler::andl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xE0, dst, imm32);
+}
+
+void Assembler::andl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x23);
+  emit_operand(dst, src);
+}
+
+void Assembler::andl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x23, 0xC0, dst, src);
+}
+
+void Assembler::andpd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x54);
+  emit_operand(dst, src);
+}
+
+void Assembler::bswapl(Register reg) { // bswap
+  int encode = prefix_and_encode(reg->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::call(Label& L, relocInfo::relocType rtype) {
+  // suspect disp32 is always good
+  int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
+
+  if (L.is_bound()) {
+    const int long_size = 5;
+    int offs = (int)( target(L) - pc() );
+    assert(offs <= 0, "assembler error");
+    InstructionMark im(this);
+    // 1110 1000 #32-bit disp
+    emit_byte(0xE8);
+    emit_data(offs - long_size, rtype, operand);
+  } else {
+    InstructionMark im(this);
+    // 1110 1000 #32-bit disp
+    L.add_patch_at(code(), locator());
+
+    emit_byte(0xE8);
+    emit_data(int(0), rtype, operand);
+  }
+}
+
+void Assembler::call(Register dst) {
+  // This was originally using a 32bit register encoding
+  // and surely we want 64bit!
+  // this is a 32bit encoding but in 64bit mode the default
+  // operand size is 64bit so there is no need for the
+  // wide prefix. So prefix only happens if we use the
+  // new registers. Much like push/pop.
+  int x = offset();
+  // this may be true but dbx disassembles it as if it
+  // were 32bits...
+  // int encode = prefix_and_encode(dst->encoding());
+  // if (offset() != x) assert(dst->encoding() >= 8, "what?");
+  int encode = prefixq_and_encode(dst->encoding());
+
+  emit_byte(0xFF);
+  emit_byte(0xD0 | encode);
+}
+
+
+void Assembler::call(Address adr) {
+  InstructionMark im(this);
+  prefix(adr);
+  emit_byte(0xFF);
+  emit_operand(rdx, adr);
+}
+
+void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
+  assert(entry != NULL, "call most probably wrong");
+  InstructionMark im(this);
+  emit_byte(0xE8);
+  intptr_t disp = entry - (_code_pos + sizeof(int32_t));
+  assert(is_simm32(disp), "must be 32bit offset (call2)");
+  // Technically, should use call32_operand, but this format is
+  // implied by the fact that we're emitting a call instruction.
+
+  int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
+  emit_data((int) disp, rspec, operand);
+}
+
+void Assembler::cdql() {
+  emit_byte(0x99);
+}
+
+void Assembler::cmovl(Condition cc, Register dst, Register src) {
+  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_byte(0xC0 | encode);
+}
+
+
+void Assembler::cmovl(Condition cc, Register dst, Address src) {
+  NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_operand(dst, src);
+}
+
+void Assembler::cmpb(Address dst, int imm8) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x80);
+  emit_operand(rdi, dst, 1);
+  emit_byte(imm8);
+}
+
+void Assembler::cmpl(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x81);
+  emit_operand(rdi, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::cmpl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xF8, dst, imm32);
+}
+
+void Assembler::cmpl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x3B, 0xC0, dst, src);
+}
+
+
+void Assembler::cmpl(Register dst, Address  src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x3B);
+  emit_operand(dst, src);
+}
+
+void Assembler::cmpw(Address dst, int imm16) {
+  InstructionMark im(this);
+  assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
+  emit_byte(0x66);
+  emit_byte(0x81);
+  emit_operand(rdi, dst, 2);
+  emit_word(imm16);
+}
+
+// The 32-bit cmpxchg compares the value at adr with the contents of rax,
+// and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
+// The ZF is set if the compared values were equal, and cleared otherwise.
+void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
+  if (Atomics & 2) {
+     // caveat: no instructionmark, so this isn't relocatable.
+     // Emit a synthetic, non-atomic, CAS equivalent.
+     // Beware.  The synthetic form sets all ICCs, not just ZF.
+     // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
+     cmpl(rax, adr);
+     movl(rax, adr);
+     if (reg != rax) {
+        Label L ;
+        jcc(Assembler::notEqual, L);
+        movl(adr, reg);
+        bind(L);
+     }
+  } else {
+     InstructionMark im(this);
+     prefix(adr, reg);
+     emit_byte(0x0F);
+     emit_byte(0xB1);
+     emit_operand(reg, adr);
+  }
+}
+
+void Assembler::comisd(XMMRegister dst, Address src) {
+  // NOTE: dbx seems to decode this as comiss even though the
+  // 0x66 is there. Strangly ucomisd comes out correct
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  comiss(dst, src);
+}
+
+void Assembler::comiss(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x2F);
+  emit_operand(dst, src);
+}
+
+void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xE6);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5B);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttss2sil(Register dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::decl(Address dst) {
+  // Don't use it directly. Use MacroAssembler::decrement() instead.
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0xFF);
+  emit_operand(rcx, dst);
+}
+
+void Assembler::divsd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_operand(dst, src);
+}
+
+void Assembler::divsd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::divss(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_operand(dst, src);
+}
+
+void Assembler::divss(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::emms() {
+  NOT_LP64(assert(VM_Version::supports_mmx(), ""));
+  emit_byte(0x0F);
+  emit_byte(0x77);
+}
+
+void Assembler::hlt() {
+  emit_byte(0xF4);
+}
+
+void Assembler::idivl(Register src) {
+  int encode = prefix_and_encode(src->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xF8 | encode);
+}
+
+void Assembler::imull(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xAF);
+  emit_byte(0xC0 | encode);
+}
+
+
+void Assembler::imull(Register dst, Register src, int value) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  if (is8bit(value)) {
+    emit_byte(0x6B);
+    emit_byte(0xC0 | encode);
+    emit_byte(value);
+  } else {
+    emit_byte(0x69);
+    emit_byte(0xC0 | encode);
+    emit_long(value);
+  }
+}
+
+void Assembler::incl(Address dst) {
+  // Don't use it directly. Use MacroAssembler::increment() instead.
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0xFF);
+  emit_operand(rax, dst);
+}
+
+void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
+  InstructionMark im(this);
+  relocate(rtype);
+  assert((0 <= cc) && (cc < 16), "illegal cc");
+  if (L.is_bound()) {
+    address dst = target(L);
+    assert(dst != NULL, "jcc most probably wrong");
+
+    const int short_size = 2;
+    const int long_size = 6;
+    intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
+    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
+      // 0111 tttn #8-bit disp
+      emit_byte(0x70 | cc);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      // 0000 1111 1000 tttn #32-bit disp
+      assert(is_simm32(offs - long_size),
+             "must be 32bit offset (call4)");
+      emit_byte(0x0F);
+      emit_byte(0x80 | cc);
+      emit_long(offs - long_size);
+    }
+  } else {
+    // Note: could eliminate cond. jumps to this jump if condition
+    //       is the same however, seems to be rather unlikely case.
+    // Note: use jccb() if label to be bound is very close to get
+    //       an 8-bit displacement
+    L.add_patch_at(code(), locator());
+    emit_byte(0x0F);
+    emit_byte(0x80 | cc);
+    emit_long(0);
+  }
+}
+
+void Assembler::jccb(Condition cc, Label& L) {
+  if (L.is_bound()) {
+    const int short_size = 2;
+    address entry = target(L);
+    assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
+           "Dispacement too large for a short jmp");
+    intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
+    // 0111 tttn #8-bit disp
+    emit_byte(0x70 | cc);
+    emit_byte((offs - short_size) & 0xFF);
+  } else {
+    InstructionMark im(this);
+    L.add_patch_at(code(), locator());
+    emit_byte(0x70 | cc);
+    emit_byte(0);
+  }
+}
+
+void Assembler::jmp(Address adr) {
+  InstructionMark im(this);
+  prefix(adr);
+  emit_byte(0xFF);
+  emit_operand(rsp, adr);
+}
+
+void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
+  if (L.is_bound()) {
+    address entry = target(L);
+    assert(entry != NULL, "jmp most probably wrong");
+    InstructionMark im(this);
+    const int short_size = 2;
+    const int long_size = 5;
+    intptr_t offs = entry - _code_pos;
+    if (rtype == relocInfo::none && is8bit(offs - short_size)) {
+      emit_byte(0xEB);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      emit_byte(0xE9);
+      emit_long(offs - long_size);
+    }
+  } else {
+    // By default, forward jumps are always 32-bit displacements, since
+    // we can't yet know where the label will be bound.  If you're sure that
+    // the forward jump will not run beyond 256 bytes, use jmpb to
+    // force an 8-bit displacement.
+    InstructionMark im(this);
+    relocate(rtype);
+    L.add_patch_at(code(), locator());
+    emit_byte(0xE9);
+    emit_long(0);
+  }
+}
+
+void Assembler::jmp(Register entry) {
+  int encode = prefix_and_encode(entry->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0xE9);
+  assert(dest != NULL, "must have a target");
+  intptr_t disp = dest - (_code_pos + sizeof(int32_t));
+  assert(is_simm32(disp), "must be 32bit offset (jmp)");
+  emit_data(disp, rspec.reloc(), call32_operand);
+}
+
+void Assembler::jmpb(Label& L) {
+  if (L.is_bound()) {
+    const int short_size = 2;
+    address entry = target(L);
+    assert(is8bit((entry - _code_pos) + short_size),
+           "Dispacement too large for a short jmp");
+    assert(entry != NULL, "jmp most probably wrong");
+    intptr_t offs = entry - _code_pos;
+    emit_byte(0xEB);
+    emit_byte((offs - short_size) & 0xFF);
+  } else {
+    InstructionMark im(this);
+    L.add_patch_at(code(), locator());
+    emit_byte(0xEB);
+    emit_byte(0);
+  }
+}
+
+void Assembler::ldmxcsr( Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  prefix(src);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(2), src);
+}
+
+void Assembler::leal(Register dst, Address src) {
+  InstructionMark im(this);
+#ifdef _LP64
+  emit_byte(0x67); // addr32
+  prefix(src, dst);
+#endif // LP64
+  emit_byte(0x8D);
+  emit_operand(dst, src);
+}
+
+void Assembler::lock() {
+  if (Atomics & 1) {
+     // Emit either nothing, a NOP, or a NOP: prefix
+     emit_byte(0x90) ;
+  } else {
+     emit_byte(0xF0);
+  }
+}
+
+// Serializes memory.
+void Assembler::mfence() {
+    // Memory barriers are only needed on multiprocessors
+  if (os::is_MP()) {
+    if( LP64_ONLY(true ||) VM_Version::supports_sse2() ) {
+      emit_byte( 0x0F );                // MFENCE; faster blows no regs
+      emit_byte( 0xAE );
+      emit_byte( 0xF0 );
+    } else {
+      // All usable chips support "locked" instructions which suffice
+      // as barriers, and are much faster than the alternative of
+      // using cpuid instruction. We use here a locked add [esp],0.
+      // This is conveniently otherwise a no-op except for blowing
+      // flags (which we save and restore.)
+      pushf();                // Save eflags register
+      lock();
+      addl(Address(rsp, 0), 0);// Assert the lock# signal here
+      popf();                 // Restore eflags register
+    }
+  }
+}
+
+void Assembler::mov(Register dst, Register src) {
+  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+void Assembler::movapd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  int dstenc = dst->encoding();
+  int srcenc = src->encoding();
+  emit_byte(0x66);
+  if (dstenc < 8) {
+    if (srcenc >= 8) {
+      prefix(REX_B);
+      srcenc -= 8;
+    }
+  } else {
+    if (srcenc < 8) {
+      prefix(REX_R);
+    } else {
+      prefix(REX_RB);
+      srcenc -= 8;
+    }
+    dstenc -= 8;
+  }
+  emit_byte(0x0F);
+  emit_byte(0x28);
+  emit_byte(0xC0 | dstenc << 3 | srcenc);
+}
+
+void Assembler::movaps(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  int dstenc = dst->encoding();
+  int srcenc = src->encoding();
+  if (dstenc < 8) {
+    if (srcenc >= 8) {
+      prefix(REX_B);
+      srcenc -= 8;
+    }
+  } else {
+    if (srcenc < 8) {
+      prefix(REX_R);
+    } else {
+      prefix(REX_RB);
+      srcenc -= 8;
+    }
+    dstenc -= 8;
+  }
+  emit_byte(0x0F);
+  emit_byte(0x28);
+  emit_byte(0xC0 | dstenc << 3 | srcenc);
+}
+
+void Assembler::movb(Register dst, Address src) {
+  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
+  InstructionMark im(this);
+  prefix(src, dst, true);
+  emit_byte(0x8A);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::movb(Address dst, int imm8) {
+  InstructionMark im(this);
+   prefix(dst);
+  emit_byte(0xC6);
+  emit_operand(rax, dst, 1);
+  emit_byte(imm8);
+}
+
+
+void Assembler::movb(Address dst, Register src) {
+  assert(src->has_byte_register(), "must have byte register");
+  InstructionMark im(this);
+  prefix(dst, src, true);
+  emit_byte(0x88);
+  emit_operand(src, dst);
+}
+
+void Assembler::movdl(XMMRegister dst, Register src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x6E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdl(Register dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  // swap src/dst to get correct prefix
+  int encode = prefix_and_encode(src->encoding(), dst->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdqa(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x6F);
+  emit_operand(dst, src);
+}
+
+void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x6F);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdqa(Address dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0x7F);
+  emit_operand(src, dst);
+}
+
+// Uses zero extension on 64bit
+
+void Assembler::movl(Register dst, int32_t imm32) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xB8 | encode);
+  emit_long(imm32);
+}
+
+void Assembler::movl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x8B);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+void Assembler::movl(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0xC7);
+  emit_operand(rax, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::movl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+// New cpus require to use movsd and movss to avoid partial register stall
+// when loading from memory. But for old Opteron use movlpd instead of movsd.
+// The selection is done in MacroAssembler::movdbl() and movflt().
+void Assembler::movlpd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x12);
+  emit_operand(dst, src);
+}
+
+void Assembler::movq( MMXRegister dst, Address src ) {
+  assert( VM_Version::supports_mmx(), "" );
+  emit_byte(0x0F);
+  emit_byte(0x6F);
+  emit_operand(dst, src);
+}
+
+void Assembler::movq( Address dst, MMXRegister src ) {
+  assert( VM_Version::supports_mmx(), "" );
+  emit_byte(0x0F);
+  emit_byte(0x7F);
+  // workaround gcc (3.2.1-7a) bug
+  // In that version of gcc with only an emit_operand(MMX, Address)
+  // gcc will tail jump and try and reverse the parameters completely
+  // obliterating dst in the process. By having a version available
+  // that doesn't need to swap the args at the tail jump the bug is
+  // avoided.
+  emit_operand(dst, src);
+}
+
+void Assembler::movq(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_operand(dst, src);
+}
+
+void Assembler::movq(Address dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0xD6);
+  emit_operand(src, dst);
+}
+
+void Assembler::movsbl(Register dst, Address src) { // movsxb
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xBE);
+  emit_operand(dst, src);
+}
+
+void Assembler::movsbl(Register dst, Register src) { // movsxb
+  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
+  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
+  emit_byte(0x0F);
+  emit_byte(0xBE);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movsd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movsd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_operand(dst, src);
+}
+
+void Assembler::movsd(Address dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0x11);
+  emit_operand(src, dst);
+}
+
+void Assembler::movss(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movss(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x10);
+  emit_operand(dst, src);
+}
+
+void Assembler::movss(Address dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0x11);
+  emit_operand(src, dst);
+}
+
+void Assembler::movswl(Register dst, Address src) { // movsxw
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xBF);
+  emit_operand(dst, src);
+}
+
+void Assembler::movswl(Register dst, Register src) { // movsxw
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xBF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movw(Address dst, int imm16) {
+  InstructionMark im(this);
+
+  emit_byte(0x66); // switch to 16-bit mode
+  prefix(dst);
+  emit_byte(0xC7);
+  emit_operand(rax, dst, 2);
+  emit_word(imm16);
+}
+
+void Assembler::movw(Register dst, Address src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+void Assembler::movw(Address dst, Register src) {
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(dst, src);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+void Assembler::movzbl(Register dst, Address src) { // movzxb
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xB6);
+  emit_operand(dst, src);
+}
+
+void Assembler::movzbl(Register dst, Register src) { // movzxb
+  NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
+  int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
+  emit_byte(0x0F);
+  emit_byte(0xB6);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movzwl(Register dst, Address src) { // movzxw
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xB7);
+  emit_operand(dst, src);
+}
+
+void Assembler::movzwl(Register dst, Register src) { // movzxw
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xB7);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::mull(Address src) {
+  InstructionMark im(this);
+  prefix(src);
+  emit_byte(0xF7);
+  emit_operand(rsp, src);
+}
+
+void Assembler::mull(Register src) {
+  int encode = prefix_and_encode(src->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::mulsd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_operand(dst, src);
+}
+
+void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::mulss(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_operand(dst, src);
+}
+
+void Assembler::mulss(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x59);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::negl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD8 | encode);
+}
+
+void Assembler::nop(int i) {
+#ifdef ASSERT
+  assert(i > 0, " ");
+  // The fancy nops aren't currently recognized by debuggers making it a
+  // pain to disassemble code while debugging. If asserts are on clearly
+  // speed is not an issue so simply use the single byte traditional nop
+  // to do alignment.
+
+  for (; i > 0 ; i--) emit_byte(0x90);
+  return;
+
+#endif // ASSERT
+
+  if (UseAddressNop && VM_Version::is_intel()) {
+    //
+    // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
+    //  1: 0x90
+    //  2: 0x66 0x90
+    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
+    //  4: 0x0F 0x1F 0x40 0x00
+    //  5: 0x0F 0x1F 0x44 0x00 0x00
+    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
+    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+
+    // The rest coding is Intel specific - don't use consecutive address nops
+
+    // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+    // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
+
+    while(i >= 15) {
+      // For Intel don't generate consecutive addess nops (mix with regular nops)
+      i -= 15;
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      addr_nop_8();
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x66);   // size prefix
+      emit_byte(0x90);   // nop
+    }
+    switch (i) {
+      case 14:
+        emit_byte(0x66); // size prefix
+      case 13:
+        emit_byte(0x66); // size prefix
+      case 12:
+        addr_nop_8();
+        emit_byte(0x66); // size prefix
+        emit_byte(0x66); // size prefix
+        emit_byte(0x66); // size prefix
+        emit_byte(0x90); // nop
+        break;
+      case 11:
+        emit_byte(0x66); // size prefix
+      case 10:
+        emit_byte(0x66); // size prefix
+      case 9:
+        emit_byte(0x66); // size prefix
+      case 8:
+        addr_nop_8();
+        break;
+      case 7:
+        addr_nop_7();
+        break;
+      case 6:
+        emit_byte(0x66); // size prefix
+      case 5:
+        addr_nop_5();
+        break;
+      case 4:
+        addr_nop_4();
+        break;
+      case 3:
+        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
+        emit_byte(0x66); // size prefix
+      case 2:
+        emit_byte(0x66); // size prefix
+      case 1:
+        emit_byte(0x90); // nop
+        break;
+      default:
+        assert(i == 0, " ");
+    }
+    return;
+  }
+  if (UseAddressNop && VM_Version::is_amd()) {
+    //
+    // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
+    //  1: 0x90
+    //  2: 0x66 0x90
+    //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
+    //  4: 0x0F 0x1F 0x40 0x00
+    //  5: 0x0F 0x1F 0x44 0x00 0x00
+    //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
+    //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+
+    // The rest coding is AMD specific - use consecutive address nops
+
+    // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
+    // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
+    // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
+    // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
+    //     Size prefixes (0x66) are added for larger sizes
+
+    while(i >= 22) {
+      i -= 11;
+      emit_byte(0x66); // size prefix
+      emit_byte(0x66); // size prefix
+      emit_byte(0x66); // size prefix
+      addr_nop_8();
+    }
+    // Generate first nop for size between 21-12
+    switch (i) {
+      case 21:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 20:
+      case 19:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 18:
+      case 17:
+        i -= 1;
+        emit_byte(0x66); // size prefix
+      case 16:
+      case 15:
+        i -= 8;
+        addr_nop_8();
+        break;
+      case 14:
+      case 13:
+        i -= 7;
+        addr_nop_7();
+        break;
+      case 12:
+        i -= 6;
+        emit_byte(0x66); // size prefix
+        addr_nop_5();
+        break;
+      default:
+        assert(i < 12, " ");
+    }
+
+    // Generate second nop for size between 11-1
+    switch (i) {
+      case 11:
+        emit_byte(0x66); // size prefix
+      case 10:
+        emit_byte(0x66); // size prefix
+      case 9:
+        emit_byte(0x66); // size prefix
+      case 8:
+        addr_nop_8();
+        break;
+      case 7:
+        addr_nop_7();
+        break;
+      case 6:
+        emit_byte(0x66); // size prefix
+      case 5:
+        addr_nop_5();
+        break;
+      case 4:
+        addr_nop_4();
+        break;
+      case 3:
+        // Don't use "0x0F 0x1F 0x00" - need patching safe padding
+        emit_byte(0x66); // size prefix
+      case 2:
+        emit_byte(0x66); // size prefix
+      case 1:
+        emit_byte(0x90); // nop
+        break;
+      default:
+        assert(i == 0, " ");
+    }
+    return;
+  }
+
+  // Using nops with size prefixes "0x66 0x90".
+  // From AMD Optimization Guide:
+  //  1: 0x90
+  //  2: 0x66 0x90
+  //  3: 0x66 0x66 0x90
+  //  4: 0x66 0x66 0x66 0x90
+  //  5: 0x66 0x66 0x90 0x66 0x90
+  //  6: 0x66 0x66 0x90 0x66 0x66 0x90
+  //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
+  //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
+  //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
+  // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
+  //
+  while(i > 12) {
+    i -= 4;
+    emit_byte(0x66); // size prefix
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90); // nop
+  }
+  // 1 - 12 nops
+  if(i > 8) {
+    if(i > 9) {
+      i -= 1;
+      emit_byte(0x66);
+    }
+    i -= 3;
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90);
+  }
+  // 1 - 8 nops
+  if(i > 4) {
+    if(i > 6) {
+      i -= 1;
+      emit_byte(0x66);
+    }
+    i -= 3;
+    emit_byte(0x66);
+    emit_byte(0x66);
+    emit_byte(0x90);
+  }
+  switch (i) {
+    case 4:
+      emit_byte(0x66);
+    case 3:
+      emit_byte(0x66);
+    case 2:
+      emit_byte(0x66);
+    case 1:
+      emit_byte(0x90);
+      break;
+    default:
+      assert(i == 0, " ");
+  }
+}
+
+void Assembler::notl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD0 | encode );
+}
+
+void Assembler::orl(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x81);
+  emit_operand(rcx, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::orl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xC8, dst, imm32);
+}
+
+
+void Assembler::orl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0B);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::orl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x0B, 0xC0, dst, src);
+}
+
+// generic
+void Assembler::pop(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0x58 | encode);
+}
+
+void Assembler::popf() {
+  emit_byte(0x9D);
+}
+
+void Assembler::popl(Address dst) {
+  // NOTE: this will adjust stack by 8byte on 64bits
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x8F);
+  emit_operand(rax, dst);
+}
+
+void Assembler::prefetch_prefix(Address src) {
+  prefix(src);
+  emit_byte(0x0F);
+}
+
+void Assembler::prefetchnta(Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rax, src); // 0, src
+}
+
+void Assembler::prefetchr(Address src) {
+  NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x0D);
+  emit_operand(rax, src); // 0, src
+}
+
+void Assembler::prefetcht0(Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rcx, src); // 1, src
+}
+
+void Assembler::prefetcht1(Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rdx, src); // 2, src
+}
+
+void Assembler::prefetcht2(Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x18);
+  emit_operand(rbx, src); // 3, src
+}
+
+void Assembler::prefetchw(Address src) {
+  NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
+  InstructionMark im(this);
+  prefetch_prefix(src);
+  emit_byte(0x0D);
+  emit_operand(rcx, src); // 1, src
+}
+
+void Assembler::prefix(Prefix p) {
+  a_byte(p);
+}
+
+void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
+  assert(isByte(mode), "invalid value");
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_byte(0xC0 | encode);
+  emit_byte(mode & 0xFF);
+
+}
+
+void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
+  assert(isByte(mode), "invalid value");
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
+  assert(isByte(mode), "invalid value");
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_byte(0xC0 | encode);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
+  assert(isByte(mode), "invalid value");
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst); // QQ new
+  emit_byte(0x0F);
+  emit_byte(0x70);
+  emit_operand(dst, src);
+  emit_byte(mode & 0xFF);
+}
+
+void Assembler::psrlq(XMMRegister dst, int shift) {
+  // HMM Table D-1 says sse2 or mmx
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+
+  int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
+  emit_byte(0x66);
+  emit_byte(0x0F);
+  emit_byte(0x73);
+  emit_byte(0xC0 | encode);
+  emit_byte(shift);
+}
+
+void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x60);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::push(int32_t imm32) {
+  // in 64bits we push 64bits onto the stack but only
+  // take a 32bit immediate
+  emit_byte(0x68);
+  emit_long(imm32);
+}
+
+void Assembler::push(Register src) {
+  int encode = prefix_and_encode(src->encoding());
+
+  emit_byte(0x50 | encode);
+}
+
+void Assembler::pushf() {
+  emit_byte(0x9C);
+}
+
+void Assembler::pushl(Address src) {
+  // Note this will push 64bit on 64bit
+  InstructionMark im(this);
+  prefix(src);
+  emit_byte(0xFF);
+  emit_operand(rsi, src);
+}
+
+void Assembler::pxor(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0xEF);
+  emit_operand(dst, src);
+}
+
+void Assembler::pxor(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xEF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::rcll(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  int encode = prefix_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xD0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xD0 | encode);
+    emit_byte(imm8);
+  }
+}
+
+// copies data from [esi] to [edi] using rcx pointer sized words
+// generic
+void Assembler::rep_mov() {
+  emit_byte(0xF3);
+  // MOVSQ
+  LP64_ONLY(prefix(REX_W));
+  emit_byte(0xA5);
+}
+
+// sets rcx pointer sized words with rax, value at [edi]
+// generic
+void Assembler::rep_set() { // rep_set
+  emit_byte(0xF3);
+  // STOSQ
+  LP64_ONLY(prefix(REX_W));
+  emit_byte(0xAB);
+}
+
+// scans rcx pointer sized words at [edi] for occurance of rax,
+// generic
+void Assembler::repne_scan() { // repne_scan
+  emit_byte(0xF2);
+  // SCASQ
+  LP64_ONLY(prefix(REX_W));
+  emit_byte(0xAF);
+}
+
+#ifdef _LP64
+// scans rcx 4 byte words at [edi] for occurance of rax,
+// generic
+void Assembler::repne_scanl() { // repne_scan
+  emit_byte(0xF2);
+  // SCASL
+  emit_byte(0xAF);
+}
+#endif
+
+void Assembler::ret(int imm16) {
+  if (imm16 == 0) {
+    emit_byte(0xC3);
+  } else {
+    emit_byte(0xC2);
+    emit_word(imm16);
+  }
+}
+
+void Assembler::sahf() {
+#ifdef _LP64
+  // Not supported in 64bit mode
+  ShouldNotReachHere();
+#endif
+  emit_byte(0x9E);
+}
+
+void Assembler::sarl(Register dst, int imm8) {
+  int encode = prefix_and_encode(dst->encoding());
+  assert(isShiftCount(imm8), "illegal shift count");
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xF8 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xF8 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::sarl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xF8 | encode);
+}
+
+void Assembler::sbbl(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  emit_arith_operand(0x81, rbx, dst, imm32);
+}
+
+void Assembler::sbbl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xD8, dst, imm32);
+}
+
+
+void Assembler::sbbl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x1B);
+  emit_operand(dst, src);
+}
+
+void Assembler::sbbl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x1B, 0xC0, dst, src);
+}
+
+void Assembler::setb(Condition cc, Register dst) {
+  assert(0 <= cc && cc < 16, "illegal cc");
+  int encode = prefix_and_encode(dst->encoding(), true);
+  emit_byte(0x0F);
+  emit_byte(0x90 | cc);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::shll(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  int encode = prefix_and_encode(dst->encoding());
+  if (imm8 == 1 ) {
+    emit_byte(0xD1);
+    emit_byte(0xE0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xE0 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::shll(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::shrl(Register dst, int imm8) {
+  assert(isShiftCount(imm8), "illegal shift count");
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xC1);
+  emit_byte(0xE8 | encode);
+  emit_byte(imm8);
+}
+
+void Assembler::shrl(Register dst) {
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE8 | encode);
+}
+
+// copies a single word from [esi] to [edi]
+void Assembler::smovl() {
+  emit_byte(0xA5);
+}
+
+void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
+  // HMM Table D-1 says sse2
+  // NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x51);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::stmxcsr( Address dst) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  prefix(dst);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(3), dst);
+}
+
+void Assembler::subl(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefix(dst);
+  if (is8bit(imm32)) {
+    emit_byte(0x83);
+    emit_operand(rbp, dst, 1);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(0x81);
+    emit_operand(rbp, dst, 4);
+    emit_long(imm32);
+  }
+}
+
+void Assembler::subl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xE8, dst, imm32);
+}
+
+void Assembler::subl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x29);
+  emit_operand(src, dst);
+}
+
+void Assembler::subl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x2B);
+  emit_operand(dst, src);
+}
+
+void Assembler::subl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x2B, 0xC0, dst, src);
+}
+
+void Assembler::subsd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::subsd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_operand(dst, src);
+}
+
+void Assembler::subss(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::subss(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF3);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x5C);
+  emit_operand(dst, src);
+}
+
+void Assembler::testb(Register dst, int imm8) {
+  NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
+  (void) prefix_and_encode(dst->encoding(), true);
+  emit_arith_b(0xF6, 0xC0, dst, imm8);
+}
+
+void Assembler::testl(Register dst, int32_t imm32) {
+  // not using emit_arith because test
+  // doesn't support sign-extension of
+  // 8bit operands
+  int encode = dst->encoding();
+  if (encode == 0) {
+    emit_byte(0xA9);
+  } else {
+    encode = prefix_and_encode(encode);
+    emit_byte(0xF7);
+    emit_byte(0xC0 | encode);
+  }
+  emit_long(imm32);
+}
+
+void Assembler::testl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x85, 0xC0, dst, src);
+}
+
+void Assembler::testl(Register dst, Address  src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x85);
+  emit_operand(dst, src);
+}
+
+void Assembler::ucomisd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  ucomiss(dst, src);
+}
+
+void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  ucomiss(dst, src);
+}
+
+void Assembler::ucomiss(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x2E);
+  emit_operand(dst, src);
+}
+
+void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2E);
+  emit_byte(0xC0 | encode);
+}
+
+
+void Assembler::xaddl(Address dst, Register src) {
+  InstructionMark im(this);
+  prefix(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0xC1);
+  emit_operand(src, dst);
+}
+
+void Assembler::xchgl(Register dst, Address src) { // xchg
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x87);
+  emit_operand(dst, src);
+}
+
+void Assembler::xchgl(Register dst, Register src) {
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x87);
+  emit_byte(0xc0 | encode);
+}
+
+void Assembler::xorl(Register dst, int32_t imm32) {
+  prefix(dst);
+  emit_arith(0x81, 0xF0, dst, imm32);
+}
+
+void Assembler::xorl(Register dst, Address src) {
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x33);
+  emit_operand(dst, src);
+}
+
+void Assembler::xorl(Register dst, Register src) {
+  (void) prefix_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x33, 0xC0, dst, src);
+}
+
+void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0x66);
+  xorps(dst, src);
+}
+
+void Assembler::xorpd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0x66);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x57);
+  emit_operand(dst, src);
+}
+
+
+void Assembler::xorps(XMMRegister dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  int encode = prefix_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x57);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::xorps(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  InstructionMark im(this);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x57);
+  emit_operand(dst, src);
+}
+
+#ifndef _LP64
+// 32bit only pieces of the assembler
+
+void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
+  // NO PREFIX AS NEVER 64BIT
+  InstructionMark im(this);
+  emit_byte(0x81);
+  emit_byte(0xF8 | src1->encoding());
+  emit_data(imm32, rspec, 0);
+}
+
+void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
+  // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
+  InstructionMark im(this);
+  emit_byte(0x81);
+  emit_operand(rdi, src1);
+  emit_data(imm32, rspec, 0);
+}
+
+// The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
+// and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
+// into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
+void Assembler::cmpxchg8(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0x0F);
+  emit_byte(0xc7);
+  emit_operand(rcx, adr);
+}
+
+void Assembler::decl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::decrementl() instead.
+ emit_byte(0x48 | dst->encoding());
+}
+
+#endif // _LP64
+
+// 64bit typically doesn't use the x87 but needs to for the trig funcs
+
+void Assembler::fabs() {
+  emit_byte(0xD9);
+  emit_byte(0xE1);
+}
+
+void Assembler::fadd(int i) {
+  emit_farith(0xD8, 0xC0, i);
+}
+
+void Assembler::fadd_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand32(rax, src);
+}
+
+void Assembler::fadd_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand32(rax, src);
+}
+
+void Assembler::fadda(int i) {
+  emit_farith(0xDC, 0xC0, i);
+}
+
+void Assembler::faddp(int i) {
+  emit_farith(0xDE, 0xC0, i);
+}
+
+void Assembler::fchs() {
+  emit_byte(0xD9);
+  emit_byte(0xE0);
+}
+
+void Assembler::fcom(int i) {
+  emit_farith(0xD8, 0xD0, i);
+}
+
+void Assembler::fcomp(int i) {
+  emit_farith(0xD8, 0xD8, i);
+}
+
+void Assembler::fcomp_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand32(rbx, src);
+}
+
+void Assembler::fcomp_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand32(rbx, src);
+}
+
+void Assembler::fcompp() {
+  emit_byte(0xDE);
+  emit_byte(0xD9);
+}
+
+void Assembler::fcos() {
+  emit_byte(0xD9);
+  emit_byte(0xFF);
+}
+
+void Assembler::fdecstp() {
+  emit_byte(0xD9);
+  emit_byte(0xF6);
+}
+
+void Assembler::fdiv(int i) {
+  emit_farith(0xD8, 0xF0, i);
+}
+
+void Assembler::fdiv_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand32(rsi, src);
+}
+
+void Assembler::fdiv_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand32(rsi, src);
+}
+
+void Assembler::fdiva(int i) {
+  emit_farith(0xDC, 0xF8, i);
+}
+
+// Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
+//       is erroneous for some of the floating-point instructions below.
+
+void Assembler::fdivp(int i) {
+  emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
+}
+
+void Assembler::fdivr(int i) {
+  emit_farith(0xD8, 0xF8, i);
+}
+
+void Assembler::fdivr_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand32(rdi, src);
+}
+
+void Assembler::fdivr_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand32(rdi, src);
+}
+
+void Assembler::fdivra(int i) {
+  emit_farith(0xDC, 0xF0, i);
+}
+
+void Assembler::fdivrp(int i) {
+  emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
+}
+
+void Assembler::ffree(int i) {
+  emit_farith(0xDD, 0xC0, i);
+}
+
+void Assembler::fild_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDF);
+  emit_operand32(rbp, adr);
+}
+
+void Assembler::fild_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand32(rax, adr);
+}
+
+void Assembler::fincstp() {
+  emit_byte(0xD9);
+  emit_byte(0xF7);
+}
+
+void Assembler::finit() {
+  emit_byte(0x9B);
+  emit_byte(0xDB);
+  emit_byte(0xE3);
+}
+
+void Assembler::fist_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand32(rdx, adr);
+}
+
+void Assembler::fistp_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDF);
+  emit_operand32(rdi, adr);
+}
+
+void Assembler::fistp_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand32(rbx, adr);
+}
+
+void Assembler::fld1() {
+  emit_byte(0xD9);
+  emit_byte(0xE8);
+}
+
+void Assembler::fld_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand32(rax, adr);
+}
+
+void Assembler::fld_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand32(rax, adr);
+}
+
+
+void Assembler::fld_s(int index) {
+  emit_farith(0xD9, 0xC0, index);
+}
+
+void Assembler::fld_x(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand32(rbp, adr);
+}
+
+void Assembler::fldcw(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xd9);
+  emit_operand32(rbp, src);
+}
+
+void Assembler::fldenv(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand32(rsp, src);
+}
+
+void Assembler::fldlg2() {
+  emit_byte(0xD9);
+  emit_byte(0xEC);
+}
+
+void Assembler::fldln2() {
+  emit_byte(0xD9);
+  emit_byte(0xED);
+}
+
+void Assembler::fldz() {
+  emit_byte(0xD9);
+  emit_byte(0xEE);
+}
+
+void Assembler::flog() {
+  fldln2();
+  fxch();
+  fyl2x();
+}
+
+void Assembler::flog10() {
+  fldlg2();
+  fxch();
+  fyl2x();
+}
+
+void Assembler::fmul(int i) {
+  emit_farith(0xD8, 0xC8, i);
+}
+
+void Assembler::fmul_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand32(rcx, src);
+}
+
+void Assembler::fmul_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand32(rcx, src);
+}
+
+void Assembler::fmula(int i) {
+  emit_farith(0xDC, 0xC8, i);
+}
+
+void Assembler::fmulp(int i) {
+  emit_farith(0xDE, 0xC8, i);
+}
+
+void Assembler::fnsave(Address dst) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand32(rsi, dst);
+}
+
+void Assembler::fnstcw(Address src) {
+  InstructionMark im(this);
+  emit_byte(0x9B);
+  emit_byte(0xD9);
+  emit_operand32(rdi, src);
+}
+
+void Assembler::fnstsw_ax() {
+  emit_byte(0xdF);
+  emit_byte(0xE0);
+}
+
+void Assembler::fprem() {
+  emit_byte(0xD9);
+  emit_byte(0xF8);
+}
+
+void Assembler::fprem1() {
+  emit_byte(0xD9);
+  emit_byte(0xF5);
+}
+
+void Assembler::frstor(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand32(rsp, src);
+}
+
+void Assembler::fsin() {
+  emit_byte(0xD9);
+  emit_byte(0xFE);
+}
+
+void Assembler::fsqrt() {
+  emit_byte(0xD9);
+  emit_byte(0xFA);
+}
+
+void Assembler::fst_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand32(rdx, adr);
+}
+
+void Assembler::fst_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand32(rdx, adr);
+}
+
+void Assembler::fstp_d(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDD);
+  emit_operand32(rbx, adr);
+}
+
+void Assembler::fstp_d(int index) {
+  emit_farith(0xDD, 0xD8, index);
+}
+
+void Assembler::fstp_s(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xD9);
+  emit_operand32(rbx, adr);
+}
+
+void Assembler::fstp_x(Address adr) {
+  InstructionMark im(this);
+  emit_byte(0xDB);
+  emit_operand32(rdi, adr);
+}
+
+void Assembler::fsub(int i) {
+  emit_farith(0xD8, 0xE0, i);
+}
+
+void Assembler::fsub_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand32(rsp, src);
+}
+
+void Assembler::fsub_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand32(rsp, src);
+}
+
+void Assembler::fsuba(int i) {
+  emit_farith(0xDC, 0xE8, i);
+}
+
+void Assembler::fsubp(int i) {
+  emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
+}
+
+void Assembler::fsubr(int i) {
+  emit_farith(0xD8, 0xE8, i);
+}
+
+void Assembler::fsubr_d(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xDC);
+  emit_operand32(rbp, src);
+}
+
+void Assembler::fsubr_s(Address src) {
+  InstructionMark im(this);
+  emit_byte(0xD8);
+  emit_operand32(rbp, src);
+}
+
+void Assembler::fsubra(int i) {
+  emit_farith(0xDC, 0xE0, i);
+}
+
+void Assembler::fsubrp(int i) {
+  emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
+}
+
+void Assembler::ftan() {
+  emit_byte(0xD9);
+  emit_byte(0xF2);
+  emit_byte(0xDD);
+  emit_byte(0xD8);
+}
+
+void Assembler::ftst() {
+  emit_byte(0xD9);
+  emit_byte(0xE4);
+}
+
+void Assembler::fucomi(int i) {
+  // make sure the instruction is supported (introduced for P6, together with cmov)
+  guarantee(VM_Version::supports_cmov(), "illegal instruction");
+  emit_farith(0xDB, 0xE8, i);
+}
+
+void Assembler::fucomip(int i) {
+  // make sure the instruction is supported (introduced for P6, together with cmov)
+  guarantee(VM_Version::supports_cmov(), "illegal instruction");
+  emit_farith(0xDF, 0xE8, i);
+}
+
+void Assembler::fwait() {
+  emit_byte(0x9B);
+}
+
+void Assembler::fxch(int i) {
+  emit_farith(0xD9, 0xC8, i);
+}
+
+void Assembler::fyl2x() {
+  emit_byte(0xD9);
+  emit_byte(0xF1);
+}
+
+void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format) {
+  InstructionMark im(this);
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xB8 | encode);
+  emit_data((int)imm32, rspec, format);
+}
+
+#ifndef _LP64
+
+void Assembler::incl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::incrementl() instead.
+ emit_byte(0x40 | dst->encoding());
+}
+
+void Assembler::lea(Register dst, Address src) {
+  leal(dst, src);
+}
+
+void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0xC7);
+  emit_operand(rax, dst);
+  emit_data((int)imm32, rspec, 0);
+}
+
+
+void Assembler::popa() { // 32bit
+  emit_byte(0x61);
+}
+
+void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  emit_byte(0x68);
+  emit_data(imm32, rspec, 0);
+}
+
+void Assembler::pusha() { // 32bit
+  emit_byte(0x60);
+}
+
+void Assembler::set_byte_if_not_zero(Register dst) {
+  emit_byte(0x0F);
+  emit_byte(0x95);
+  emit_byte(0xE0 | dst->encoding());
+}
+
+void Assembler::shldl(Register dst, Register src) {
+  emit_byte(0x0F);
+  emit_byte(0xA5);
+  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
+}
+
+void Assembler::shrdl(Register dst, Register src) {
+  emit_byte(0x0F);
+  emit_byte(0xAD);
+  emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
+}
+
+#else // LP64
+
+// 64bit only pieces of the assembler
+// This should only be used by 64bit instructions that can use rip-relative
+// it cannot be used by instructions that want an immediate value.
+
+bool Assembler::reachable(AddressLiteral adr) {
+  int64_t disp;
+  // None will force a 64bit literal to the code stream. Likely a placeholder
+  // for something that will be patched later and we need to certain it will
+  // always be reachable.
+  if (adr.reloc() == relocInfo::none) {
+    return false;
+  }
+  if (adr.reloc() == relocInfo::internal_word_type) {
+    // This should be rip relative and easily reachable.
+    return true;
+  }
+  if (adr.reloc() == relocInfo::virtual_call_type ||
+      adr.reloc() == relocInfo::opt_virtual_call_type ||
+      adr.reloc() == relocInfo::static_call_type ||
+      adr.reloc() == relocInfo::static_stub_type ) {
+    // This should be rip relative within the code cache and easily
+    // reachable until we get huge code caches. (At which point
+    // ic code is going to have issues).
+    return true;
+  }
+  if (adr.reloc() != relocInfo::external_word_type &&
+      adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
+      adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
+      adr.reloc() != relocInfo::runtime_call_type ) {
+    return false;
+  }
+
+  // Stress the correction code
+  if (ForceUnreachable) {
+    // Must be runtimecall reloc, see if it is in the codecache
+    // Flipping stuff in the codecache to be unreachable causes issues
+    // with things like inline caches where the additional instructions
+    // are not handled.
+    if (CodeCache::find_blob(adr._target) == NULL) {
+      return false;
+    }
+  }
+  // For external_word_type/runtime_call_type if it is reachable from where we
+  // are now (possibly a temp buffer) and where we might end up
+  // anywhere in the codeCache then we are always reachable.
+  // This would have to change if we ever save/restore shared code
+  // to be more pessimistic.
+
+  disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
+  if (!is_simm32(disp)) return false;
+  disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
+  if (!is_simm32(disp)) return false;
+
+  disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
+
+  // Because rip relative is a disp + address_of_next_instruction and we
+  // don't know the value of address_of_next_instruction we apply a fudge factor
+  // to make sure we will be ok no matter the size of the instruction we get placed into.
+  // We don't have to fudge the checks above here because they are already worst case.
+
+  // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
+  // + 4 because better safe than sorry.
+  const int fudge = 12 + 4;
+  if (disp < 0) {
+    disp -= fudge;
+  } else {
+    disp += fudge;
+  }
+  return is_simm32(disp);
+}
+
+void Assembler::emit_data64(jlong data,
+                            relocInfo::relocType rtype,
+                            int format) {
+  if (rtype == relocInfo::none) {
+    emit_long64(data);
+  } else {
+    emit_data64(data, Relocation::spec_simple(rtype), format);
+  }
+}
+
+void Assembler::emit_data64(jlong data,
+                            RelocationHolder const& rspec,
+                            int format) {
+  assert(imm_operand == 0, "default format must be immediate in this file");
+  assert(imm_operand == format, "must be immediate");
+  assert(inst_mark() != NULL, "must be inside InstructionMark");
+  // Do not use AbstractAssembler::relocate, which is not intended for
+  // embedded words.  Instead, relocate to the enclosing instruction.
+  code_section()->relocate(inst_mark(), rspec, format);
+#ifdef ASSERT
+  check_relocation(rspec, format);
+#endif
+  emit_long64(data);
+}
+
+int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
+  if (reg_enc >= 8) {
+    prefix(REX_B);
+    reg_enc -= 8;
+  } else if (byteinst && reg_enc >= 4) {
+    prefix(REX);
+  }
+  return reg_enc;
+}
+
+int Assembler::prefixq_and_encode(int reg_enc) {
+  if (reg_enc < 8) {
+    prefix(REX_W);
+  } else {
+    prefix(REX_WB);
+    reg_enc -= 8;
+  }
+  return reg_enc;
+}
+
+int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
+  if (dst_enc < 8) {
+    if (src_enc >= 8) {
+      prefix(REX_B);
+      src_enc -= 8;
+    } else if (byteinst && src_enc >= 4) {
+      prefix(REX);
+    }
+  } else {
+    if (src_enc < 8) {
+      prefix(REX_R);
+    } else {
+      prefix(REX_RB);
+      src_enc -= 8;
+    }
+    dst_enc -= 8;
+  }
+  return dst_enc << 3 | src_enc;
+}
+
+int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
+  if (dst_enc < 8) {
+    if (src_enc < 8) {
+      prefix(REX_W);
+    } else {
+      prefix(REX_WB);
+      src_enc -= 8;
+    }
+  } else {
+    if (src_enc < 8) {
+      prefix(REX_WR);
+    } else {
+      prefix(REX_WRB);
+      src_enc -= 8;
+    }
+    dst_enc -= 8;
+  }
+  return dst_enc << 3 | src_enc;
+}
+
+void Assembler::prefix(Register reg) {
+  if (reg->encoding() >= 8) {
+    prefix(REX_B);
+  }
+}
+
+void Assembler::prefix(Address adr) {
+  if (adr.base_needs_rex()) {
+    if (adr.index_needs_rex()) {
+      prefix(REX_XB);
+    } else {
+      prefix(REX_B);
+    }
+  } else {
+    if (adr.index_needs_rex()) {
+      prefix(REX_X);
+    }
+  }
+}
+
+void Assembler::prefixq(Address adr) {
+  if (adr.base_needs_rex()) {
+    if (adr.index_needs_rex()) {
+      prefix(REX_WXB);
+    } else {
+      prefix(REX_WB);
+    }
+  } else {
+    if (adr.index_needs_rex()) {
+      prefix(REX_WX);
+    } else {
+      prefix(REX_W);
+    }
+  }
+}
+
+
+void Assembler::prefix(Address adr, Register reg, bool byteinst) {
+  if (reg->encoding() < 8) {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_XB);
+      } else {
+        prefix(REX_B);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_X);
+      } else if (reg->encoding() >= 4 ) {
+        prefix(REX);
+      }
+    }
+  } else {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RXB);
+      } else {
+        prefix(REX_RB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RX);
+      } else {
+        prefix(REX_R);
+      }
+    }
+  }
+}
+
+void Assembler::prefixq(Address adr, Register src) {
+  if (src->encoding() < 8) {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WXB);
+      } else {
+        prefix(REX_WB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WX);
+      } else {
+        prefix(REX_W);
+      }
+    }
+  } else {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WRXB);
+      } else {
+        prefix(REX_WRB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_WRX);
+      } else {
+        prefix(REX_WR);
+      }
+    }
+  }
+}
+
+void Assembler::prefix(Address adr, XMMRegister reg) {
+  if (reg->encoding() < 8) {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_XB);
+      } else {
+        prefix(REX_B);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_X);
+      }
+    }
+  } else {
+    if (adr.base_needs_rex()) {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RXB);
+      } else {
+        prefix(REX_RB);
+      }
+    } else {
+      if (adr.index_needs_rex()) {
+        prefix(REX_RX);
+      } else {
+        prefix(REX_R);
+      }
+    }
+  }
+}
+
+void Assembler::adcq(Register dst, int32_t imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xD0, dst, imm32);
+}
+
+void Assembler::adcq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x13);
+  emit_operand(dst, src);
+}
+
+void Assembler::adcq(Register dst, Register src) {
+  (int) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x13, 0xC0, dst, src);
+}
+
+void Assembler::addq(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_arith_operand(0x81, rax, dst,imm32);
+}
+
+void Assembler::addq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x01);
+  emit_operand(src, dst);
+}
+
+void Assembler::addq(Register dst, int32_t imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xC0, dst, imm32);
+}
+
+void Assembler::addq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x03);
+  emit_operand(dst, src);
+}
+
+void Assembler::addq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x03, 0xC0, dst, src);
+}
+
+void Assembler::andq(Register dst, int32_t imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xE0, dst, imm32);
+}
+
+void Assembler::andq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x23);
+  emit_operand(dst, src);
+}
+
+void Assembler::andq(Register dst, Register src) {
+  (int) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x23, 0xC0, dst, src);
+}
+
+void Assembler::bswapq(Register reg) {
+  int encode = prefixq_and_encode(reg->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::cdqq() {
+  prefix(REX_W);
+  emit_byte(0x99);
+}
+
+void Assembler::clflush(Address adr) {
+  prefix(adr);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(rdi, adr);
+}
+
+void Assembler::cmovq(Condition cc, Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cmovq(Condition cc, Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x40 | cc);
+  emit_operand(dst, src);
+}
+
+void Assembler::cmpq(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0x81);
+  emit_operand(rdi, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::cmpq(Register dst, int32_t imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xF8, dst, imm32);
+}
+
+void Assembler::cmpq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x3B);
+  emit_operand(src, dst);
+}
+
+void Assembler::cmpq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x3B, 0xC0, dst, src);
+}
+
+void Assembler::cmpq(Register dst, Address  src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x3B);
+  emit_operand(dst, src);
+}
+
+void Assembler::cmpxchgq(Register reg, Address adr) {
+  InstructionMark im(this);
+  prefixq(adr, reg);
+  emit_byte(0x0F);
+  emit_byte(0xB1);
+  emit_operand(reg, adr);
+}
+
+void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2A);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  emit_byte(0xF2);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::cvttss2siq(Register dst, XMMRegister src) {
+  NOT_LP64(assert(VM_Version::supports_sse(), ""));
+  emit_byte(0xF3);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x2C);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::decl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::decrementl() instead.
+  // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::decq(Register dst) {
+  // Don't use it directly. Use MacroAssembler::decrementq() instead.
+  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC8 | encode);
+}
+
+void Assembler::decq(Address dst) {
+  // Don't use it directly. Use MacroAssembler::decrementq() instead.
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0xFF);
+  emit_operand(rcx, dst);
+}
+
+void Assembler::fxrstor(Address src) {
+  prefixq(src);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(1), src);
+}
+
+void Assembler::fxsave(Address dst) {
+  prefixq(dst);
+  emit_byte(0x0F);
+  emit_byte(0xAE);
+  emit_operand(as_Register(0), dst);
+}
+
+void Assembler::idivq(Register src) {
+  int encode = prefixq_and_encode(src->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xF8 | encode);
+}
+
+void Assembler::imulq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0xAF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::imulq(Register dst, Register src, int value) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  if (is8bit(value)) {
+    emit_byte(0x6B);
+    emit_byte(0xC0 | encode);
+    emit_byte(value);
+  } else {
+    emit_byte(0x69);
+    emit_byte(0xC0 | encode);
+    emit_long(value);
+  }
+}
+
+void Assembler::incl(Register dst) {
+  // Don't use it directly. Use MacroAssembler::incrementl() instead.
+  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
+  int encode = prefix_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::incq(Register dst) {
+  // Don't use it directly. Use MacroAssembler::incrementq() instead.
+  // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xFF);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::incq(Address dst) {
+  // Don't use it directly. Use MacroAssembler::incrementq() instead.
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0xFF);
+  emit_operand(rax, dst);
+}
+
+void Assembler::lea(Register dst, Address src) {
+  leaq(dst, src);
+}
+
+void Assembler::leaq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x8D);
+  emit_operand(dst, src);
+}
+
+void Assembler::mov64(Register dst, int64_t imm64) {
+  InstructionMark im(this);
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xB8 | encode);
+  emit_long64(imm64);
+}
+
+void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
+  InstructionMark im(this);
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xB8 | encode);
+  emit_data64(imm64, rspec);
+}
+
+void Assembler::movdq(XMMRegister dst, Register src) {
+  // table D-1 says MMX/SSE2
+  NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
+  emit_byte(0x66);
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x6E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movdq(Register dst, XMMRegister src) {
+  // table D-1 says MMX/SSE2
+  NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
+  emit_byte(0x66);
+  // swap src/dst to get correct prefix
+  int encode = prefixq_and_encode(src->encoding(), dst->encoding());
+  emit_byte(0x0F);
+  emit_byte(0x7E);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x8B);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::movq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x8B);
+  emit_operand(dst, src);
+}
+
+void Assembler::movq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x89);
+  emit_operand(src, dst);
+}
+
+void Assembler::movslq(Register dst, int32_t imm32) {
+  // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
+  // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
+  // as a result we shouldn't use until tested at runtime...
+  ShouldNotReachHere();
+  InstructionMark im(this);
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xC7 | encode);
+  emit_long(imm32);
+}
+
+void Assembler::movslq(Address dst, int32_t imm32) {
+  assert(is_simm32(imm32), "lost bits");
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0xC7);
+  emit_operand(rax, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::movslq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x63);
+  emit_operand(dst, src);
+}
+
+void Assembler::movslq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x63);
+  emit_byte(0xC0 | encode);
+}
+
+void Assembler::negq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD8 | encode);
+}
+
+void Assembler::notq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xF7);
+  emit_byte(0xD0 | encode);
+}
+
+void Assembler::orq(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0x81);
+  emit_operand(rcx, dst, 4);
+  emit_long(imm32);
+}
+
+void Assembler::orq(Register dst, int32_t imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xC8, dst, imm32);
+}
+
+void Assembler::orq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x0B);
+  emit_operand(dst, src);
+}
+
+void Assembler::orq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x0B, 0xC0, dst, src);
+}
+
+void Assembler::popa() { // 64bit
+  movq(r15, Address(rsp, 0));
+  movq(r14, Address(rsp, wordSize));
+  movq(r13, Address(rsp, 2 * wordSize));
+  movq(r12, Address(rsp, 3 * wordSize));
+  movq(r11, Address(rsp, 4 * wordSize));
+  movq(r10, Address(rsp, 5 * wordSize));
+  movq(r9,  Address(rsp, 6 * wordSize));
+  movq(r8,  Address(rsp, 7 * wordSize));
+  movq(rdi, Address(rsp, 8 * wordSize));
+  movq(rsi, Address(rsp, 9 * wordSize));
+  movq(rbp, Address(rsp, 10 * wordSize));
+  // skip rsp
+  movq(rbx, Address(rsp, 12 * wordSize));
+  movq(rdx, Address(rsp, 13 * wordSize));
+  movq(rcx, Address(rsp, 14 * wordSize));
+  movq(rax, Address(rsp, 15 * wordSize));
+
+  addq(rsp, 16 * wordSize);
+}
+
+void Assembler::popq(Address dst) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_byte(0x8F);
+  emit_operand(rax, dst);
+}
+
+void Assembler::pusha() { // 64bit
+  // we have to store original rsp.  ABI says that 128 bytes
+  // below rsp are local scratch.
+  movq(Address(rsp, -5 * wordSize), rsp);
+
+  subq(rsp, 16 * wordSize);
+
+  movq(Address(rsp, 15 * wordSize), rax);
+  movq(Address(rsp, 14 * wordSize), rcx);
+  movq(Address(rsp, 13 * wordSize), rdx);
+  movq(Address(rsp, 12 * wordSize), rbx);
+  // skip rsp
+  movq(Address(rsp, 10 * wordSize), rbp);
+  movq(Address(rsp, 9 * wordSize), rsi);
+  movq(Address(rsp, 8 * wordSize), rdi);
+  movq(Address(rsp, 7 * wordSize), r8);
+  movq(Address(rsp, 6 * wordSize), r9);
+  movq(Address(rsp, 5 * wordSize), r10);
+  movq(Address(rsp, 4 * wordSize), r11);
+  movq(Address(rsp, 3 * wordSize), r12);
+  movq(Address(rsp, 2 * wordSize), r13);
+  movq(Address(rsp, wordSize), r14);
+  movq(Address(rsp, 0), r15);
+}
+
+void Assembler::pushq(Address src) {
+  InstructionMark im(this);
+  prefixq(src);
+  emit_byte(0xFF);
+  emit_operand(rsi, src);
+}
+
+void Assembler::rclq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xD0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xD0 | encode);
+    emit_byte(imm8);
+  }
+}
+void Assembler::sarq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xF8 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xF8 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::sarq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xF8 | encode);
+}
+void Assembler::sbbq(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  emit_arith_operand(0x81, rbx, dst, imm32);
+}
+
+void Assembler::sbbq(Register dst, int32_t imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xD8, dst, imm32);
+}
+
+void Assembler::sbbq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x1B);
+  emit_operand(dst, src);
+}
+
+void Assembler::sbbq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x1B, 0xC0, dst, src);
+}
+
+void Assembler::shlq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  if (imm8 == 1) {
+    emit_byte(0xD1);
+    emit_byte(0xE0 | encode);
+  } else {
+    emit_byte(0xC1);
+    emit_byte(0xE0 | encode);
+    emit_byte(imm8);
+  }
+}
+
+void Assembler::shlq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE0 | encode);
+}
+
+void Assembler::shrq(Register dst, int imm8) {
+  assert(isShiftCount(imm8 >> 1), "illegal shift count");
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xC1);
+  emit_byte(0xE8 | encode);
+  emit_byte(imm8);
+}
+
+void Assembler::shrq(Register dst) {
+  int encode = prefixq_and_encode(dst->encoding());
+  emit_byte(0xD3);
+  emit_byte(0xE8 | encode);
+}
+
+void Assembler::sqrtsd(XMMRegister dst, Address src) {
+  NOT_LP64(assert(VM_Version::supports_sse2(), ""));
+  InstructionMark im(this);
+  emit_byte(0xF2);
+  prefix(src, dst);
+  emit_byte(0x0F);
+  emit_byte(0x51);
+  emit_operand(dst, src);
+}
+
+void Assembler::subq(Address dst, int32_t imm32) {
+  InstructionMark im(this);
+  prefixq(dst);
+  if (is8bit(imm32)) {
+    emit_byte(0x83);
+    emit_operand(rbp, dst, 1);
+    emit_byte(imm32 & 0xFF);
+  } else {
+    emit_byte(0x81);
+    emit_operand(rbp, dst, 4);
+    emit_long(imm32);
+  }
+}
+
+void Assembler::subq(Register dst, int32_t imm32) {
+  (void) prefixq_and_encode(dst->encoding());
+  emit_arith(0x81, 0xE8, dst, imm32);
+}
+
+void Assembler::subq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x29);
+  emit_operand(src, dst);
+}
+
+void Assembler::subq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x2B);
+  emit_operand(dst, src);
+}
+
+void Assembler::subq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x2B, 0xC0, dst, src);
+}
+
+void Assembler::testq(Register dst, int32_t imm32) {
+  // not using emit_arith because test
+  // doesn't support sign-extension of
+  // 8bit operands
+  int encode = dst->encoding();
+  if (encode == 0) {
+    prefix(REX_W);
+    emit_byte(0xA9);
+  } else {
+    encode = prefixq_and_encode(encode);
+    emit_byte(0xF7);
+    emit_byte(0xC0 | encode);
+  }
+  emit_long(imm32);
+}
+
+void Assembler::testq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x85, 0xC0, dst, src);
+}
+
+void Assembler::xaddq(Address dst, Register src) {
+  InstructionMark im(this);
+  prefixq(dst, src);
+  emit_byte(0x0F);
+  emit_byte(0xC1);
+  emit_operand(src, dst);
+}
+
+void Assembler::xchgq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x87);
+  emit_operand(dst, src);
+}
+
+void Assembler::xchgq(Register dst, Register src) {
+  int encode = prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_byte(0x87);
+  emit_byte(0xc0 | encode);
+}
+
+void Assembler::xorq(Register dst, Register src) {
+  (void) prefixq_and_encode(dst->encoding(), src->encoding());
+  emit_arith(0x33, 0xC0, dst, src);
+}
+
+void Assembler::xorq(Register dst, Address src) {
+  InstructionMark im(this);
+  prefixq(src, dst);
+  emit_byte(0x33);
+  emit_operand(dst, src);
+}
+
+#endif // !LP64
+
+static Assembler::Condition reverse[] = {
+    Assembler::noOverflow     /* overflow      = 0x0 */ ,
+    Assembler::overflow       /* noOverflow    = 0x1 */ ,
+    Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
+    Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
+    Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
+    Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
+    Assembler::above          /* belowEqual    = 0x6 */ ,
+    Assembler::belowEqual     /* above         = 0x7 */ ,
+    Assembler::positive       /* negative      = 0x8 */ ,
+    Assembler::negative       /* positive      = 0x9 */ ,
+    Assembler::noParity       /* parity        = 0xa */ ,
+    Assembler::parity         /* noParity      = 0xb */ ,
+    Assembler::greaterEqual   /* less          = 0xc */ ,
+    Assembler::less           /* greaterEqual  = 0xd */ ,
+    Assembler::greater        /* lessEqual     = 0xe */ ,
+    Assembler::lessEqual      /* greater       = 0xf, */
+
+};
+
+
+// Implementation of MacroAssembler
+
+// First all the versions that have distinct versions depending on 32/64 bit
+// Unless the difference is trivial (1 line or so).
+
+#ifndef _LP64
+
+// 32bit versions
+
+Address MacroAssembler::as_Address(AddressLiteral adr) {
+  return Address(adr.target(), adr.rspec());
+}
+
+Address MacroAssembler::as_Address(ArrayAddress adr) {
+  return Address::make_array(adr);
+}
+
+int MacroAssembler::biased_locking_enter(Register lock_reg,
+                                         Register obj_reg,
+                                         Register swap_reg,
+                                         Register tmp_reg,
+                                         bool swap_reg_contains_mark,
+                                         Label& done,
+                                         Label* slow_case,
+                                         BiasedLockingCounters* counters) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+  assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
+  assert_different_registers(lock_reg, obj_reg, swap_reg);
+
+  if (PrintBiasedLockingStatistics && counters == NULL)
+    counters = BiasedLocking::counters();
+
+  bool need_tmp_reg = false;
+  if (tmp_reg == noreg) {
+    need_tmp_reg = true;
+    tmp_reg = lock_reg;
+  } else {
+    assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
+  }
+  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
+  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
+  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
+  Address saved_mark_addr(lock_reg, 0);
+
+  // Biased locking
+  // See whether the lock is currently biased toward our thread and
+  // whether the epoch is still valid
+  // Note that the runtime guarantees sufficient alignment of JavaThread
+  // pointers to allow age to be placed into low bits
+  // First check to see whether biasing is even enabled for this object
+  Label cas_label;
+  int null_check_offset = -1;
+  if (!swap_reg_contains_mark) {
+    null_check_offset = offset();
+    movl(swap_reg, mark_addr);
+  }
+  if (need_tmp_reg) {
+    push(tmp_reg);
+  }
+  movl(tmp_reg, swap_reg);
+  andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
+  if (need_tmp_reg) {
+    pop(tmp_reg);
+  }
+  jcc(Assembler::notEqual, cas_label);
+  // The bias pattern is present in the object's header. Need to check
+  // whether the bias owner and the epoch are both still current.
+  // Note that because there is no current thread register on x86 we
+  // need to store off the mark word we read out of the object to
+  // avoid reloading it and needing to recheck invariants below. This
+  // store is unfortunate but it makes the overall code shorter and
+  // simpler.
+  movl(saved_mark_addr, swap_reg);
+  if (need_tmp_reg) {
+    push(tmp_reg);
+  }
+  get_thread(tmp_reg);
+  xorl(swap_reg, tmp_reg);
+  if (swap_reg_contains_mark) {
+    null_check_offset = offset();
+  }
+  movl(tmp_reg, klass_addr);
+  xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
+  if (need_tmp_reg) {
+    pop(tmp_reg);
+  }
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->biased_lock_entry_count_addr()));
+  }
+  jcc(Assembler::equal, done);
+
+  Label try_revoke_bias;
+  Label try_rebias;
+
+  // At this point we know that the header has the bias pattern and
+  // that we are not the bias owner in the current epoch. We need to
+  // figure out more details about the state of the header in order to
+  // know what operations can be legally performed on the object's
+  // header.
+
+  // If the low three bits in the xor result aren't clear, that means
+  // the prototype header is no longer biased and we have to revoke
+  // the bias on this object.
+  testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
+  jcc(Assembler::notZero, try_revoke_bias);
+
+  // Biasing is still enabled for this data type. See whether the
+  // epoch of the current bias is still valid, meaning that the epoch
+  // bits of the mark word are equal to the epoch bits of the
+  // prototype header. (Note that the prototype header's epoch bits
+  // only change at a safepoint.) If not, attempt to rebias the object
+  // toward the current thread. Note that we must be absolutely sure
+  // that the current epoch is invalid in order to do this because
+  // otherwise the manipulations it performs on the mark word are
+  // illegal.
+  testl(swap_reg, markOopDesc::epoch_mask_in_place);
+  jcc(Assembler::notZero, try_rebias);
+
+  // The epoch of the current bias is still valid but we know nothing
+  // about the owner; it might be set or it might be clear. Try to
+  // acquire the bias of the object using an atomic operation. If this
+  // fails we will go in to the runtime to revoke the object's bias.
+  // Note that we first construct the presumed unbiased header so we
+  // don't accidentally blow away another thread's valid bias.
+  movl(swap_reg, saved_mark_addr);
+  andl(swap_reg,
+       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
+  if (need_tmp_reg) {
+    push(tmp_reg);
+  }
+  get_thread(tmp_reg);
+  orl(tmp_reg, swap_reg);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
+  if (need_tmp_reg) {
+    pop(tmp_reg);
+  }
+  // If the biasing toward our thread failed, this means that
+  // another thread succeeded in biasing it toward itself and we
+  // need to revoke that bias. The revocation will occur in the
+  // interpreter runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_rebias);
+  // At this point we know the epoch has expired, meaning that the
+  // current "bias owner", if any, is actually invalid. Under these
+  // circumstances _only_, we are allowed to use the current header's
+  // value as the comparison value when doing the cas to acquire the
+  // bias in the current epoch. In other words, we allow transfer of
+  // the bias from one thread to another directly in this situation.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  if (need_tmp_reg) {
+    push(tmp_reg);
+  }
+  get_thread(tmp_reg);
+  movl(swap_reg, klass_addr);
+  orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  movl(swap_reg, saved_mark_addr);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
+  if (need_tmp_reg) {
+    pop(tmp_reg);
+  }
+  // If the biasing toward our thread failed, then another thread
+  // succeeded in biasing it toward itself and we need to revoke that
+  // bias. The revocation will occur in the runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_revoke_bias);
+  // The prototype mark in the klass doesn't have the bias bit set any
+  // more, indicating that objects of this data type are not supposed
+  // to be biased any more. We are going to try to reset the mark of
+  // this object to the prototype value and fall through to the
+  // CAS-based locking scheme. Note that if our CAS fails, it means
+  // that another thread raced us for the privilege of revoking the
+  // bias of this particular object, so it's okay to continue in the
+  // normal locking code.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  movl(swap_reg, saved_mark_addr);
+  if (need_tmp_reg) {
+    push(tmp_reg);
+  }
+  movl(tmp_reg, klass_addr);
+  movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgptr(tmp_reg, Address(obj_reg, 0));
+  if (need_tmp_reg) {
+    pop(tmp_reg);
+  }
+  // Fall through to the normal CAS-based lock, because no matter what
+  // the result of the above CAS, some thread must have succeeded in
+  // removing the bias bit from the object's header.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
+  }
+
+  bind(cas_label);
+
+  return null_check_offset;
+}
+void MacroAssembler::call_VM_leaf_base(address entry_point,
+                                       int number_of_arguments) {
+  call(RuntimeAddress(entry_point));
+  increment(rsp, number_of_arguments * wordSize);
+}
+
+void MacroAssembler::cmpoop(Address src1, jobject obj) {
+  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::cmpoop(Register src1, jobject obj) {
+  cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::extend_sign(Register hi, Register lo) {
+  // According to Intel Doc. AP-526, "Integer Divide", p.18.
+  if (VM_Version::is_P6() && hi == rdx && lo == rax) {
+    cdql();
+  } else {
+    movl(hi, lo);
+    sarl(hi, 31);
+  }
+}
+
+void MacroAssembler::fat_nop() {
+  // A 5 byte nop that is safe for patching (see patch_verified_entry)
+  emit_byte(0x26); // es:
+  emit_byte(0x2e); // cs:
+  emit_byte(0x64); // fs:
+  emit_byte(0x65); // gs:
+  emit_byte(0x90);
+}
+
+void MacroAssembler::jC2(Register tmp, Label& L) {
+  // set parity bit if FPU flag C2 is set (via rax)
+  save_rax(tmp);
+  fwait(); fnstsw_ax();
+  sahf();
+  restore_rax(tmp);
+  // branch
+  jcc(Assembler::parity, L);
+}
+
+void MacroAssembler::jnC2(Register tmp, Label& L) {
+  // set parity bit if FPU flag C2 is set (via rax)
+  save_rax(tmp);
+  fwait(); fnstsw_ax();
+  sahf();
+  restore_rax(tmp);
+  // branch
+  jcc(Assembler::noParity, L);
+}
+
+// 32bit can do a case table jump in one instruction but we no longer allow the base
+// to be installed in the Address class
+void MacroAssembler::jump(ArrayAddress entry) {
+  jmp(as_Address(entry));
+}
+
+// Note: y_lo will be destroyed
+void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
+  // Long compare for Java (semantics as described in JVM spec.)
+  Label high, low, done;
+
+  cmpl(x_hi, y_hi);
+  jcc(Assembler::less, low);
+  jcc(Assembler::greater, high);
+  // x_hi is the return register
+  xorl(x_hi, x_hi);
+  cmpl(x_lo, y_lo);
+  jcc(Assembler::below, low);
+  jcc(Assembler::equal, done);
+
+  bind(high);
+  xorl(x_hi, x_hi);
+  increment(x_hi);
+  jmp(done);
+
+  bind(low);
+  xorl(x_hi, x_hi);
+  decrementl(x_hi);
+
+  bind(done);
+}
+
+void MacroAssembler::lea(Register dst, AddressLiteral src) {
+    mov_literal32(dst, (int32_t)src.target(), src.rspec());
+}
+
+void MacroAssembler::lea(Address dst, AddressLiteral adr) {
+  // leal(dst, as_Address(adr));
+  // see note in movl as to why we must use a move
+  mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
+}
+
+void MacroAssembler::leave() {
+  mov(rsp, rbp);
+  pop(rbp);
+}
+
+void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
+  // Multiplication of two Java long values stored on the stack
+  // as illustrated below. Result is in rdx:rax.
+  //
+  // rsp ---> [  ??  ] \               \
+  //            ....    | y_rsp_offset  |
+  //          [ y_lo ] /  (in bytes)    | x_rsp_offset
+  //          [ y_hi ]                  | (in bytes)
+  //            ....                    |
+  //          [ x_lo ]                 /
+  //          [ x_hi ]
+  //            ....
+  //
+  // Basic idea: lo(result) = lo(x_lo * y_lo)
+  //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
+  Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
+  Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
+  Label quick;
+  // load x_hi, y_hi and check if quick
+  // multiplication is possible
+  movl(rbx, x_hi);
+  movl(rcx, y_hi);
+  movl(rax, rbx);
+  orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
+  jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
+  // do full multiplication
+  // 1st step
+  mull(y_lo);                                    // x_hi * y_lo
+  movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
+  // 2nd step
+  movl(rax, x_lo);
+  mull(rcx);                                     // x_lo * y_hi
+  addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
+  // 3rd step
+  bind(quick);                                   // note: rbx, = 0 if quick multiply!
+  movl(rax, x_lo);
+  mull(y_lo);                                    // x_lo * y_lo
+  addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
+}
+
+void MacroAssembler::lneg(Register hi, Register lo) {
+  negl(lo);
+  adcl(hi, 0);
+  negl(hi);
+}
+
+void MacroAssembler::lshl(Register hi, Register lo) {
+  // Java shift left long support (semantics as described in JVM spec., p.305)
+  // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
+  // shift value is in rcx !
+  assert(hi != rcx, "must not use rcx");
+  assert(lo != rcx, "must not use rcx");
+  const Register s = rcx;                        // shift count
+  const int      n = BitsPerWord;
+  Label L;
+  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
+  cmpl(s, n);                                    // if (s < n)
+  jcc(Assembler::less, L);                       // else (s >= n)
+  movl(hi, lo);                                  // x := x << n
+  xorl(lo, lo);
+  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
+  bind(L);                                       // s (mod n) < n
+  shldl(hi, lo);                                 // x := x << s
+  shll(lo);
+}
+
+
+void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
+  // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
+  // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
+  assert(hi != rcx, "must not use rcx");
+  assert(lo != rcx, "must not use rcx");
+  const Register s = rcx;                        // shift count
+  const int      n = BitsPerWord;
+  Label L;
+  andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
+  cmpl(s, n);                                    // if (s < n)
+  jcc(Assembler::less, L);                       // else (s >= n)
+  movl(lo, hi);                                  // x := x >> n
+  if (sign_extension) sarl(hi, 31);
+  else                xorl(hi, hi);
+  // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
+  bind(L);                                       // s (mod n) < n
+  shrdl(lo, hi);                                 // x := x >> s
+  if (sign_extension) sarl(hi);
+  else                shrl(hi);
+}
+
+void MacroAssembler::movoop(Register dst, jobject obj) {
+  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movoop(Address dst, jobject obj) {
+  mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movptr(Register dst, AddressLiteral src) {
+  if (src.is_lval()) {
+    mov_literal32(dst, (intptr_t)src.target(), src.rspec());
+  } else {
+    movl(dst, as_Address(src));
+  }
+}
+
+void MacroAssembler::movptr(ArrayAddress dst, Register src) {
+  movl(as_Address(dst), src);
+}
+
+void MacroAssembler::movptr(Register dst, ArrayAddress src) {
+  movl(dst, as_Address(src));
+}
+
+// src should NEVER be a real pointer. Use AddressLiteral for true pointers
+void MacroAssembler::movptr(Address dst, intptr_t src) {
+  movl(dst, src);
+}
+
+
+void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
+  movsd(dst, as_Address(src));
+}
+
+void MacroAssembler::pop_callee_saved_registers() {
+  pop(rcx);
+  pop(rdx);
+  pop(rdi);
+  pop(rsi);
+}
+
+void MacroAssembler::pop_fTOS() {
+  fld_d(Address(rsp, 0));
+  addl(rsp, 2 * wordSize);
+}
+
+void MacroAssembler::push_callee_saved_registers() {
+  push(rsi);
+  push(rdi);
+  push(rdx);
+  push(rcx);
+}
+
+void MacroAssembler::push_fTOS() {
+  subl(rsp, 2 * wordSize);
+  fstp_d(Address(rsp, 0));
+}
+
+
+void MacroAssembler::pushoop(jobject obj) {
+  push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+
+void MacroAssembler::pushptr(AddressLiteral src) {
+  if (src.is_lval()) {
+    push_literal32((int32_t)src.target(), src.rspec());
+  } else {
+    pushl(as_Address(src));
+  }
+}
+
+void MacroAssembler::set_word_if_not_zero(Register dst) {
+  xorl(dst, dst);
+  set_byte_if_not_zero(dst);
+}
+
+static void pass_arg0(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+static void pass_arg1(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+static void pass_arg2(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+static void pass_arg3(MacroAssembler* masm, Register arg) {
+  masm->push(arg);
+}
+
+#ifndef PRODUCT
+extern "C" void findpc(intptr_t x);
+#endif
+
+void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
+  // In order to get locks to work, we need to fake a in_VM state
+  JavaThread* thread = JavaThread::current();
+  JavaThreadState saved_state = thread->thread_state();
+  thread->set_thread_state(_thread_in_vm);
+  if (ShowMessageBoxOnError) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+      ttyLocker ttyl;
+      BytecodeCounter::print();
+    }
+    // To see where a verify_oop failed, get $ebx+40/X for this frame.
+    // This is the value of eip which points to where verify_oop will return.
+    if (os::message_box(msg, "Execution stopped, print registers?")) {
+      ttyLocker ttyl;
+      tty->print_cr("eip = 0x%08x", eip);
+#ifndef PRODUCT
+      tty->cr();
+      findpc(eip);
+      tty->cr();
+#endif
+      tty->print_cr("rax, = 0x%08x", rax);
+      tty->print_cr("rbx, = 0x%08x", rbx);
+      tty->print_cr("rcx = 0x%08x", rcx);
+      tty->print_cr("rdx = 0x%08x", rdx);
+      tty->print_cr("rdi = 0x%08x", rdi);
+      tty->print_cr("rsi = 0x%08x", rsi);
+      tty->print_cr("rbp, = 0x%08x", rbp);
+      tty->print_cr("rsp = 0x%08x", rsp);
+      BREAKPOINT;
+    }
+  } else {
+    ttyLocker ttyl;
+    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
+    assert(false, "DEBUG MESSAGE");
+  }
+  ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
+}
+
+void MacroAssembler::stop(const char* msg) {
+  ExternalAddress message((address)msg);
+  // push address of message
+  pushptr(message.addr());
+  { Label L; call(L, relocInfo::none); bind(L); }     // push eip
+  pusha();                                           // push registers
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
+  hlt();
+}
+
+void MacroAssembler::warn(const char* msg) {
+  push_CPU_state();
+
+  ExternalAddress message((address) msg);
+  // push address of message
+  pushptr(message.addr());
+
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
+  addl(rsp, wordSize);       // discard argument
+  pop_CPU_state();
+}
+
+#else // _LP64
+
+// 64 bit versions
+
+Address MacroAssembler::as_Address(AddressLiteral adr) {
+  // amd64 always does this as a pc-rel
+  // we can be absolute or disp based on the instruction type
+  // jmp/call are displacements others are absolute
+  assert(!adr.is_lval(), "must be rval");
+  assert(reachable(adr), "must be");
+  return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
+
+}
+
+Address MacroAssembler::as_Address(ArrayAddress adr) {
+  AddressLiteral base = adr.base();
+  lea(rscratch1, base);
+  Address index = adr.index();
+  assert(index._disp == 0, "must not have disp"); // maybe it can?
+  Address array(rscratch1, index._index, index._scale, index._disp);
+  return array;
+}
+
+int MacroAssembler::biased_locking_enter(Register lock_reg,
+                                         Register obj_reg,
+                                         Register swap_reg,
+                                         Register tmp_reg,
+                                         bool swap_reg_contains_mark,
+                                         Label& done,
+                                         Label* slow_case,
+                                         BiasedLockingCounters* counters) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+  assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
+  assert(tmp_reg != noreg, "tmp_reg must be supplied");
+  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
+  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
+  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
+  Address saved_mark_addr(lock_reg, 0);
+
+  if (PrintBiasedLockingStatistics && counters == NULL)
+    counters = BiasedLocking::counters();
+
+  // Biased locking
+  // See whether the lock is currently biased toward our thread and
+  // whether the epoch is still valid
+  // Note that the runtime guarantees sufficient alignment of JavaThread
+  // pointers to allow age to be placed into low bits
+  // First check to see whether biasing is even enabled for this object
+  Label cas_label;
+  int null_check_offset = -1;
+  if (!swap_reg_contains_mark) {
+    null_check_offset = offset();
+    movq(swap_reg, mark_addr);
+  }
+  movq(tmp_reg, swap_reg);
+  andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
+  jcc(Assembler::notEqual, cas_label);
+  // The bias pattern is present in the object's header. Need to check
+  // whether the bias owner and the epoch are both still current.
+  load_prototype_header(tmp_reg, obj_reg);
+  orq(tmp_reg, r15_thread);
+  xorq(tmp_reg, swap_reg);
+  andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
+  }
+  jcc(Assembler::equal, done);
+
+  Label try_revoke_bias;
+  Label try_rebias;
+
+  // At this point we know that the header has the bias pattern and
+  // that we are not the bias owner in the current epoch. We need to
+  // figure out more details about the state of the header in order to
+  // know what operations can be legally performed on the object's
+  // header.
+
+  // If the low three bits in the xor result aren't clear, that means
+  // the prototype header is no longer biased and we have to revoke
+  // the bias on this object.
+  testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
+  jcc(Assembler::notZero, try_revoke_bias);
+
+  // Biasing is still enabled for this data type. See whether the
+  // epoch of the current bias is still valid, meaning that the epoch
+  // bits of the mark word are equal to the epoch bits of the
+  // prototype header. (Note that the prototype header's epoch bits
+  // only change at a safepoint.) If not, attempt to rebias the object
+  // toward the current thread. Note that we must be absolutely sure
+  // that the current epoch is invalid in order to do this because
+  // otherwise the manipulations it performs on the mark word are
+  // illegal.
+  testq(tmp_reg, markOopDesc::epoch_mask_in_place);
+  jcc(Assembler::notZero, try_rebias);
+
+  // The epoch of the current bias is still valid but we know nothing
+  // about the owner; it might be set or it might be clear. Try to
+  // acquire the bias of the object using an atomic operation. If this
+  // fails we will go in to the runtime to revoke the object's bias.
+  // Note that we first construct the presumed unbiased header so we
+  // don't accidentally blow away another thread's valid bias.
+  andq(swap_reg,
+       markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
+  movq(tmp_reg, swap_reg);
+  orq(tmp_reg, r15_thread);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgq(tmp_reg, Address(obj_reg, 0));
+  // If the biasing toward our thread failed, this means that
+  // another thread succeeded in biasing it toward itself and we
+  // need to revoke that bias. The revocation will occur in the
+  // interpreter runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_rebias);
+  // At this point we know the epoch has expired, meaning that the
+  // current "bias owner", if any, is actually invalid. Under these
+  // circumstances _only_, we are allowed to use the current header's
+  // value as the comparison value when doing the cas to acquire the
+  // bias in the current epoch. In other words, we allow transfer of
+  // the bias from one thread to another directly in this situation.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  load_prototype_header(tmp_reg, obj_reg);
+  orq(tmp_reg, r15_thread);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgq(tmp_reg, Address(obj_reg, 0));
+  // If the biasing toward our thread failed, then another thread
+  // succeeded in biasing it toward itself and we need to revoke that
+  // bias. The revocation will occur in the runtime in the slow case.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
+  }
+  if (slow_case != NULL) {
+    jcc(Assembler::notZero, *slow_case);
+  }
+  jmp(done);
+
+  bind(try_revoke_bias);
+  // The prototype mark in the klass doesn't have the bias bit set any
+  // more, indicating that objects of this data type are not supposed
+  // to be biased any more. We are going to try to reset the mark of
+  // this object to the prototype value and fall through to the
+  // CAS-based locking scheme. Note that if our CAS fails, it means
+  // that another thread raced us for the privilege of revoking the
+  // bias of this particular object, so it's okay to continue in the
+  // normal locking code.
+  //
+  // FIXME: due to a lack of registers we currently blow away the age
+  // bits in this situation. Should attempt to preserve them.
+  load_prototype_header(tmp_reg, obj_reg);
+  if (os::is_MP()) {
+    lock();
+  }
+  cmpxchgq(tmp_reg, Address(obj_reg, 0));
+  // Fall through to the normal CAS-based lock, because no matter what
+  // the result of the above CAS, some thread must have succeeded in
+  // removing the bias bit from the object's header.
+  if (counters != NULL) {
+    cond_inc32(Assembler::zero,
+               ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
+  }
+
+  bind(cas_label);
+
+  return null_check_offset;
+}
+
+void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
+  Label L, E;
+
+#ifdef _WIN64
+  // Windows always allocates space for it's register args
+  assert(num_args <= 4, "only register arguments supported");
+  subq(rsp,  frame::arg_reg_save_area_bytes);
+#endif
+
+  // Align stack if necessary
+  testl(rsp, 15);
+  jcc(Assembler::zero, L);
+
+  subq(rsp, 8);
+  {
+    call(RuntimeAddress(entry_point));
+  }
+  addq(rsp, 8);
+  jmp(E);
+
+  bind(L);
+  {
+    call(RuntimeAddress(entry_point));
+  }
+
+  bind(E);
+
+#ifdef _WIN64
+  // restore stack pointer
+  addq(rsp, frame::arg_reg_save_area_bytes);
+#endif
+
+}
+
+void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
+  assert(!src2.is_lval(), "should use cmpptr");
+
+  if (reachable(src2)) {
+    cmpq(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    Assembler::cmpq(src1, Address(rscratch1, 0));
+  }
+}
+
+int MacroAssembler::corrected_idivq(Register reg) {
+  // Full implementation of Java ldiv and lrem; checks for special
+  // case as described in JVM spec., p.243 & p.271.  The function
+  // returns the (pc) offset of the idivl instruction - may be needed
+  // for implicit exceptions.
+  //
+  //         normal case                           special case
+  //
+  // input : rax: dividend                         min_long
+  //         reg: divisor   (may not be eax/edx)   -1
+  //
+  // output: rax: quotient  (= rax idiv reg)       min_long
+  //         rdx: remainder (= rax irem reg)       0
+  assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
+  static const int64_t min_long = 0x8000000000000000;
+  Label normal_case, special_case;
+
+  // check for special case
+  cmp64(rax, ExternalAddress((address) &min_long));
+  jcc(Assembler::notEqual, normal_case);
+  xorl(rdx, rdx); // prepare rdx for possible special case (where
+                  // remainder = 0)
+  cmpq(reg, -1);
+  jcc(Assembler::equal, special_case);
+
+  // handle normal case
+  bind(normal_case);
+  cdqq();
+  int idivq_offset = offset();
+  idivq(reg);
+
+  // normal and special case exit
+  bind(special_case);
+
+  return idivq_offset;
+}
+
+void MacroAssembler::decrementq(Register reg, int value) {
+  if (value == min_jint) { subq(reg, value); return; }
+  if (value <  0) { incrementq(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decq(reg) ; return; }
+  /* else */      { subq(reg, value)       ; return; }
+}
+
+void MacroAssembler::decrementq(Address dst, int value) {
+  if (value == min_jint) { subq(dst, value); return; }
+  if (value <  0) { incrementq(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decq(dst) ; return; }
+  /* else */      { subq(dst, value)       ; return; }
+}
+
+void MacroAssembler::fat_nop() {
+  // A 5 byte nop that is safe for patching (see patch_verified_entry)
+  // Recommened sequence from 'Software Optimization Guide for the AMD
+  // Hammer Processor'
+  emit_byte(0x66);
+  emit_byte(0x66);
+  emit_byte(0x90);
+  emit_byte(0x66);
+  emit_byte(0x90);
+}
+
+void MacroAssembler::incrementq(Register reg, int value) {
+  if (value == min_jint) { addq(reg, value); return; }
+  if (value <  0) { decrementq(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incq(reg) ; return; }
+  /* else */      { addq(reg, value)       ; return; }
+}
+
+void MacroAssembler::incrementq(Address dst, int value) {
+  if (value == min_jint) { addq(dst, value); return; }
+  if (value <  0) { decrementq(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incq(dst) ; return; }
+  /* else */      { addq(dst, value)       ; return; }
+}
+
+// 32bit can do a case table jump in one instruction but we no longer allow the base
+// to be installed in the Address class
+void MacroAssembler::jump(ArrayAddress entry) {
+  lea(rscratch1, entry.base());
+  Address dispatch = entry.index();
+  assert(dispatch._base == noreg, "must be");
+  dispatch._base = rscratch1;
+  jmp(dispatch);
+}
+
+void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
+  ShouldNotReachHere(); // 64bit doesn't use two regs
+  cmpq(x_lo, y_lo);
+}
+
+void MacroAssembler::lea(Register dst, AddressLiteral src) {
+    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
+}
+
+void MacroAssembler::lea(Address dst, AddressLiteral adr) {
+  mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
+  movptr(dst, rscratch1);
+}
+
+void MacroAssembler::leave() {
+  // %%% is this really better? Why not on 32bit too?
+  emit_byte(0xC9); // LEAVE
+}
+
+void MacroAssembler::lneg(Register hi, Register lo) {
+  ShouldNotReachHere(); // 64bit doesn't use two regs
+  negq(lo);
+}
+
+void MacroAssembler::movoop(Register dst, jobject obj) {
+  mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
+}
+
+void MacroAssembler::movoop(Address dst, jobject obj) {
+  mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
+  movq(dst, rscratch1);
+}
+
+void MacroAssembler::movptr(Register dst, AddressLiteral src) {
+  if (src.is_lval()) {
+    mov_literal64(dst, (intptr_t)src.target(), src.rspec());
+  } else {
+    if (reachable(src)) {
+      movq(dst, as_Address(src));
+    } else {
+      lea(rscratch1, src);
+      movq(dst, Address(rscratch1,0));
+    }
+  }
+}
+
+void MacroAssembler::movptr(ArrayAddress dst, Register src) {
+  movq(as_Address(dst), src);
+}
+
+void MacroAssembler::movptr(Register dst, ArrayAddress src) {
+  movq(dst, as_Address(src));
+}
+
+// src should NEVER be a real pointer. Use AddressLiteral for true pointers
+void MacroAssembler::movptr(Address dst, intptr_t src) {
+  mov64(rscratch1, src);
+  movq(dst, rscratch1);
+}
+
+// These are mostly for initializing NULL
+void MacroAssembler::movptr(Address dst, int32_t src) {
+  movslq(dst, src);
+}
+
+void MacroAssembler::movptr(Register dst, int32_t src) {
+  mov64(dst, (intptr_t)src);
+}
+
+void MacroAssembler::pushoop(jobject obj) {
+  movoop(rscratch1, obj);
+  push(rscratch1);
+}
+
+void MacroAssembler::pushptr(AddressLiteral src) {
+  lea(rscratch1, src);
+  if (src.is_lval()) {
+    push(rscratch1);
+  } else {
+    pushq(Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::reset_last_Java_frame(bool clear_fp,
+                                           bool clear_pc) {
+  // we must set sp to zero to clear frame
+  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), (int32_t)NULL_WORD);
+  // must clear fp, so that compiled frames are not confused; it is
+  // possible that we need it only for debugging
+  if (clear_fp) {
+    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), (int32_t)NULL_WORD);
+  }
+
+  if (clear_pc) {
+    movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), (int32_t)NULL_WORD);
+  }
+}
+
+void MacroAssembler::set_last_Java_frame(Register last_java_sp,
+                                         Register last_java_fp,
+                                         address  last_java_pc) {
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+
+  // last_java_fp is optional
+  if (last_java_fp->is_valid()) {
+    movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
+           last_java_fp);
+  }
+
+  // last_java_pc is optional
+  if (last_java_pc != NULL) {
+    Address java_pc(r15_thread,
+                    JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
+    lea(rscratch1, InternalAddress(last_java_pc));
+    movptr(java_pc, rscratch1);
+  }
+
+  movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
+}
+
+static void pass_arg0(MacroAssembler* masm, Register arg) {
+  if (c_rarg0 != arg ) {
+    masm->mov(c_rarg0, arg);
+  }
+}
+
+static void pass_arg1(MacroAssembler* masm, Register arg) {
+  if (c_rarg1 != arg ) {
+    masm->mov(c_rarg1, arg);
+  }
+}
+
+static void pass_arg2(MacroAssembler* masm, Register arg) {
+  if (c_rarg2 != arg ) {
+    masm->mov(c_rarg2, arg);
+  }
+}
+
+static void pass_arg3(MacroAssembler* masm, Register arg) {
+  if (c_rarg3 != arg ) {
+    masm->mov(c_rarg3, arg);
+  }
+}
+
+void MacroAssembler::stop(const char* msg) {
+  address rip = pc();
+  pusha(); // get regs on stack
+  lea(c_rarg0, ExternalAddress((address) msg));
+  lea(c_rarg1, InternalAddress(rip));
+  movq(c_rarg2, rsp); // pass pointer to regs array
+  andq(rsp, -16); // align stack as required by ABI
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
+  hlt();
+}
+
+void MacroAssembler::warn(const char* msg) {
+  push(r12);
+  movq(r12, rsp);
+  andq(rsp, -16);     // align stack as required by push_CPU_state and call
+
+  push_CPU_state();   // keeps alignment at 16 bytes
+  lea(c_rarg0, ExternalAddress((address) msg));
+  call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
+  pop_CPU_state();
+
+  movq(rsp, r12);
+  pop(r12);
+}
+
+#ifndef PRODUCT
+extern "C" void findpc(intptr_t x);
+#endif
+
+void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
+  // In order to get locks to work, we need to fake a in_VM state
+  if (ShowMessageBoxOnError ) {
+    JavaThread* thread = JavaThread::current();
+    JavaThreadState saved_state = thread->thread_state();
+    thread->set_thread_state(_thread_in_vm);
+#ifndef PRODUCT
+    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
+      ttyLocker ttyl;
+      BytecodeCounter::print();
+    }
+#endif
+    // To see where a verify_oop failed, get $ebx+40/X for this frame.
+    // XXX correct this offset for amd64
+    // This is the value of eip which points to where verify_oop will return.
+    if (os::message_box(msg, "Execution stopped, print registers?")) {
+      ttyLocker ttyl;
+      tty->print_cr("rip = 0x%016lx", pc);
+#ifndef PRODUCT
+      tty->cr();
+      findpc(pc);
+      tty->cr();
+#endif
+      tty->print_cr("rax = 0x%016lx", regs[15]);
+      tty->print_cr("rbx = 0x%016lx", regs[12]);
+      tty->print_cr("rcx = 0x%016lx", regs[14]);
+      tty->print_cr("rdx = 0x%016lx", regs[13]);
+      tty->print_cr("rdi = 0x%016lx", regs[8]);
+      tty->print_cr("rsi = 0x%016lx", regs[9]);
+      tty->print_cr("rbp = 0x%016lx", regs[10]);
+      tty->print_cr("rsp = 0x%016lx", regs[11]);
+      tty->print_cr("r8  = 0x%016lx", regs[7]);
+      tty->print_cr("r9  = 0x%016lx", regs[6]);
+      tty->print_cr("r10 = 0x%016lx", regs[5]);
+      tty->print_cr("r11 = 0x%016lx", regs[4]);
+      tty->print_cr("r12 = 0x%016lx", regs[3]);
+      tty->print_cr("r13 = 0x%016lx", regs[2]);
+      tty->print_cr("r14 = 0x%016lx", regs[1]);
+      tty->print_cr("r15 = 0x%016lx", regs[0]);
+      BREAKPOINT;
+    }
+    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
+  } else {
+    ttyLocker ttyl;
+    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
+                    msg);
+  }
+}
+
+#endif // _LP64
+
+// Now versions that are common to 32/64 bit
+
+void MacroAssembler::addptr(Register dst, int32_t imm32) {
+  LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
+}
+
+void MacroAssembler::addptr(Register dst, Register src) {
+  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
+}
+
+void MacroAssembler::addptr(Address dst, Register src) {
+  LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
+}
+
+void MacroAssembler::align(int modulus) {
+  if (offset() % modulus != 0) {
+    nop(modulus - (offset() % modulus));
+  }
+}
+
+void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
+  andpd(dst, as_Address(src));
+}
+
+void MacroAssembler::andptr(Register dst, int32_t imm32) {
+  LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
+}
+
+void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
+  pushf();
+  if (os::is_MP())
+    lock();
+  incrementl(counter_addr);
+  popf();
+}
+
+// Writes to stack successive pages until offset reached to check for
+// stack overflow + shadow pages.  This clobbers tmp.
+void MacroAssembler::bang_stack_size(Register size, Register tmp) {
+  movptr(tmp, rsp);
+  // Bang stack for total size given plus shadow page size.
+  // Bang one page at a time because large size can bang beyond yellow and
+  // red zones.
+  Label loop;
+  bind(loop);
+  movl(Address(tmp, (-os::vm_page_size())), size );
+  subptr(tmp, os::vm_page_size());
+  subl(size, os::vm_page_size());
+  jcc(Assembler::greater, loop);
+
+  // Bang down shadow pages too.
+  // The -1 because we already subtracted 1 page.
+  for (int i = 0; i< StackShadowPages-1; i++) {
+    // this could be any sized move but this is can be a debugging crumb
+    // so the bigger the better.
+    movptr(Address(tmp, (-i*os::vm_page_size())), size );
+  }
+}
+
+void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
+  assert(UseBiasedLocking, "why call this otherwise?");
+
+  // Check for biased locking unlock case, which is a no-op
+  // Note: we do not have to check the thread ID for two reasons.
+  // First, the interpreter checks for IllegalMonitorStateException at
+  // a higher level. Second, if the bias was revoked while we held the
+  // lock, the object could not be rebiased toward another thread, so
+  // the bias bit would be clear.
+  movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
+  andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
+  cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
+  jcc(Assembler::equal, done);
+}
+
+void MacroAssembler::c2bool(Register x) {
+  // implements x == 0 ? 0 : 1
+  // note: must only look at least-significant byte of x
+  //       since C-style booleans are stored in one byte
+  //       only! (was bug)
+  andl(x, 0xFF);
+  setb(Assembler::notZero, x);
+}
+
+// Wouldn't need if AddressLiteral version had new name
+void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
+  Assembler::call(L, rtype);
+}
+
+void MacroAssembler::call(Register entry) {
+  Assembler::call(entry);
+}
+
+void MacroAssembler::call(AddressLiteral entry) {
+  if (reachable(entry)) {
+    Assembler::call_literal(entry.target(), entry.rspec());
+  } else {
+    lea(rscratch1, entry);
+    Assembler::call(rscratch1);
+  }
+}
+
+// Implementation of call_VM versions
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  Label C, E;
+  call(C, relocInfo::none);
+  jmp(E);
+
+  bind(C);
+
+  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
+  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
+  pass_arg3(this, arg_3);
+
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+
+  pass_arg1(this, arg_1);
+  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
+  ret(0);
+
+  bind(E);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             int number_of_arguments,
+                             bool check_exceptions) {
+  Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
+  call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             bool check_exceptions) {
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             bool check_exceptions) {
+
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
+}
+
+void MacroAssembler::call_VM(Register oop_result,
+                             Register last_java_sp,
+                             address entry_point,
+                             Register arg_1,
+                             Register arg_2,
+                             Register arg_3,
+                             bool check_exceptions) {
+  LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
+  LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
+  pass_arg3(this, arg_3);
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  pass_arg1(this, arg_1);
+  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
+}
+
+void MacroAssembler::call_VM_base(Register oop_result,
+                                  Register java_thread,
+                                  Register last_java_sp,
+                                  address  entry_point,
+                                  int      number_of_arguments,
+                                  bool     check_exceptions) {
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+#ifdef _LP64
+    java_thread = r15_thread;
+#else
+    java_thread = rdi;
+    get_thread(java_thread);
+#endif // LP64
+  }
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+  // debugging support
+  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
+  LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
+  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
+  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
+
+  // push java thread (becomes first argument of C function)
+
+  NOT_LP64(push(java_thread); number_of_arguments++);
+  LP64_ONLY(mov(c_rarg0, r15_thread));
+
+  // set last Java frame before call
+  assert(last_java_sp != rbp, "can't use ebp/rbp");
+
+  // Only interpreter should have to set fp
+  set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
+
+  // do the call, remove parameters
+  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
+
+  // restore the thread (cannot use the pushed argument since arguments
+  // may be overwritten by C code generated by an optimizing compiler);
+  // however can use the register value directly if it is callee saved.
+  if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
+    // rdi & rsi (also r15) are callee saved -> nothing to do
+#ifdef ASSERT
+    guarantee(java_thread != rax, "change this code");
+    push(rax);
+    { Label L;
+      get_thread(rax);
+      cmpptr(java_thread, rax);
+      jcc(Assembler::equal, L);
+      stop("MacroAssembler::call_VM_base: rdi not callee saved?");
+      bind(L);
+    }
+    pop(rax);
+#endif
+  } else {
+    get_thread(java_thread);
+  }
+  // reset last Java frame
+  // Only interpreter should have to clear fp
+  reset_last_Java_frame(java_thread, true, false);
+
+#ifndef CC_INTERP
+   // C++ interp handles this in the interpreter
+  check_and_handle_popframe(java_thread);
+  check_and_handle_earlyret(java_thread);
+#endif /* CC_INTERP */
+
+  if (check_exceptions) {
+    // check for pending exceptions (java_thread is set upon return)
+    cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
+#ifndef _LP64
+    jump_cc(Assembler::notEqual,
+            RuntimeAddress(StubRoutines::forward_exception_entry()));
+#else
+    // This used to conditionally jump to forward_exception however it is
+    // possible if we relocate that the branch will not reach. So we must jump
+    // around so we can always reach
+
+    Label ok;
+    jcc(Assembler::equal, ok);
+    jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
+    bind(ok);
+#endif // LP64
+  }
+
+  // get oop result if there is one and reset the value in the thread
+  if (oop_result->is_valid()) {
+    movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
+    movptr(Address(java_thread, JavaThread::vm_result_offset()), (int32_t)NULL_WORD);
+    verify_oop(oop_result, "broken oop in call_VM_base");
+  }
+}
+
+void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
+
+  // Calculate the value for last_Java_sp
+  // somewhat subtle. call_VM does an intermediate call
+  // which places a return address on the stack just under the
+  // stack pointer as the user finsihed with it. This allows
+  // use to retrieve last_Java_pc from last_Java_sp[-1].
+  // On 32bit we then have to push additional args on the stack to accomplish
+  // the actual requested call. On 64bit call_VM only can use register args
+  // so the only extra space is the return address that call_VM created.
+  // This hopefully explains the calculations here.
+
+#ifdef _LP64
+  // We've pushed one address, correct last_Java_sp
+  lea(rax, Address(rsp, wordSize));
+#else
+  lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
+#endif // LP64
+
+  call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
+
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
+  call_VM_leaf_base(entry_point, number_of_arguments);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
+  pass_arg0(this, arg_0);
+  call_VM_leaf(entry_point, 1);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
+
+  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  call_VM_leaf(entry_point, 2);
+}
+
+void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
+  LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
+  LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
+  pass_arg2(this, arg_2);
+  LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
+  pass_arg1(this, arg_1);
+  pass_arg0(this, arg_0);
+  call_VM_leaf(entry_point, 3);
+}
+
+void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
+}
+
+void MacroAssembler::check_and_handle_popframe(Register java_thread) {
+}
+
+void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
+  if (reachable(src1)) {
+    cmpl(as_Address(src1), imm);
+  } else {
+    lea(rscratch1, src1);
+    cmpl(Address(rscratch1, 0), imm);
+  }
+}
+
+void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
+  assert(!src2.is_lval(), "use cmpptr");
+  if (reachable(src2)) {
+    cmpl(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    cmpl(src1, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::cmp32(Register src1, int32_t imm) {
+  Assembler::cmpl(src1, imm);
+}
+
+void MacroAssembler::cmp32(Register src1, Address src2) {
+  Assembler::cmpl(src1, src2);
+}
+
+void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
+  ucomisd(opr1, opr2);
+
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrementl(dst);
+  }
+  bind(L);
+}
+
+void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
+  ucomiss(opr1, opr2);
+
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrementl(dst);
+  }
+  bind(L);
+}
+
+
+void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
+  if (reachable(src1)) {
+    cmpb(as_Address(src1), imm);
+  } else {
+    lea(rscratch1, src1);
+    cmpb(Address(rscratch1, 0), imm);
+  }
+}
+
+void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
+#ifdef _LP64
+  if (src2.is_lval()) {
+    movptr(rscratch1, src2);
+    Assembler::cmpq(src1, rscratch1);
+  } else if (reachable(src2)) {
+    cmpq(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    Assembler::cmpq(src1, Address(rscratch1, 0));
+  }
+#else
+  if (src2.is_lval()) {
+    cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+  } else {
+    cmpl(src1, as_Address(src2));
+  }
+#endif // _LP64
+}
+
+void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
+  assert(src2.is_lval(), "not a mem-mem compare");
+#ifdef _LP64
+  // moves src2's literal address
+  movptr(rscratch1, src2);
+  Assembler::cmpq(src1, rscratch1);
+#else
+  cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
+#endif // _LP64
+}
+
+void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
+  if (reachable(adr)) {
+    if (os::is_MP())
+      lock();
+    cmpxchgptr(reg, as_Address(adr));
+  } else {
+    lea(rscratch1, adr);
+    if (os::is_MP())
+      lock();
+    cmpxchgptr(reg, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
+  LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
+}
+
+void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
+  comisd(dst, as_Address(src));
+}
+
+void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
+  comiss(dst, as_Address(src));
+}
+
+
+void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
+  Condition negated_cond = negate_condition(cond);
+  Label L;
+  jcc(negated_cond, L);
+  atomic_incl(counter_addr);
+  bind(L);
+}
+
+int MacroAssembler::corrected_idivl(Register reg) {
+  // Full implementation of Java idiv and irem; checks for
+  // special case as described in JVM spec., p.243 & p.271.
+  // The function returns the (pc) offset of the idivl
+  // instruction - may be needed for implicit exceptions.
+  //
+  //         normal case                           special case
+  //
+  // input : rax,: dividend                         min_int
+  //         reg: divisor   (may not be rax,/rdx)   -1
+  //
+  // output: rax,: quotient  (= rax, idiv reg)       min_int
+  //         rdx: remainder (= rax, irem reg)       0
+  assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
+  const int min_int = 0x80000000;
+  Label normal_case, special_case;
+
+  // check for special case
+  cmpl(rax, min_int);
+  jcc(Assembler::notEqual, normal_case);
+  xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
+  cmpl(reg, -1);
+  jcc(Assembler::equal, special_case);
+
+  // handle normal case
+  bind(normal_case);
+  cdql();
+  int idivl_offset = offset();
+  idivl(reg);
+
+  // normal and special case exit
+  bind(special_case);
+
+  return idivl_offset;
+}
+
+
+
+void MacroAssembler::decrementl(Register reg, int value) {
+  if (value == min_jint) {subl(reg, value) ; return; }
+  if (value <  0) { incrementl(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decl(reg) ; return; }
+  /* else */      { subl(reg, value)       ; return; }
+}
+
+void MacroAssembler::decrementl(Address dst, int value) {
+  if (value == min_jint) {subl(dst, value) ; return; }
+  if (value <  0) { incrementl(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { decl(dst) ; return; }
+  /* else */      { subl(dst, value)       ; return; }
+}
+
+void MacroAssembler::division_with_shift (Register reg, int shift_value) {
+  assert (shift_value > 0, "illegal shift value");
+  Label _is_positive;
+  testl (reg, reg);
+  jcc (Assembler::positive, _is_positive);
+  int offset = (1 << shift_value) - 1 ;
+
+  if (offset == 1) {
+    incrementl(reg);
+  } else {
+    addl(reg, offset);
+  }
+
+  bind (_is_positive);
+  sarl(reg, shift_value);
+}
+
+// !defined(COMPILER2) is because of stupid core builds
+#if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
+void MacroAssembler::empty_FPU_stack() {
+  if (VM_Version::supports_mmx()) {
+    emms();
+  } else {
+    for (int i = 8; i-- > 0; ) ffree(i);
+  }
+}
+#endif // !LP64 || C1 || !C2
+
+
+// Defines obj, preserves var_size_in_bytes
+void MacroAssembler::eden_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Label& slow_case) {
+  assert(obj == rax, "obj must be in rax, for cmpxchg");
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  Register end = t1;
+  Label retry;
+  bind(retry);
+  ExternalAddress heap_top((address) Universe::heap()->top_addr());
+  movptr(obj, heap_top);
+  if (var_size_in_bytes == noreg) {
+    lea(end, Address(obj, con_size_in_bytes));
+  } else {
+    lea(end, Address(obj, var_size_in_bytes, Address::times_1));
+  }
+  // if end < obj then we wrapped around => object too long => slow case
+  cmpptr(end, obj);
+  jcc(Assembler::below, slow_case);
+  cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
+  jcc(Assembler::above, slow_case);
+  // Compare obj with the top addr, and if still equal, store the new top addr in
+  // end at the address of the top addr pointer. Sets ZF if was equal, and clears
+  // it otherwise. Use lock prefix for atomicity on MPs.
+  locked_cmpxchgptr(end, heap_top);
+  jcc(Assembler::notEqual, retry);
+}
+
+void MacroAssembler::enter() {
+  push(rbp);
+  mov(rbp, rsp);
+}
+
+void MacroAssembler::fcmp(Register tmp) {
+  fcmp(tmp, 1, true, true);
+}
+
+void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
+  assert(!pop_right || pop_left, "usage error");
+  if (VM_Version::supports_cmov()) {
+    assert(tmp == noreg, "unneeded temp");
+    if (pop_left) {
+      fucomip(index);
+    } else {
+      fucomi(index);
+    }
+    if (pop_right) {
+      fpop();
+    }
+  } else {
+    assert(tmp != noreg, "need temp");
+    if (pop_left) {
+      if (pop_right) {
+        fcompp();
+      } else {
+        fcomp(index);
+      }
+    } else {
+      fcom(index);
+    }
+    // convert FPU condition into eflags condition via rax,
+    save_rax(tmp);
+    fwait(); fnstsw_ax();
+    sahf();
+    restore_rax(tmp);
+  }
+  // condition codes set as follows:
+  //
+  // CF (corresponds to C0) if x < y
+  // PF (corresponds to C2) if unordered
+  // ZF (corresponds to C3) if x = y
+}
+
+void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
+  fcmp2int(dst, unordered_is_less, 1, true, true);
+}
+
+void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
+  fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
+  Label L;
+  if (unordered_is_less) {
+    movl(dst, -1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::below , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    increment(dst);
+  } else { // unordered is greater
+    movl(dst, 1);
+    jcc(Assembler::parity, L);
+    jcc(Assembler::above , L);
+    movl(dst, 0);
+    jcc(Assembler::equal , L);
+    decrementl(dst);
+  }
+  bind(L);
+}
+
+void MacroAssembler::fld_d(AddressLiteral src) {
+  fld_d(as_Address(src));
+}
+
+void MacroAssembler::fld_s(AddressLiteral src) {
+  fld_s(as_Address(src));
+}
+
+void MacroAssembler::fld_x(AddressLiteral src) {
+  Assembler::fld_x(as_Address(src));
+}
+
+void MacroAssembler::fldcw(AddressLiteral src) {
+  Assembler::fldcw(as_Address(src));
+}
+
+void MacroAssembler::fpop() {
+  ffree();
+  fincstp();
+}
+
+void MacroAssembler::fremr(Register tmp) {
+  save_rax(tmp);
+  { Label L;
+    bind(L);
+    fprem();
+    fwait(); fnstsw_ax();
+#ifdef _LP64
+    testl(rax, 0x400);
+    jcc(Assembler::notEqual, L);
+#else
+    sahf();
+    jcc(Assembler::parity, L);
+#endif // _LP64
+  }
+  restore_rax(tmp);
+  // Result is in ST0.
+  // Note: fxch & fpop to get rid of ST1
+  // (otherwise FPU stack could overflow eventually)
+  fxch(1);
+  fpop();
+}
+
+
+void MacroAssembler::incrementl(AddressLiteral dst) {
+  if (reachable(dst)) {
+    incrementl(as_Address(dst));
+  } else {
+    lea(rscratch1, dst);
+    incrementl(Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::incrementl(ArrayAddress dst) {
+  incrementl(as_Address(dst));
+}
+
+void MacroAssembler::incrementl(Register reg, int value) {
+  if (value == min_jint) {addl(reg, value) ; return; }
+  if (value <  0) { decrementl(reg, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incl(reg) ; return; }
+  /* else */      { addl(reg, value)       ; return; }
+}
+
+void MacroAssembler::incrementl(Address dst, int value) {
+  if (value == min_jint) {addl(dst, value) ; return; }
+  if (value <  0) { decrementl(dst, -value); return; }
+  if (value == 0) {                        ; return; }
+  if (value == 1 && UseIncDec) { incl(dst) ; return; }
+  /* else */      { addl(dst, value)       ; return; }
+}
+
+void MacroAssembler::jump(AddressLiteral dst) {
+  if (reachable(dst)) {
+    jmp_literal(dst.target(), dst.rspec());
+  } else {
+    lea(rscratch1, dst);
+    jmp(rscratch1);
+  }
+}
+
+void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
+  if (reachable(dst)) {
+    InstructionMark im(this);
+    relocate(dst.reloc());
+    const int short_size = 2;
+    const int long_size = 6;
+    int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
+    if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
+      // 0111 tttn #8-bit disp
+      emit_byte(0x70 | cc);
+      emit_byte((offs - short_size) & 0xFF);
+    } else {
+      // 0000 1111 1000 tttn #32-bit disp
+      emit_byte(0x0F);
+      emit_byte(0x80 | cc);
+      emit_long(offs - long_size);
+    }
+  } else {
+#ifdef ASSERT
+    warning("reversing conditional branch");
+#endif /* ASSERT */
+    Label skip;
+    jccb(reverse[cc], skip);
+    lea(rscratch1, dst);
+    Assembler::jmp(rscratch1);
+    bind(skip);
+  }
+}
+
+void MacroAssembler::ldmxcsr(AddressLiteral src) {
+  if (reachable(src)) {
+    Assembler::ldmxcsr(as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    Assembler::ldmxcsr(Address(rscratch1, 0));
+  }
+}
+
+int MacroAssembler::load_signed_byte(Register dst, Address src) {
+  int off;
+  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
+    off = offset();
+    movsbl(dst, src); // movsxb
+  } else {
+    off = load_unsigned_byte(dst, src);
+    shll(dst, 24);
+    sarl(dst, 24);
+  }
+  return off;
+}
+
+// word => int32 which seems bad for 64bit
+int MacroAssembler::load_signed_word(Register dst, Address src) {
+  int off;
+  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
+    // This is dubious to me since it seems safe to do a signed 16 => 64 bit
+    // version but this is what 64bit has always done. This seems to imply
+    // that users are only using 32bits worth.
+    off = offset();
+    movswl(dst, src); // movsxw
+  } else {
+    off = load_unsigned_word(dst, src);
+    shll(dst, 16);
+    sarl(dst, 16);
+  }
+  return off;
+}
+
+int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
+  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
+  // and "3.9 Partial Register Penalties", p. 22).
+  int off;
+  if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
+    off = offset();
+    movzbl(dst, src); // movzxb
+  } else {
+    xorl(dst, dst);
+    off = offset();
+    movb(dst, src);
+  }
+  return off;
+}
+
+int MacroAssembler::load_unsigned_word(Register dst, Address src) {
+  // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
+  // and "3.9 Partial Register Penalties", p. 22).
+  int off;
+  if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
+    off = offset();
+    movzwl(dst, src); // movzxw
+  } else {
+    xorl(dst, dst);
+    off = offset();
+    movw(dst, src);
+  }
+  return off;
+}
+
+void MacroAssembler::mov32(AddressLiteral dst, Register src) {
+  if (reachable(dst)) {
+    movl(as_Address(dst), src);
+  } else {
+    lea(rscratch1, dst);
+    movl(Address(rscratch1, 0), src);
+  }
+}
+
+void MacroAssembler::mov32(Register dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movl(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movl(dst, Address(rscratch1, 0));
+  }
+}
+
+// C++ bool manipulation
+
+void MacroAssembler::movbool(Register dst, Address src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbool(Address dst, bool boolconst) {
+  if(sizeof(bool) == 1)
+    movb(dst, (int) boolconst);
+  else if(sizeof(bool) == 2)
+    movw(dst, (int) boolconst);
+  else if(sizeof(bool) == 4)
+    movl(dst, (int) boolconst);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbool(Address dst, Register src) {
+  if(sizeof(bool) == 1)
+    movb(dst, src);
+  else if(sizeof(bool) == 2)
+    movw(dst, src);
+  else if(sizeof(bool) == 4)
+    movl(dst, src);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::movbyte(ArrayAddress dst, int src) {
+  movb(as_Address(dst), src);
+}
+
+void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    if (UseXmmLoadAndClearUpper) {
+      movsd (dst, as_Address(src));
+    } else {
+      movlpd(dst, as_Address(src));
+    }
+  } else {
+    lea(rscratch1, src);
+    if (UseXmmLoadAndClearUpper) {
+      movsd (dst, Address(rscratch1, 0));
+    } else {
+      movlpd(dst, Address(rscratch1, 0));
+    }
+  }
+}
+
+void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::movptr(Register dst, Register src) {
+  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+void MacroAssembler::movptr(Register dst, Address src) {
+  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+// src should NEVER be a real pointer. Use AddressLiteral for true pointers
+void MacroAssembler::movptr(Register dst, intptr_t src) {
+  LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+void MacroAssembler::movptr(Address dst, Register src) {
+  LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
+}
+
+void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    movss(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    movss(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::null_check(Register reg, int offset) {
+  if (needs_explicit_null_check(offset)) {
+    // provoke OS NULL exception if reg = NULL by
+    // accessing M[reg] w/o changing any (non-CC) registers
+    // NOTE: cmpl is plenty here to provoke a segv
+    cmpptr(rax, Address(reg, 0));
+    // Note: should probably use testl(rax, Address(reg, 0));
+    //       may be shorter code (however, this version of
+    //       testl needs to be implemented first)
+  } else {
+    // nothing to do, (later) access of M[reg + offset]
+    // will provoke OS NULL exception if reg = NULL
+  }
+}
+
+void MacroAssembler::os_breakpoint() {
+  // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
+  // (e.g., MSVC can't call ps() otherwise)
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
+}
+
+void MacroAssembler::pop_CPU_state() {
+  pop_FPU_state();
+  pop_IU_state();
+}
+
+void MacroAssembler::pop_FPU_state() {
+  NOT_LP64(frstor(Address(rsp, 0));)
+  LP64_ONLY(fxrstor(Address(rsp, 0));)
+  addptr(rsp, FPUStateSizeInWords * wordSize);
+}
+
+void MacroAssembler::pop_IU_state() {
+  popa();
+  LP64_ONLY(addq(rsp, 8));
+  popf();
+}
+
+// Save Integer and Float state
+// Warning: Stack must be 16 byte aligned (64bit)
+void MacroAssembler::push_CPU_state() {
+  push_IU_state();
+  push_FPU_state();
+}
+
+void MacroAssembler::push_FPU_state() {
+  subptr(rsp, FPUStateSizeInWords * wordSize);
+#ifndef _LP64
+  fnsave(Address(rsp, 0));
+  fwait();
+#else
+  fxsave(Address(rsp, 0));
+#endif // LP64
+}
+
+void MacroAssembler::push_IU_state() {
+  // Push flags first because pusha kills them
+  pushf();
+  // Make sure rsp stays 16-byte aligned
+  LP64_ONLY(subq(rsp, 8));
+  pusha();
+}
+
+void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rdi;
+    get_thread(java_thread);
+  }
+  // we must set sp to zero to clear frame
+  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), (int32_t)NULL_WORD);
+  if (clear_fp) {
+    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), (int32_t)NULL_WORD);
+  }
+
+  if (clear_pc)
+    movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), (int32_t)NULL_WORD);
+
+}
+
+void MacroAssembler::restore_rax(Register tmp) {
+  if (tmp == noreg) pop(rax);
+  else if (tmp != rax) mov(rax, tmp);
+}
+
+void MacroAssembler::round_to(Register reg, int modulus) {
+  addptr(reg, modulus - 1);
+  andptr(reg, -modulus);
+}
+
+void MacroAssembler::save_rax(Register tmp) {
+  if (tmp == noreg) push(rax);
+  else if (tmp != rax) mov(tmp, rax);
+}
+
+// Write serialization page so VM thread can do a pseudo remote membar.
+// We use the current thread pointer to calculate a thread specific
+// offset to write to within the page. This minimizes bus traffic
+// due to cache line collision.
+void MacroAssembler::serialize_memory(Register thread, Register tmp) {
+  movl(tmp, thread);
+  shrl(tmp, os::get_serialize_page_shift_count());
+  andl(tmp, (os::vm_page_size() - sizeof(int)));
+
+  Address index(noreg, tmp, Address::times_1);
+  ExternalAddress page(os::get_memory_serialize_page());
+
+  movptr(ArrayAddress(page, index), tmp);
+}
+
+// Calls to C land
+//
+// When entering C land, the rbp, & rsp of the last Java frame have to be recorded
+// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
+// has to be reset to 0. This is required to allow proper stack traversal.
+void MacroAssembler::set_last_Java_frame(Register java_thread,
+                                         Register last_java_sp,
+                                         Register last_java_fp,
+                                         address  last_java_pc) {
+  // determine java_thread register
+  if (!java_thread->is_valid()) {
+    java_thread = rdi;
+    get_thread(java_thread);
+  }
+  // determine last_java_sp register
+  if (!last_java_sp->is_valid()) {
+    last_java_sp = rsp;
+  }
+
+  // last_java_fp is optional
+
+  if (last_java_fp->is_valid()) {
+    movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
+  }
+
+  // last_java_pc is optional
+
+  if (last_java_pc != NULL) {
+    lea(Address(java_thread,
+                 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
+        InternalAddress(last_java_pc));
+
+  }
+  movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
+}
+
+void MacroAssembler::shlptr(Register dst, int imm8) {
+  LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
+}
+
+void MacroAssembler::shrptr(Register dst, int imm8) {
+  LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
+}
+
+void MacroAssembler::sign_extend_byte(Register reg) {
+  if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
+    movsbl(reg, reg); // movsxb
+  } else {
+    shll(reg, 24);
+    sarl(reg, 24);
+  }
+}
+
+void MacroAssembler::sign_extend_short(Register reg) {
+  if (LP64_ONLY(true ||) VM_Version::is_P6()) {
+    movswl(reg, reg); // movsxw
+  } else {
+    shll(reg, 16);
+    sarl(reg, 16);
+  }
+}
+
+void MacroAssembler::store_check(Register obj) {
+  // Does a store check for the oop in register obj. The content of
+  // register obj is destroyed afterwards.
+  store_check_part_1(obj);
+  store_check_part_2(obj);
+}
+
+void MacroAssembler::store_check(Register obj, Address dst) {
+  store_check(obj);
+}
+
+
+// split the store check operation so that other instructions can be scheduled inbetween
+void MacroAssembler::store_check_part_1(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  shrptr(obj, CardTableModRefBS::card_shift);
+}
+
+void MacroAssembler::store_check_part_2(Register obj) {
+  BarrierSet* bs = Universe::heap()->barrier_set();
+  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
+  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
+  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
+
+  // The calculation for byte_map_base is as follows:
+  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
+  // So this essentially converts an address to a displacement and
+  // it will never need to be relocated. On 64bit however the value may be too
+  // large for a 32bit displacement
+
+  intptr_t disp = (intptr_t) ct->byte_map_base;
+  if (is_simm32(disp)) {
+    Address cardtable(noreg, obj, Address::times_1, disp);
+    movb(cardtable, 0);
+  } else {
+    // By doing it as an ExternalAddress disp could be converted to a rip-relative
+    // displacement and done in a single instruction given favorable mapping and
+    // a smarter version of as_Address. Worst case it is two instructions which
+    // is no worse off then loading disp into a register and doing as a simple
+    // Address() as above.
+    // We can't do as ExternalAddress as the only style since if disp == 0 we'll
+    // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
+    // in some cases we'll get a single instruction version.
+
+    ExternalAddress cardtable((address)disp);
+    Address index(noreg, obj, Address::times_1);
+    movb(as_Address(ArrayAddress(cardtable, index)), 0);
+  }
+}
+
+void MacroAssembler::subptr(Register dst, int32_t imm32) {
+  LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
+}
+
+void MacroAssembler::subptr(Register dst, Register src) {
+  LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
+}
+
+void MacroAssembler::test32(Register src1, AddressLiteral src2) {
+  // src2 must be rval
+
+  if (reachable(src2)) {
+    testl(src1, as_Address(src2));
+  } else {
+    lea(rscratch1, src2);
+    testl(src1, Address(rscratch1, 0));
+  }
+}
+
+// C++ bool manipulation
+void MacroAssembler::testbool(Register dst) {
+  if(sizeof(bool) == 1)
+    testb(dst, 0xff);
+  else if(sizeof(bool) == 2) {
+    // testw implementation needed for two byte bools
+    ShouldNotReachHere();
+  } else if(sizeof(bool) == 4)
+    testl(dst, dst);
+  else
+    // unsupported
+    ShouldNotReachHere();
+}
+
+void MacroAssembler::testptr(Register dst, Register src) {
+  LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
+}
+
+// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
+void MacroAssembler::tlab_allocate(Register obj,
+                                   Register var_size_in_bytes,
+                                   int con_size_in_bytes,
+                                   Register t1,
+                                   Register t2,
+                                   Label& slow_case) {
+  assert_different_registers(obj, t1, t2);
+  assert_different_registers(obj, var_size_in_bytes, t1);
+  Register end = t2;
+  Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
+
+  verify_tlab();
+
+  NOT_LP64(get_thread(thread));
+
+  movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
+  if (var_size_in_bytes == noreg) {
+    lea(end, Address(obj, con_size_in_bytes));
+  } else {
+    lea(end, Address(obj, var_size_in_bytes, Address::times_1));
+  }
+  cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
+  jcc(Assembler::above, slow_case);
+
+  // update the tlab top pointer
+  movptr(Address(thread, JavaThread::tlab_top_offset()), end);
+
+  // recover var_size_in_bytes if necessary
+  if (var_size_in_bytes == end) {
+    subptr(var_size_in_bytes, obj);
+  }
+  verify_tlab();
+}
+
+// Preserves rbx, and rdx.
+void MacroAssembler::tlab_refill(Label& retry,
+                                 Label& try_eden,
+                                 Label& slow_case) {
+  Register top = rax;
+  Register t1  = rcx;
+  Register t2  = rsi;
+  Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
+  assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
+  Label do_refill, discard_tlab;
+
+  if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
+    // No allocation in the shared eden.
+    jmp(slow_case);
+  }
+
+  NOT_LP64(get_thread(thread_reg));
+
+  movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+  movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
+
+  // calculate amount of free space
+  subptr(t1, top);
+  shrptr(t1, LogHeapWordSize);
+
+  // Retain tlab and allocate object in shared space if
+  // the amount free in the tlab is too large to discard.
+  cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
+  jcc(Assembler::lessEqual, discard_tlab);
+
+  // Retain
+  // %%% yuck as movptr...
+  movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
+  addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
+  if (TLABStats) {
+    // increment number of slow_allocations
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
+  }
+  jmp(try_eden);
+
+  bind(discard_tlab);
+  if (TLABStats) {
+    // increment number of refills
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
+    // accumulate wastage -- t1 is amount free in tlab
+    addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
+  }
+
+  // if tlab is currently allocated (top or end != null) then
+  // fill [top, end + alignment_reserve) with array object
+  testptr (top, top);
+  jcc(Assembler::zero, do_refill);
+
+  // set up the mark word
+  movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
+  // set the length to the remaining space
+  subptr(t1, typeArrayOopDesc::header_size(T_INT));
+  addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
+  shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
+  movptr(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
+  // set klass to intArrayKlass
+  // dubious reloc why not an oop reloc?
+  movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
+  // store klass last.  concurrent gcs assumes klass length is valid if
+  // klass field is not null.
+  store_klass(top, t1);
+
+  // refill the tlab with an eden allocation
+  bind(do_refill);
+  movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+  shlptr(t1, LogHeapWordSize);
+  // add object_size ??
+  eden_allocate(top, t1, 0, t2, slow_case);
+
+  // Check that t1 was preserved in eden_allocate.
+#ifdef ASSERT
+  if (UseTLAB) {
+    Label ok;
+    Register tsize = rsi;
+    assert_different_registers(tsize, thread_reg, t1);
+    push(tsize);
+    movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
+    shlptr(tsize, LogHeapWordSize);
+    cmpptr(t1, tsize);
+    jcc(Assembler::equal, ok);
+    stop("assert(t1 != tlab size)");
+    should_not_reach_here();
+
+    bind(ok);
+    pop(tsize);
+  }
+#endif
+  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
+  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
+  addptr(top, t1);
+  subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
+  movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
+  verify_tlab();
+  jmp(retry);
+}
+
+static const double     pi_4 =  0.7853981633974483;
+
+void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
+  // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
+  // was attempted in this code; unfortunately it appears that the
+  // switch to 80-bit precision and back causes this to be
+  // unprofitable compared with simply performing a runtime call if
+  // the argument is out of the (-pi/4, pi/4) range.
+
+  Register tmp = noreg;
+  if (!VM_Version::supports_cmov()) {
+    // fcmp needs a temporary so preserve rbx,
+    tmp = rbx;
+    push(tmp);
+  }
+
+  Label slow_case, done;
+
+  // x ?<= pi/4
+  fld_d(ExternalAddress((address)&pi_4));
+  fld_s(1);                // Stack:  X  PI/4  X
+  fabs();                  // Stack: |X| PI/4  X
+  fcmp(tmp);
+  jcc(Assembler::above, slow_case);
+
+  // fastest case: -pi/4 <= x <= pi/4
+  switch(trig) {
+  case 's':
+    fsin();
+    break;
+  case 'c':
+    fcos();
+    break;
+  case 't':
+    ftan();
+    break;
+  default:
+    assert(false, "bad intrinsic");
+    break;
+  }
+  jmp(done);
+
+  // slow case: runtime call
+  bind(slow_case);
+  // Preserve registers across runtime call
+  pusha();
+  int incoming_argument_and_return_value_offset = -1;
+  if (num_fpu_regs_in_use > 1) {
+    // Must preserve all other FPU regs (could alternatively convert
+    // SharedRuntime::dsin and dcos into assembly routines known not to trash
+    // FPU state, but can not trust C compiler)
+    NEEDS_CLEANUP;
+    // NOTE that in this case we also push the incoming argument to
+    // the stack and restore it later; we also use this stack slot to
+    // hold the return value from dsin or dcos.
+    for (int i = 0; i < num_fpu_regs_in_use; i++) {
+      subptr(rsp, sizeof(jdouble));
+      fstp_d(Address(rsp, 0));
+    }
+    incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
+    fld_d(Address(rsp, incoming_argument_and_return_value_offset));
+  }
+  subptr(rsp, sizeof(jdouble));
+  fstp_d(Address(rsp, 0));
+#ifdef _LP64
+  movdbl(xmm0, Address(rsp, 0));
+#endif // _LP64
+
+  // NOTE: we must not use call_VM_leaf here because that requires a
+  // complete interpreter frame in debug mode -- same bug as 4387334
+  // MacroAssembler::call_VM_leaf_base is perfectly safe and will
+  // do proper 64bit abi
+
+  NEEDS_CLEANUP;
+  // Need to add stack banging before this runtime call if it needs to
+  // be taken; however, there is no generic stack banging routine at
+  // the MacroAssembler level
+  switch(trig) {
+  case 's':
+    {
+      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
+    }
+    break;
+  case 'c':
+    {
+      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
+    }
+    break;
+  case 't':
+    {
+      MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
+    }
+    break;
+  default:
+    assert(false, "bad intrinsic");
+    break;
+  }
+#ifdef _LP64
+    movsd(Address(rsp, 0), xmm0);
+    fld_d(Address(rsp, 0));
+#endif // _LP64
+  addptr(rsp, sizeof(jdouble));
+  if (num_fpu_regs_in_use > 1) {
+    // Must save return value to stack and then restore entire FPU stack
+    fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
+    for (int i = 0; i < num_fpu_regs_in_use; i++) {
+      fld_d(Address(rsp, 0));
+      addptr(rsp, sizeof(jdouble));
+    }
+  }
+  popa();
+
+  // Come here with result in F-TOS
+  bind(done);
+
+  if (tmp != noreg) {
+    pop(tmp);
+  }
+}
+
+
+void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
+  ucomisd(dst, as_Address(src));
+}
+
+void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
+  ucomiss(dst, as_Address(src));
+}
+
+void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    xorpd(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    xorpd(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
+  if (reachable(src)) {
+    xorps(dst, as_Address(src));
+  } else {
+    lea(rscratch1, src);
+    xorps(dst, Address(rscratch1, 0));
+  }
+}
+
+void MacroAssembler::verify_oop(Register reg, const char* s) {
+  if (!VerifyOops) return;
+
+  // Pass register number to verify_oop_subroutine
+  char* b = new char[strlen(s) + 50];
+  sprintf(b, "verify_oop: %s: %s", reg->name(), s);
+  push(rax);                          // save rax,
+  push(reg);                          // pass register argument
+  ExternalAddress buffer((address) b);
+  // avoid using pushptr, as it modifies scratch registers
+  // and our contract is not to modify anything
+  movptr(rax, buffer.addr());
+  push(rax);
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax);
+}
+
+
+void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
+  if (!VerifyOops) return;
+
+  // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
+  // Pass register number to verify_oop_subroutine
+  char* b = new char[strlen(s) + 50];
+  sprintf(b, "verify_oop_addr: %s", s);
+
+  push(rax);                          // save rax,
+  // addr may contain rsp so we will have to adjust it based on the push
+  // we just did
+  // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
+  // stores rax into addr which is backwards of what was intended.
+  if (addr.uses(rsp)) {
+    lea(rax, addr);
+    pushptr(Address(rax, BytesPerWord));
+  } else {
+    pushptr(addr);
+  }
+
+  ExternalAddress buffer((address) b);
+  // pass msg argument
+  // avoid using pushptr, as it modifies scratch registers
+  // and our contract is not to modify anything
+  movptr(rax, buffer.addr());
+  push(rax);
+
+  // call indirectly to solve generation ordering problem
+  movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
+  call(rax);
+  // Caller pops the arguments and restores rax, from the stack
+}
+
+void MacroAssembler::verify_tlab() {
+#ifdef ASSERT
+  if (UseTLAB && VerifyOops) {
+    Label next, ok;
+    Register t1 = rsi;
+    Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
+
+    push(t1);
+    NOT_LP64(push(thread_reg));
+    NOT_LP64(get_thread(thread_reg));
+
+    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
+    jcc(Assembler::aboveEqual, next);
+    stop("assert(top >= start)");
+    should_not_reach_here();
+
+    bind(next);
+    movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
+    cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
+    jcc(Assembler::aboveEqual, ok);
+    stop("assert(top <= end)");
+    should_not_reach_here();
+
+    bind(ok);
+    NOT_LP64(pop(thread_reg));
+    pop(t1);
+  }
+#endif
+}
+
+class ControlWord {
+ public:
+  int32_t _value;
+
+  int  rounding_control() const        { return  (_value >> 10) & 3      ; }
+  int  precision_control() const       { return  (_value >>  8) & 3      ; }
+  bool precision() const               { return ((_value >>  5) & 1) != 0; }
+  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
+  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
+  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
+  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
+  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // rounding control
+    const char* rc;
+    switch (rounding_control()) {
+      case 0: rc = "round near"; break;
+      case 1: rc = "round down"; break;
+      case 2: rc = "round up  "; break;
+      case 3: rc = "chop      "; break;
+    };
+    // precision control
+    const char* pc;
+    switch (precision_control()) {
+      case 0: pc = "24 bits "; break;
+      case 1: pc = "reserved"; break;
+      case 2: pc = "53 bits "; break;
+      case 3: pc = "64 bits "; break;
+    };
+    // flags
+    char f[9];
+    f[0] = ' ';
+    f[1] = ' ';
+    f[2] = (precision   ()) ? 'P' : 'p';
+    f[3] = (underflow   ()) ? 'U' : 'u';
+    f[4] = (overflow    ()) ? 'O' : 'o';
+    f[5] = (zero_divide ()) ? 'Z' : 'z';
+    f[6] = (denormalized()) ? 'D' : 'd';
+    f[7] = (invalid     ()) ? 'I' : 'i';
+    f[8] = '\x0';
+    // output
+    printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
+  }
+
+};
+
+class StatusWord {
+ public:
+  int32_t _value;
+
+  bool busy() const                    { return ((_value >> 15) & 1) != 0; }
+  bool C3() const                      { return ((_value >> 14) & 1) != 0; }
+  bool C2() const                      { return ((_value >> 10) & 1) != 0; }
+  bool C1() const                      { return ((_value >>  9) & 1) != 0; }
+  bool C0() const                      { return ((_value >>  8) & 1) != 0; }
+  int  top() const                     { return  (_value >> 11) & 7      ; }
+  bool error_status() const            { return ((_value >>  7) & 1) != 0; }
+  bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
+  bool precision() const               { return ((_value >>  5) & 1) != 0; }
+  bool underflow() const               { return ((_value >>  4) & 1) != 0; }
+  bool overflow() const                { return ((_value >>  3) & 1) != 0; }
+  bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
+  bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
+  bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // condition codes
+    char c[5];
+    c[0] = (C3()) ? '3' : '-';
+    c[1] = (C2()) ? '2' : '-';
+    c[2] = (C1()) ? '1' : '-';
+    c[3] = (C0()) ? '0' : '-';
+    c[4] = '\x0';
+    // flags
+    char f[9];
+    f[0] = (error_status()) ? 'E' : '-';
+    f[1] = (stack_fault ()) ? 'S' : '-';
+    f[2] = (precision   ()) ? 'P' : '-';
+    f[3] = (underflow   ()) ? 'U' : '-';
+    f[4] = (overflow    ()) ? 'O' : '-';
+    f[5] = (zero_divide ()) ? 'Z' : '-';
+    f[6] = (denormalized()) ? 'D' : '-';
+    f[7] = (invalid     ()) ? 'I' : '-';
+    f[8] = '\x0';
+    // output
+    printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
+  }
+
+};
+
+class TagWord {
+ public:
+  int32_t _value;
+
+  int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
+
+  void print() const {
+    printf("%04x", _value & 0xFFFF);
+  }
+
+};
+
+class FPU_Register {
+ public:
+  int32_t _m0;
+  int32_t _m1;
+  int16_t _ex;
+
+  bool is_indefinite() const           {
+    return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
+  }
+
+  void print() const {
+    char  sign = (_ex < 0) ? '-' : '+';
+    const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
+    printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
+  };
+
+};
+
+class FPU_State {
+ public:
+  enum {
+    register_size       = 10,
+    number_of_registers =  8,
+    register_mask       =  7
+  };
+
+  ControlWord  _control_word;
+  StatusWord   _status_word;
+  TagWord      _tag_word;
+  int32_t      _error_offset;
+  int32_t      _error_selector;
+  int32_t      _data_offset;
+  int32_t      _data_selector;
+  int8_t       _register[register_size * number_of_registers];
+
+  int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
+  FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
+
+  const char* tag_as_string(int tag) const {
+    switch (tag) {
+      case 0: return "valid";
+      case 1: return "zero";
+      case 2: return "special";
+      case 3: return "empty";
+    }
+    ShouldNotReachHere()
+    return NULL;
+  }
+
+  void print() const {
+    // print computation registers
+    { int t = _status_word.top();
+      for (int i = 0; i < number_of_registers; i++) {
+        int j = (i - t) & register_mask;
+        printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
+        st(j)->print();
+        printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
+      }
+    }
+    printf("\n");
+    // print control registers
+    printf("ctrl = "); _control_word.print(); printf("\n");
+    printf("stat = "); _status_word .print(); printf("\n");
+    printf("tags = "); _tag_word    .print(); printf("\n");
+  }
+
+};
+
+class Flag_Register {
+ public:
+  int32_t _value;
+
+  bool overflow() const                { return ((_value >> 11) & 1) != 0; }
+  bool direction() const               { return ((_value >> 10) & 1) != 0; }
+  bool sign() const                    { return ((_value >>  7) & 1) != 0; }
+  bool zero() const                    { return ((_value >>  6) & 1) != 0; }
+  bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
+  bool parity() const                  { return ((_value >>  2) & 1) != 0; }
+  bool carry() const                   { return ((_value >>  0) & 1) != 0; }
+
+  void print() const {
+    // flags
+    char f[8];
+    f[0] = (overflow       ()) ? 'O' : '-';
+    f[1] = (direction      ()) ? 'D' : '-';
+    f[2] = (sign           ()) ? 'S' : '-';
+    f[3] = (zero           ()) ? 'Z' : '-';
+    f[4] = (auxiliary_carry()) ? 'A' : '-';
+    f[5] = (parity         ()) ? 'P' : '-';
+    f[6] = (carry          ()) ? 'C' : '-';
+    f[7] = '\x0';
+    // output
+    printf("%08x  flags = %s", _value, f);
+  }
+
+};
+
+class IU_Register {
+ public:
+  int32_t _value;
+
+  void print() const {
+    printf("%08x  %11d", _value, _value);
+  }
+
+};
+
+class IU_State {
+ public:
+  Flag_Register _eflags;
+  IU_Register   _rdi;
+  IU_Register   _rsi;
+  IU_Register   _rbp;
+  IU_Register   _rsp;
+  IU_Register   _rbx;
+  IU_Register   _rdx;
+  IU_Register   _rcx;
+  IU_Register   _rax;
+
+  void print() const {
+    // computation registers
+    printf("rax,  = "); _rax.print(); printf("\n");
+    printf("rbx,  = "); _rbx.print(); printf("\n");
+    printf("rcx  = "); _rcx.print(); printf("\n");
+    printf("rdx  = "); _rdx.print(); printf("\n");
+    printf("rdi  = "); _rdi.print(); printf("\n");
+    printf("rsi  = "); _rsi.print(); printf("\n");
+    printf("rbp,  = "); _rbp.print(); printf("\n");
+    printf("rsp  = "); _rsp.print(); printf("\n");
+    printf("\n");
+    // control registers
+    printf("flgs = "); _eflags.print(); printf("\n");
+  }
+};
+
+
+class CPU_State {
+ public:
+  FPU_State _fpu_state;
+  IU_State  _iu_state;
+
+  void print() const {
+    printf("--------------------------------------------------\n");
+    _iu_state .print();
+    printf("\n");
+    _fpu_state.print();
+    printf("--------------------------------------------------\n");
+  }
+
+};
+
+
+static void _print_CPU_state(CPU_State* state) {
+  state->print();
+};
+
+
+void MacroAssembler::print_CPU_state() {
+  push_CPU_state();
+  push(rsp);                // pass CPU state
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
+  addptr(rsp, wordSize);       // discard argument
+  pop_CPU_state();
+}
+
+
+static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
+  static int counter = 0;
+  FPU_State* fs = &state->_fpu_state;
+  counter++;
+  // For leaf calls, only verify that the top few elements remain empty.
+  // We only need 1 empty at the top for C2 code.
+  if( stack_depth < 0 ) {
+    if( fs->tag_for_st(7) != 3 ) {
+      printf("FPR7 not empty\n");
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+    return true;                // All other stack states do not matter
+  }
+
+  assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
+         "bad FPU control word");
+
+  // compute stack depth
+  int i = 0;
+  while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
+  int d = i;
+  while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
+  // verify findings
+  if (i != FPU_State::number_of_registers) {
+    // stack not contiguous
+    printf("%s: stack not contiguous at ST%d\n", s, i);
+    state->print();
+    assert(false, "error");
+    return false;
+  }
+  // check if computed stack depth corresponds to expected stack depth
+  if (stack_depth < 0) {
+    // expected stack depth is -stack_depth or less
+    if (d > -stack_depth) {
+      // too many elements on the stack
+      printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+  } else {
+    // expected stack depth is stack_depth
+    if (d != stack_depth) {
+      // wrong stack depth
+      printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
+      state->print();
+      assert(false, "error");
+      return false;
+    }
+  }
+  // everything is cool
+  return true;
+}
+
+
+void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
+  if (!VerifyFPU) return;
+  push_CPU_state();
+  push(rsp);                // pass CPU state
+  ExternalAddress msg((address) s);
+  // pass message string s
+  pushptr(msg.addr());
+  push(stack_depth);        // pass stack depth
+  call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
+  addptr(rsp, 3 * wordSize);   // discard arguments
+  // check for error
+  { Label L;
+    testl(rax, rax);
+    jcc(Assembler::notZero, L);
+    int3();                  // break if error condition
+    bind(L);
+  }
+  pop_CPU_state();
+}
+
+void MacroAssembler::load_klass(Register dst, Register src) {
+#ifdef _LP64
+  if (UseCompressedOops) {
+    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+    decode_heap_oop_not_null(dst);
+  } else
+#endif
+    movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+}
+
+void MacroAssembler::load_prototype_header(Register dst, Register src) {
+#ifdef _LP64
+  if (UseCompressedOops) {
+    movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+    movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+  } else
+#endif
+    {
+      movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
+      movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
+    }
+}
+
+void MacroAssembler::store_klass(Register dst, Register src) {
+#ifdef _LP64
+  if (UseCompressedOops) {
+    encode_heap_oop_not_null(src);
+    movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
+  } else
+#endif
+    movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
+}
+
+#ifdef _LP64
+void MacroAssembler::store_klass_gap(Register dst, Register src) {
+  if (UseCompressedOops) {
+    // Store to klass gap in destination
+    movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
+  }
+}
+
+void MacroAssembler::load_heap_oop(Register dst, Address src) {
+  if (UseCompressedOops) {
+    movl(dst, src);
+    decode_heap_oop(dst);
+  } else {
+    movq(dst, src);
+  }
+}
+
+void MacroAssembler::store_heap_oop(Address dst, Register src) {
+  if (UseCompressedOops) {
+    assert(!dst.uses(src), "not enough registers");
+    encode_heap_oop(src);
+    movl(dst, src);
+  } else {
+    movq(dst, src);
+  }
+}
+
+// Algorithm must match oop.inline.hpp encode_heap_oop.
+void MacroAssembler::encode_heap_oop(Register r) {
+  assert (UseCompressedOops, "should be compressed");
+#ifdef ASSERT
+  if (CheckCompressedOops) {
+    Label ok;
+    push(rscratch1); // cmpptr trashes rscratch1
+    cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
+    jcc(Assembler::equal, ok);
+    stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
+    bind(ok);
+    pop(rscratch1);
+  }
+#endif
+  verify_oop(r, "broken oop in encode_heap_oop");
+  testq(r, r);
+  cmovq(Assembler::equal, r, r12_heapbase);
+  subq(r, r12_heapbase);
+  shrq(r, LogMinObjAlignmentInBytes);
+}
+
+void MacroAssembler::encode_heap_oop_not_null(Register r) {
+  assert (UseCompressedOops, "should be compressed");
+#ifdef ASSERT
+  if (CheckCompressedOops) {
+    Label ok;
+    testq(r, r);
+    jcc(Assembler::notEqual, ok);
+    stop("null oop passed to encode_heap_oop_not_null");
+    bind(ok);
+  }
+#endif
+  verify_oop(r, "broken oop in encode_heap_oop_not_null");
+  subq(r, r12_heapbase);
+  shrq(r, LogMinObjAlignmentInBytes);
+}
+
+void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
+  assert (UseCompressedOops, "should be compressed");
+#ifdef ASSERT
+  if (CheckCompressedOops) {
+    Label ok;
+    testq(src, src);
+    jcc(Assembler::notEqual, ok);
+    stop("null oop passed to encode_heap_oop_not_null2");
+    bind(ok);
+  }
+#endif
+  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
+  if (dst != src) {
+    movq(dst, src);
+  }
+  subq(dst, r12_heapbase);
+  shrq(dst, LogMinObjAlignmentInBytes);
+}
+
+void  MacroAssembler::decode_heap_oop(Register r) {
+  assert (UseCompressedOops, "should be compressed");
+#ifdef ASSERT
+  if (CheckCompressedOops) {
+    Label ok;
+    push(rscratch1);
+    cmpptr(r12_heapbase,
+           ExternalAddress((address)Universe::heap_base_addr()));
+    jcc(Assembler::equal, ok);
+    stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
+    bind(ok);
+    pop(rscratch1);
+  }
+#endif
+
+  Label done;
+  shlq(r, LogMinObjAlignmentInBytes);
+  jccb(Assembler::equal, done);
+  addq(r, r12_heapbase);
+#if 0
+   // alternate decoding probably a wash.
+   testq(r, r);
+   jccb(Assembler::equal, done);
+   leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
+#endif
+  bind(done);
+  verify_oop(r, "broken oop in decode_heap_oop");
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register r) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
+  leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
+}
+
+void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
+  assert (UseCompressedOops, "should only be used for compressed headers");
+  // Cannot assert, unverified entry point counts instructions (see .ad file)
+  // vtableStubs also counts instructions in pd_code_size_limit.
+  // Also do not verify_oop as this is called by verify_oop.
+  assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
+  leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
+}
+
+void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
+  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
+  int oop_index = oop_recorder()->find_index(obj);
+  RelocationHolder rspec = oop_Relocation::spec(oop_index);
+  mov_literal32(dst, oop_index, rspec, narrow_oop_operand);
+}
+
+void MacroAssembler::reinit_heapbase() {
+  if (UseCompressedOops) {
+    movptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
+  }
+}
+#endif // _LP64
+
+Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
+  switch (cond) {
+    // Note some conditions are synonyms for others
+    case Assembler::zero:         return Assembler::notZero;
+    case Assembler::notZero:      return Assembler::zero;
+    case Assembler::less:         return Assembler::greaterEqual;
+    case Assembler::lessEqual:    return Assembler::greater;
+    case Assembler::greater:      return Assembler::lessEqual;
+    case Assembler::greaterEqual: return Assembler::less;
+    case Assembler::below:        return Assembler::aboveEqual;
+    case Assembler::belowEqual:   return Assembler::above;
+    case Assembler::above:        return Assembler::belowEqual;
+    case Assembler::aboveEqual:   return Assembler::below;
+    case Assembler::overflow:     return Assembler::noOverflow;
+    case Assembler::noOverflow:   return Assembler::overflow;
+    case Assembler::negative:     return Assembler::positive;
+    case Assembler::positive:     return Assembler::negative;
+    case Assembler::parity:       return Assembler::noParity;
+    case Assembler::noParity:     return Assembler::parity;
+  }
+  ShouldNotReachHere(); return Assembler::overflow;
+}
+
+SkipIfEqual::SkipIfEqual(
+    MacroAssembler* masm, const bool* flag_addr, bool value) {
+  _masm = masm;
+  _masm->cmp8(ExternalAddress((address)flag_addr), value);
+  _masm->jcc(Assembler::equal, _label);
+}
+
+SkipIfEqual::~SkipIfEqual() {
+  _masm->bind(_label);
+}