view src/share/vm/opto/addnode.hpp @ 452:00b023ae2d78

6722113: CMS: Incorrect overflow handling during precleaning of Reference lists Summary: When we encounter marking stack overflow during precleaning of Reference lists, we were using the overflow list mechanism, which can cause problems on account of mutating the mark word of the header because of conflicts with mutator accesses and updates of that field. Instead we should use the usual mechanism for overflow handling in concurrent phases, namely dirtying of the card on which the overflowed object lies. Since precleaning effectively does a form of discovered list processing, albeit with discovery enabled, we needed to adjust some code to be correct in the face of interleaved processing and discovery. Reviewed-by: apetrusenko, jcoomes
author ysr
date Thu, 20 Nov 2008 12:27:41 -0800
parents ff5961f4c095
children b5fdf39b9749
line wrap: on
line source

/*
 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

class PhaseTransform;

//------------------------------AddNode----------------------------------------
// Classic Add functionality.  This covers all the usual 'add' behaviors for
// an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
// all inherited from this class.  The various identity values are supplied
// by virtual functions.
class AddNode : public Node {
  virtual uint hash() const;
public:
  AddNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
    init_class_id(Class_Add);
  }

  // Handle algebraic identities here.  If we have an identity, return the Node
  // we are equivalent to.  We look for "add of zero" as an identity.
  virtual Node *Identity( PhaseTransform *phase );

  // We also canonicalize the Node, moving constants to the right input,
  // and flatten expressions (so that 1+x+2 becomes x+3).
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Compute a new Type for this node.  Basically we just do the pre-check,
  // then call the virtual add() to set the type.
  virtual const Type *Value( PhaseTransform *phase ) const;

  // Check if this addition involves the additive identity
  virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const;

  // Supplied function returns the sum of the inputs.
  // This also type-checks the inputs for sanity.  Guaranteed never to
  // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
  virtual const Type *add_ring( const Type *, const Type * ) const = 0;

  // Supplied function to return the additive identity type
  virtual const Type *add_id() const = 0;

};

//------------------------------AddINode---------------------------------------
// Add 2 integers
class AddINode : public AddNode {
public:
  AddINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeInt::ZERO; }
  virtual const Type *bottom_type() const { return TypeInt::INT; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual Node *Identity( PhaseTransform *phase );
  virtual uint ideal_reg() const { return Op_RegI; }
};

//------------------------------AddLNode---------------------------------------
// Add 2 longs
class AddLNode : public AddNode {
public:
  AddLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeLong::ZERO; }
  virtual const Type *bottom_type() const { return TypeLong::LONG; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual Node *Identity( PhaseTransform *phase );
  virtual uint ideal_reg() const { return Op_RegL; }
};

//------------------------------AddFNode---------------------------------------
// Add 2 floats
class AddFNode : public AddNode {
public:
  AddFNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeF::ZERO; }
  virtual const Type *bottom_type() const { return Type::FLOAT; }
  virtual Node *Identity( PhaseTransform *phase ) { return this; }
  virtual uint ideal_reg() const { return Op_RegF; }
};

//------------------------------AddDNode---------------------------------------
// Add 2 doubles
class AddDNode : public AddNode {
public:
  AddDNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *add_of_identity( const Type *t1, const Type *t2 ) const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeD::ZERO; }
  virtual const Type *bottom_type() const { return Type::DOUBLE; }
  virtual Node *Identity( PhaseTransform *phase ) { return this; }
  virtual uint ideal_reg() const { return Op_RegD; }
};

//------------------------------AddPNode---------------------------------------
// Add pointer plus integer to get pointer.  NOT commutative, really.
// So not really an AddNode.  Lives here, because people associate it with
// an add.
class AddPNode : public Node {
public:
  enum { Control,               // When is it safe to do this add?
         Base,                  // Base oop, for GC purposes
         Address,               // Actually address, derived from base
         Offset } ;             // Offset added to address
  AddPNode( Node *base, Node *ptr, Node *off ) : Node(0,base,ptr,off) {
    init_class_id(Class_AddP);
  }
  virtual int Opcode() const;
  virtual Node *Identity( PhaseTransform *phase );
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual const Type *bottom_type() const;
  virtual uint  ideal_reg() const { return Op_RegP; }
  Node         *base_node() { assert( req() > Base, "Missing base"); return in(Base); }
  static Node* Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
                                     // second return value:
                                     intptr_t& offset);

  // Collect the AddP offset values into the elements array, giving up
  // if there are more than length.
  int unpack_offsets(Node* elements[], int length);

  // Do not match base-ptr edge
  virtual uint match_edge(uint idx) const;
  static const Type *mach_bottom_type(const MachNode* n);  // used by ad_<arch>.hpp
};

//------------------------------OrINode----------------------------------------
// Logically OR 2 integers.  Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class OrINode : public AddNode {
public:
  OrINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeInt::ZERO; }
  virtual const Type *bottom_type() const { return TypeInt::INT; }
  virtual Node *Identity( PhaseTransform *phase );
  virtual uint ideal_reg() const { return Op_RegI; }
};

//------------------------------OrLNode----------------------------------------
// Logically OR 2 longs.  Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class OrLNode : public AddNode {
public:
  OrLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeLong::ZERO; }
  virtual const Type *bottom_type() const { return TypeLong::LONG; }
  virtual Node *Identity( PhaseTransform *phase );
  virtual uint ideal_reg() const { return Op_RegL; }
};

//------------------------------XorINode---------------------------------------
// XOR'ing 2 integers
class XorINode : public AddNode {
public:
  XorINode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeInt::ZERO; }
  virtual const Type *bottom_type() const { return TypeInt::INT; }
  virtual uint ideal_reg() const { return Op_RegI; }
};

//------------------------------XorINode---------------------------------------
// XOR'ing 2 longs
class XorLNode : public AddNode {
public:
  XorLNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeLong::ZERO; }
  virtual const Type *bottom_type() const { return TypeLong::LONG; }
  virtual uint ideal_reg() const { return Op_RegL; }
};

//------------------------------MaxNode----------------------------------------
// Max (or min) of 2 values.  Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.  Only new thing is that we allow
// 2 equal inputs to be equal.
class MaxNode : public AddNode {
public:
  MaxNode( Node *in1, Node *in2 ) : AddNode(in1,in2) {}
  virtual int Opcode() const = 0;
};

//------------------------------MaxINode---------------------------------------
// Maximum of 2 integers.  Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class MaxINode : public MaxNode {
public:
  MaxINode( Node *in1, Node *in2 ) : MaxNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeInt::make(min_jint); }
  virtual const Type *bottom_type() const { return TypeInt::INT; }
  virtual uint ideal_reg() const { return Op_RegI; }
};

//------------------------------MinINode---------------------------------------
// MINimum of 2 integers.  Included with the ADD nodes because it inherits
// all the behavior of addition on a ring.
class MinINode : public MaxNode {
public:
  MinINode( Node *in1, Node *in2 ) : MaxNode(in1,in2) {}
  virtual int Opcode() const;
  virtual const Type *add_ring( const Type *, const Type * ) const;
  virtual const Type *add_id() const { return TypeInt::make(max_jint); }
  virtual const Type *bottom_type() const { return TypeInt::INT; }
  virtual uint ideal_reg() const { return Op_RegI; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
};