view src/share/vm/gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.cpp @ 452:00b023ae2d78

6722113: CMS: Incorrect overflow handling during precleaning of Reference lists Summary: When we encounter marking stack overflow during precleaning of Reference lists, we were using the overflow list mechanism, which can cause problems on account of mutating the mark word of the header because of conflicts with mutator accesses and updates of that field. Instead we should use the usual mechanism for overflow handling in concurrent phases, namely dirtying of the card on which the overflowed object lies. Since precleaning effectively does a form of discovered list processing, albeit with discovery enabled, we needed to adjust some code to be correct in the face of interleaved processing and discovery. Reviewed-by: apetrusenko, jcoomes
author ysr
date Thu, 20 Nov 2008 12:27:41 -0800
parents a61af66fc99e
children c18cbe5936b8
line wrap: on
line source

/*
 * Copyright (c) 2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_cmsCollectorPolicy.cpp.incl"

//
// ConcurrentMarkSweepPolicy methods
//

ConcurrentMarkSweepPolicy::ConcurrentMarkSweepPolicy() {
  initialize_all();
}

void ConcurrentMarkSweepPolicy::initialize_generations() {
  initialize_perm_generation(PermGen::ConcurrentMarkSweep);
  _generations = new GenerationSpecPtr[number_of_generations()];
  if (_generations == NULL)
    vm_exit_during_initialization("Unable to allocate gen spec");

  if (UseParNewGC && ParallelGCThreads > 0) {
    if (UseAdaptiveSizePolicy) {
      _generations[0] = new GenerationSpec(Generation::ASParNew,
                                           _initial_gen0_size, _max_gen0_size);
    } else {
      _generations[0] = new GenerationSpec(Generation::ParNew,
                                           _initial_gen0_size, _max_gen0_size);
    }
  } else {
    _generations[0] = new GenerationSpec(Generation::DefNew,
                                         _initial_gen0_size, _max_gen0_size);
  }
  if (UseAdaptiveSizePolicy) {
    _generations[1] = new GenerationSpec(Generation::ASConcurrentMarkSweep,
                            _initial_gen1_size, _max_gen1_size);
  } else {
    _generations[1] = new GenerationSpec(Generation::ConcurrentMarkSweep,
                            _initial_gen1_size, _max_gen1_size);
  }

  if (_generations[0] == NULL || _generations[1] == NULL) {
    vm_exit_during_initialization("Unable to allocate gen spec");
  }
}

void ConcurrentMarkSweepPolicy::initialize_size_policy(size_t init_eden_size,
                                               size_t init_promo_size,
                                               size_t init_survivor_size) {
  double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  _size_policy = new CMSAdaptiveSizePolicy(init_eden_size,
                                           init_promo_size,
                                           init_survivor_size,
                                           max_gc_minor_pause_sec,
                                           max_gc_pause_sec,
                                           GCTimeRatio);
}

void ConcurrentMarkSweepPolicy::initialize_gc_policy_counters() {
  // initialize the policy counters - 2 collectors, 3 generations
  if (UseParNewGC && ParallelGCThreads > 0) {
    _gc_policy_counters = new GCPolicyCounters("ParNew:CMS", 2, 3);
  }
  else {
    _gc_policy_counters = new GCPolicyCounters("Copy:CMS", 2, 3);
  }
}

// Returns true if the incremental mode is enabled.
bool ConcurrentMarkSweepPolicy::has_soft_ended_eden()
{
  return CMSIncrementalMode;
}


//
// ASConcurrentMarkSweepPolicy methods
//

void ASConcurrentMarkSweepPolicy::initialize_gc_policy_counters() {

  assert(size_policy() != NULL, "A size policy is required");
  // initialize the policy counters - 2 collectors, 3 generations
  if (UseParNewGC && ParallelGCThreads > 0) {
    _gc_policy_counters = new CMSGCAdaptivePolicyCounters("ParNew:CMS", 2, 3,
      size_policy());
  }
  else {
    _gc_policy_counters = new CMSGCAdaptivePolicyCounters("Copy:CMS", 2, 3,
      size_policy());
  }
}