diff src/share/vm/gc_implementation/shared/allocationStats.hpp @ 1145:e018e6884bd8

6631166: CMS: better heuristics when combatting fragmentation Summary: Autonomic per-worker free block cache sizing, tunable coalition policies, fixes to per-size block statistics, retuned gain and bandwidth of some feedback loop filters to allow quicker reactivity to abrupt changes in ambient demand, and other heuristics to reduce fragmentation of the CMS old gen. Also tightened some assertions, including those related to locking. Reviewed-by: jmasa
author ysr
date Wed, 23 Dec 2009 09:23:54 -0800
parents d1605aabd0a1
children c18cbe5936b8
line wrap: on
line diff
--- a/src/share/vm/gc_implementation/shared/allocationStats.hpp	Wed Dec 16 15:12:51 2009 -0800
+++ b/src/share/vm/gc_implementation/shared/allocationStats.hpp	Wed Dec 23 09:23:54 2009 -0800
@@ -31,7 +31,7 @@
   // beginning of this sweep:
   //   Count(end_last_sweep) - Count(start_this_sweep)
   //     + splitBirths(between) - splitDeaths(between)
-  // The above number divided by the time since the start [END???] of the
+  // The above number divided by the time since the end of the
   // previous sweep gives us a time rate of demand for blocks
   // of this size. We compute a padded average of this rate as
   // our current estimate for the time rate of demand for blocks
@@ -41,7 +41,7 @@
   // estimates.
   AdaptivePaddedAverage _demand_rate_estimate;
 
-  ssize_t     _desired;          // Estimate computed as described above
+  ssize_t     _desired;         // Demand stimate computed as described above
   ssize_t     _coalDesired;     // desired +/- small-percent for tuning coalescing
 
   ssize_t     _surplus;         // count - (desired +/- small-percent),
@@ -53,9 +53,9 @@
   ssize_t     _coalDeaths;      // loss from coalescing
   ssize_t     _splitBirths;     // additional chunks from splitting
   ssize_t     _splitDeaths;     // loss from splitting
-  size_t     _returnedBytes;    // number of bytes returned to list.
+  size_t      _returnedBytes;   // number of bytes returned to list.
  public:
-  void initialize() {
+  void initialize(bool split_birth = false) {
     AdaptivePaddedAverage* dummy =
       new (&_demand_rate_estimate) AdaptivePaddedAverage(CMS_FLSWeight,
                                                          CMS_FLSPadding);
@@ -67,7 +67,7 @@
     _beforeSweep = 0;
     _coalBirths = 0;
     _coalDeaths = 0;
-    _splitBirths = 0;
+    _splitBirths = split_birth? 1 : 0;
     _splitDeaths = 0;
     _returnedBytes = 0;
   }
@@ -75,10 +75,12 @@
   AllocationStats() {
     initialize();
   }
+
   // The rate estimate is in blocks per second.
   void compute_desired(size_t count,
                        float inter_sweep_current,
-                       float inter_sweep_estimate) {
+                       float inter_sweep_estimate,
+                       float intra_sweep_estimate) {
     // If the latest inter-sweep time is below our granularity
     // of measurement, we may call in here with
     // inter_sweep_current == 0. However, even for suitably small
@@ -88,12 +90,31 @@
     // vulnerable to noisy glitches. In such cases, we
     // ignore the current sample and use currently available
     // historical estimates.
+    // XXX NEEDS TO BE FIXED
+    // assert(prevSweep() + splitBirths() >= splitDeaths() + (ssize_t)count, "Conservation Principle");
+    //     ^^^^^^^^^^^^^^^^^^^^^^^^^^^    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+    //     "Total Stock"                  "Not used at this block size"
     if (inter_sweep_current > _threshold) {
-      ssize_t demand = prevSweep() - count + splitBirths() - splitDeaths();
+      ssize_t demand = prevSweep() - (ssize_t)count + splitBirths() - splitDeaths();
+      // XXX NEEDS TO BE FIXED
+      // assert(demand >= 0, "Demand should be non-negative");
+      // Defensive: adjust for imprecision in event counting
+      if (demand < 0) {
+        demand = 0;
+      }
+      float old_rate = _demand_rate_estimate.padded_average();
       float rate = ((float)demand)/inter_sweep_current;
       _demand_rate_estimate.sample(rate);
-      _desired = (ssize_t)(_demand_rate_estimate.padded_average()
-                           *inter_sweep_estimate);
+      float new_rate = _demand_rate_estimate.padded_average();
+      ssize_t old_desired = _desired;
+      _desired = (ssize_t)(new_rate * (inter_sweep_estimate
+                                       + CMSExtrapolateSweep
+                                         ? intra_sweep_estimate
+                                         : 0.0));
+      if (PrintFLSStatistics > 1) {
+        gclog_or_tty->print_cr("demand: %d, old_rate: %f, current_rate: %f, new_rate: %f, old_desired: %d, new_desired: %d",
+                                demand,     old_rate,     rate,             new_rate,     old_desired,     _desired);
+      }
     }
   }