view src/share/vm/opto/vectornode.cpp @ 452:00b023ae2d78

6722113: CMS: Incorrect overflow handling during precleaning of Reference lists Summary: When we encounter marking stack overflow during precleaning of Reference lists, we were using the overflow list mechanism, which can cause problems on account of mutating the mark word of the header because of conflicts with mutator accesses and updates of that field. Instead we should use the usual mechanism for overflow handling in concurrent phases, namely dirtying of the card on which the overflowed object lies. Since precleaning effectively does a form of discovered list processing, albeit with discovery enabled, we needed to adjust some code to be correct in the face of interleaved processing and discovery. Reviewed-by: apetrusenko, jcoomes
author ysr
date Thu, 20 Nov 2008 12:27:41 -0800
parents d1605aabd0a1
children 3b5ac9e7e6ea
line wrap: on
line source

/*
 * Copyright 2007-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 */

#include "incls/_precompiled.incl"
#include "incls/_vectornode.cpp.incl"

//------------------------------VectorNode--------------------------------------

// Return vector type for an element type and vector length.
const Type* VectorNode::vect_type(BasicType elt_bt, uint len) {
  assert(len <= VectorNode::max_vlen(elt_bt), "len in range");
  switch(elt_bt) {
  case T_BOOLEAN:
  case T_BYTE:
    switch(len) {
    case 2:  return TypeInt::CHAR;
    case 4:  return TypeInt::INT;
    case 8:  return TypeLong::LONG;
    }
    break;
  case T_CHAR:
  case T_SHORT:
    switch(len) {
    case 2:  return TypeInt::INT;
    case 4:  return TypeLong::LONG;
    }
    break;
  case T_INT:
    switch(len) {
    case 2:  return TypeLong::LONG;
    }
    break;
  case T_LONG:
    break;
  case T_FLOAT:
    switch(len) {
    case 2:  return Type::DOUBLE;
    }
    break;
  case T_DOUBLE:
    break;
  }
  ShouldNotReachHere();
  return NULL;
}

// Scalar promotion
VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  assert(vlen <= VectorNode::max_vlen(bt), "vlen in range");
  switch (bt) {
  case T_BOOLEAN:
  case T_BYTE:
    if (vlen == 16) return new (C, 2) Replicate16BNode(s);
    if (vlen ==  8) return new (C, 2) Replicate8BNode(s);
    if (vlen ==  4) return new (C, 2) Replicate4BNode(s);
    break;
  case T_CHAR:
    if (vlen == 8) return new (C, 2) Replicate8CNode(s);
    if (vlen == 4) return new (C, 2) Replicate4CNode(s);
    if (vlen == 2) return new (C, 2) Replicate2CNode(s);
    break;
  case T_SHORT:
    if (vlen == 8) return new (C, 2) Replicate8SNode(s);
    if (vlen == 4) return new (C, 2) Replicate4SNode(s);
    if (vlen == 2) return new (C, 2) Replicate2SNode(s);
    break;
  case T_INT:
    if (vlen == 4) return new (C, 2) Replicate4INode(s);
    if (vlen == 2) return new (C, 2) Replicate2INode(s);
    break;
  case T_LONG:
    if (vlen == 2) return new (C, 2) Replicate2LNode(s);
    break;
  case T_FLOAT:
    if (vlen == 4) return new (C, 2) Replicate4FNode(s);
    if (vlen == 2) return new (C, 2) Replicate2FNode(s);
    break;
  case T_DOUBLE:
    if (vlen == 2) return new (C, 2) Replicate2DNode(s);
    break;
  }
  ShouldNotReachHere();
  return NULL;
}

// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Compile* C, Node* s, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  switch (bt) {
  case T_BOOLEAN:
  case T_BYTE:
    return new (C, 2) PackBNode(s);
  case T_CHAR:
    return new (C, 2) PackCNode(s);
  case T_SHORT:
    return new (C, 2) PackSNode(s);
  case T_INT:
    return new (C, 2) PackINode(s);
  case T_LONG:
    return new (C, 2) PackLNode(s);
  case T_FLOAT:
    return new (C, 2) PackFNode(s);
  case T_DOUBLE:
    return new (C, 2) PackDNode(s);
  }
  ShouldNotReachHere();
  return NULL;
}

// Create a binary tree form for Packs. [lo, hi) (half-open) range
Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
  int ct = hi - lo;
  assert(is_power_of_2(ct), "power of 2");
  int mid = lo + ct/2;
  Node* n1 = ct == 2 ? in(lo)   : binaryTreePack(C, lo,  mid);
  Node* n2 = ct == 2 ? in(lo+1) : binaryTreePack(C, mid, hi );
  int rslt_bsize = ct * type2aelembytes(elt_basic_type());
  if (bottom_type()->is_floatingpoint()) {
    switch (rslt_bsize) {
    case  8: return new (C, 3) PackFNode(n1, n2);
    case 16: return new (C, 3) PackDNode(n1, n2);
    }
  } else {
    assert(bottom_type()->isa_int() || bottom_type()->isa_long(), "int or long");
    switch (rslt_bsize) {
    case  2: return new (C, 3) Pack2x1BNode(n1, n2);
    case  4: return new (C, 3) Pack2x2BNode(n1, n2);
    case  8: return new (C, 3) PackINode(n1, n2);
    case 16: return new (C, 3) PackLNode(n1, n2);
    }
  }
  ShouldNotReachHere();
  return NULL;
}

// Return the vector operator for the specified scalar operation
// and vector length.  One use is to check if the code generator
// supports the vector operation.
int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  if (!(is_power_of_2(vlen) && vlen <= max_vlen(bt)))
    return 0; // unimplemented
  switch (sopc) {
  case Op_AddI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:      return Op_AddVB;
    case T_CHAR:      return Op_AddVC;
    case T_SHORT:     return Op_AddVS;
    case T_INT:       return Op_AddVI;
    }
    ShouldNotReachHere();
  case Op_AddL:
    assert(bt == T_LONG, "must be");
    return Op_AddVL;
  case Op_AddF:
    assert(bt == T_FLOAT, "must be");
    return Op_AddVF;
  case Op_AddD:
    assert(bt == T_DOUBLE, "must be");
    return Op_AddVD;
  case Op_SubI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:   return Op_SubVB;
    case T_CHAR:   return Op_SubVC;
    case T_SHORT:  return Op_SubVS;
    case T_INT:    return Op_SubVI;
    }
    ShouldNotReachHere();
  case Op_SubL:
    assert(bt == T_LONG, "must be");
    return Op_SubVL;
  case Op_SubF:
    assert(bt == T_FLOAT, "must be");
    return Op_SubVF;
  case Op_SubD:
    assert(bt == T_DOUBLE, "must be");
    return Op_SubVD;
  case Op_MulF:
    assert(bt == T_FLOAT, "must be");
    return Op_MulVF;
  case Op_MulD:
    assert(bt == T_DOUBLE, "must be");
    return Op_MulVD;
  case Op_DivF:
    assert(bt == T_FLOAT, "must be");
    return Op_DivVF;
  case Op_DivD:
    assert(bt == T_DOUBLE, "must be");
    return Op_DivVD;
  case Op_LShiftI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:   return Op_LShiftVB;
    case T_CHAR:   return Op_LShiftVC;
    case T_SHORT:  return Op_LShiftVS;
    case T_INT:    return Op_LShiftVI;
    }
    ShouldNotReachHere();
  case Op_URShiftI:
    switch (bt) {
    case T_BOOLEAN:
    case T_BYTE:   return Op_URShiftVB;
    case T_CHAR:   return Op_URShiftVC;
    case T_SHORT:  return Op_URShiftVS;
    case T_INT:    return Op_URShiftVI;
    }
    ShouldNotReachHere();
  case Op_AndI:
  case Op_AndL:
    return Op_AndV;
  case Op_OrI:
  case Op_OrL:
    return Op_OrV;
  case Op_XorI:
  case Op_XorL:
    return Op_XorV;

  case Op_LoadB:
  case Op_LoadC:
  case Op_LoadS:
  case Op_LoadI:
  case Op_LoadL:
  case Op_LoadF:
  case Op_LoadD:
    return VectorLoadNode::opcode(sopc, vlen);

  case Op_StoreB:
  case Op_StoreC:
  case Op_StoreI:
  case Op_StoreL:
  case Op_StoreF:
  case Op_StoreD:
    return VectorStoreNode::opcode(sopc, vlen);
  }
  return 0; // Unimplemented
}

// Helper for above.
int VectorLoadNode::opcode(int sopc, uint vlen) {
  switch (sopc) {
  case Op_LoadB:
    switch (vlen) {
    case  2:       return 0; // Unimplemented
    case  4:       return Op_Load4B;
    case  8:       return Op_Load8B;
    case 16:       return Op_Load16B;
    }
    break;
  case Op_LoadC:
    switch (vlen) {
    case  2:       return Op_Load2C;
    case  4:       return Op_Load4C;
    case  8:       return Op_Load8C;
    }
    break;
  case Op_LoadS:
    switch (vlen) {
    case  2:       return Op_Load2S;
    case  4:       return Op_Load4S;
    case  8:       return Op_Load8S;
    }
    break;
  case Op_LoadI:
    switch (vlen) {
    case  2:       return Op_Load2I;
    case  4:       return Op_Load4I;
    }
    break;
  case Op_LoadL:
    if (vlen == 2) return Op_Load2L;
    break;
  case Op_LoadF:
    switch (vlen) {
    case  2:       return Op_Load2F;
    case  4:       return Op_Load4F;
    }
    break;
  case Op_LoadD:
    if (vlen == 2) return Op_Load2D;
    break;
  }
  return 0; // Unimplemented
}

// Helper for above
int VectorStoreNode::opcode(int sopc, uint vlen) {
  switch (sopc) {
  case Op_StoreB:
    switch (vlen) {
    case  2:       return 0; // Unimplemented
    case  4:       return Op_Store4B;
    case  8:       return Op_Store8B;
    case 16:       return Op_Store16B;
    }
    break;
  case Op_StoreC:
    switch (vlen) {
    case  2:       return Op_Store2C;
    case  4:       return Op_Store4C;
    case  8:       return Op_Store8C;
    }
    break;
  case Op_StoreI:
    switch (vlen) {
    case  2:       return Op_Store2I;
    case  4:       return Op_Store4I;
    }
    break;
  case Op_StoreL:
    if (vlen == 2) return Op_Store2L;
    break;
  case Op_StoreF:
    switch (vlen) {
    case  2:       return Op_Store2F;
    case  4:       return Op_Store4F;
    }
    break;
  case Op_StoreD:
    if (vlen == 2) return Op_Store2D;
    break;
  }
  return 0; // Unimplemented
}

// Return the vector version of a scalar operation node.
VectorNode* VectorNode::make(Compile* C, int sopc, Node* n1, Node* n2, uint vlen, const Type* opd_t) {
  int vopc = opcode(sopc, vlen, opd_t);

  switch (vopc) {
  case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vlen);
  case Op_AddVC: return new (C, 3) AddVCNode(n1, n2, vlen);
  case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vlen);
  case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vlen);
  case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vlen);
  case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vlen);
  case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vlen);

  case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vlen);
  case Op_SubVC: return new (C, 3) SubVCNode(n1, n2, vlen);
  case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vlen);
  case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vlen);
  case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vlen);
  case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vlen);
  case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vlen);

  case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vlen);
  case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vlen);

  case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vlen);
  case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vlen);

  case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vlen);
  case Op_LShiftVC: return new (C, 3) LShiftVCNode(n1, n2, vlen);
  case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vlen);
  case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vlen);

  case Op_URShiftVB: return new (C, 3) URShiftVBNode(n1, n2, vlen);
  case Op_URShiftVC: return new (C, 3) URShiftVCNode(n1, n2, vlen);
  case Op_URShiftVS: return new (C, 3) URShiftVSNode(n1, n2, vlen);
  case Op_URShiftVI: return new (C, 3) URShiftVINode(n1, n2, vlen);

  case Op_AndV: return new (C, 3) AndVNode(n1, n2, vlen, opd_t->array_element_basic_type());
  case Op_OrV:  return new (C, 3) OrVNode (n1, n2, vlen, opd_t->array_element_basic_type());
  case Op_XorV: return new (C, 3) XorVNode(n1, n2, vlen, opd_t->array_element_basic_type());
  }
  ShouldNotReachHere();
  return NULL;
}

// Return the vector version of a scalar load node.
VectorLoadNode* VectorLoadNode::make(Compile* C, int opc, Node* ctl, Node* mem,
                                     Node* adr, const TypePtr* atyp, uint vlen) {
  int vopc = opcode(opc, vlen);

  switch(vopc) {
  case Op_Load16B: return new (C, 3) Load16BNode(ctl, mem, adr, atyp);
  case Op_Load8B:  return new (C, 3) Load8BNode(ctl, mem, adr, atyp);
  case Op_Load4B:  return new (C, 3) Load4BNode(ctl, mem, adr, atyp);

  case Op_Load8C:  return new (C, 3) Load8CNode(ctl, mem, adr, atyp);
  case Op_Load4C:  return new (C, 3) Load4CNode(ctl, mem, adr, atyp);
  case Op_Load2C:  return new (C, 3) Load2CNode(ctl, mem, adr, atyp);

  case Op_Load8S:  return new (C, 3) Load8SNode(ctl, mem, adr, atyp);
  case Op_Load4S:  return new (C, 3) Load4SNode(ctl, mem, adr, atyp);
  case Op_Load2S:  return new (C, 3) Load2SNode(ctl, mem, adr, atyp);

  case Op_Load4I:  return new (C, 3) Load4INode(ctl, mem, adr, atyp);
  case Op_Load2I:  return new (C, 3) Load2INode(ctl, mem, adr, atyp);

  case Op_Load2L:  return new (C, 3) Load2LNode(ctl, mem, adr, atyp);

  case Op_Load4F:  return new (C, 3) Load4FNode(ctl, mem, adr, atyp);
  case Op_Load2F:  return new (C, 3) Load2FNode(ctl, mem, adr, atyp);

  case Op_Load2D:  return new (C, 3) Load2DNode(ctl, mem, adr, atyp);
  }
  ShouldNotReachHere();
  return NULL;
}

// Return the vector version of a scalar store node.
VectorStoreNode* VectorStoreNode::make(Compile* C, int opc, Node* ctl, Node* mem,
                                       Node* adr, const TypePtr* atyp, VectorNode* val,
                                       uint vlen) {
  int vopc = opcode(opc, vlen);

  switch(vopc) {
  case Op_Store16B: return new (C, 4) Store16BNode(ctl, mem, adr, atyp, val);
  case Op_Store8B: return new (C, 4) Store8BNode(ctl, mem, adr, atyp, val);
  case Op_Store4B: return new (C, 4) Store4BNode(ctl, mem, adr, atyp, val);

  case Op_Store8C: return new (C, 4) Store8CNode(ctl, mem, adr, atyp, val);
  case Op_Store4C: return new (C, 4) Store4CNode(ctl, mem, adr, atyp, val);
  case Op_Store2C: return new (C, 4) Store2CNode(ctl, mem, adr, atyp, val);

  case Op_Store4I: return new (C, 4) Store4INode(ctl, mem, adr, atyp, val);
  case Op_Store2I: return new (C, 4) Store2INode(ctl, mem, adr, atyp, val);

  case Op_Store2L: return new (C, 4) Store2LNode(ctl, mem, adr, atyp, val);

  case Op_Store4F: return new (C, 4) Store4FNode(ctl, mem, adr, atyp, val);
  case Op_Store2F: return new (C, 4) Store2FNode(ctl, mem, adr, atyp, val);

  case Op_Store2D: return new (C, 4) Store2DNode(ctl, mem, adr, atyp, val);
  }
  ShouldNotReachHere();
  return NULL;
}

// Extract a scalar element of vector.
Node* ExtractNode::make(Compile* C, Node* v, uint position, const Type* opd_t) {
  BasicType bt = opd_t->array_element_basic_type();
  assert(position < VectorNode::max_vlen(bt), "pos in range");
  ConINode* pos = ConINode::make(C, (int)position);
  switch (bt) {
  case T_BOOLEAN:
  case T_BYTE:
    return new (C, 3) ExtractBNode(v, pos);
  case T_CHAR:
    return new (C, 3) ExtractCNode(v, pos);
  case T_SHORT:
    return new (C, 3) ExtractSNode(v, pos);
  case T_INT:
    return new (C, 3) ExtractINode(v, pos);
  case T_LONG:
    return new (C, 3) ExtractLNode(v, pos);
  case T_FLOAT:
    return new (C, 3) ExtractFNode(v, pos);
  case T_DOUBLE:
    return new (C, 3) ExtractDNode(v, pos);
  }
  ShouldNotReachHere();
  return NULL;
}