view src/share/vm/gc_implementation/g1/survRateGroup.cpp @ 12233:40136aa2cdb1

8010722: assert: failed: heap size is too big for compressed oops Summary: Use conservative assumptions of required alignment for the various garbage collector components into account when determining the maximum heap size that supports compressed oops. Using this conservative value avoids several circular dependencies in the calculation. Reviewed-by: stefank, dholmes
author tschatzl
date Wed, 11 Sep 2013 16:25:02 +0200
parents d2a62e0f25eb
children 78bbf4d43a14
line wrap: on
line source

/*
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/survRateGroup.hpp"
#include "memory/allocation.hpp"

SurvRateGroup::SurvRateGroup(G1CollectorPolicy* g1p,
                             const char* name,
                             size_t summary_surv_rates_len) :
    _g1p(g1p), _name(name),
    _summary_surv_rates_len(summary_surv_rates_len),
    _summary_surv_rates_max_len(0),
    _summary_surv_rates(NULL),
    _surv_rate(NULL),
    _accum_surv_rate_pred(NULL),
    _surv_rate_pred(NULL),
    _stats_arrays_length(0) {
  reset();
  if (summary_surv_rates_len > 0) {
    size_t length = summary_surv_rates_len;
      _summary_surv_rates = NEW_C_HEAP_ARRAY(NumberSeq*, length, mtGC);
    for (size_t i = 0; i < length; ++i) {
      _summary_surv_rates[i] = new NumberSeq();
    }
  }

  start_adding_regions();
}

void SurvRateGroup::reset() {
  _all_regions_allocated = 0;
  _setup_seq_num         = 0;
  _accum_surv_rate       = 0.0;
  _last_pred             = 0.0;
  // the following will set up the arrays with length 1
  _region_num            = 1;

  // The call to stop_adding_regions() will use "new" to refill
  // the _surv_rate_pred array, so we need to make sure to call
  // "delete".
  for (size_t i = 0; i < _stats_arrays_length; ++i) {
    delete _surv_rate_pred[i];
  }
  _stats_arrays_length = 0;

  stop_adding_regions();
  guarantee( _stats_arrays_length == 1, "invariant" );
  guarantee( _surv_rate_pred[0] != NULL, "invariant" );
  _surv_rate_pred[0]->add(0.4);
  all_surviving_words_recorded(false);
  _region_num = 0;
}

void
SurvRateGroup::start_adding_regions() {
  _setup_seq_num   = _stats_arrays_length;
  _region_num      = 0;
  _accum_surv_rate = 0.0;
}

void
SurvRateGroup::stop_adding_regions() {
  if (_region_num > _stats_arrays_length) {
    double* old_surv_rate = _surv_rate;
    double* old_accum_surv_rate_pred = _accum_surv_rate_pred;
    TruncatedSeq** old_surv_rate_pred = _surv_rate_pred;

    _surv_rate = NEW_C_HEAP_ARRAY(double, _region_num, mtGC);
    _accum_surv_rate_pred = NEW_C_HEAP_ARRAY(double, _region_num, mtGC);
    _surv_rate_pred = NEW_C_HEAP_ARRAY(TruncatedSeq*, _region_num, mtGC);

    for (size_t i = 0; i < _stats_arrays_length; ++i) {
      _surv_rate_pred[i] = old_surv_rate_pred[i];
    }
    for (size_t i = _stats_arrays_length; i < _region_num; ++i) {
      _surv_rate_pred[i] = new TruncatedSeq(10);
    }

    _stats_arrays_length = _region_num;

    if (old_surv_rate != NULL) {
      FREE_C_HEAP_ARRAY(double, old_surv_rate, mtGC);
    }
    if (old_accum_surv_rate_pred != NULL) {
      FREE_C_HEAP_ARRAY(double, old_accum_surv_rate_pred, mtGC);
    }
    if (old_surv_rate_pred != NULL) {
      FREE_C_HEAP_ARRAY(TruncatedSeq*, old_surv_rate_pred, mtGC);
    }
  }

  for (size_t i = 0; i < _stats_arrays_length; ++i) {
    _surv_rate[i] = 0.0;
  }
}

double
SurvRateGroup::accum_surv_rate(size_t adjustment) {
  // we might relax this one in the future...
  guarantee( adjustment == 0 || adjustment == 1, "pre-condition" );

  double ret = _accum_surv_rate;
  if (adjustment > 0) {
    TruncatedSeq* seq = get_seq(_region_num+1);
    double surv_rate = _g1p->get_new_prediction(seq);
    ret += surv_rate;
  }

  return ret;
}

int
SurvRateGroup::next_age_index() {
  TruncatedSeq* seq = get_seq(_region_num);
  double surv_rate = _g1p->get_new_prediction(seq);
  _accum_surv_rate += surv_rate;

  ++_region_num;
  return (int) ++_all_regions_allocated;
}

void
SurvRateGroup::record_surviving_words(int age_in_group, size_t surv_words) {
  guarantee( 0 <= age_in_group && (size_t) age_in_group < _region_num,
             "pre-condition" );
  guarantee( _surv_rate[age_in_group] <= 0.00001,
             "should only update each slot once" );

  double surv_rate = (double) surv_words / (double) HeapRegion::GrainWords;
  _surv_rate[age_in_group] = surv_rate;
  _surv_rate_pred[age_in_group]->add(surv_rate);
  if ((size_t)age_in_group < _summary_surv_rates_len) {
    _summary_surv_rates[age_in_group]->add(surv_rate);
    if ((size_t)(age_in_group+1) > _summary_surv_rates_max_len)
      _summary_surv_rates_max_len = age_in_group+1;
  }
}

void
SurvRateGroup::all_surviving_words_recorded(bool propagate) {
  if (propagate && _region_num > 0) { // conservative
    double surv_rate = _surv_rate_pred[_region_num-1]->last();
    for (size_t i = _region_num; i < _stats_arrays_length; ++i) {
      guarantee( _surv_rate[i] <= 0.00001,
                 "the slot should not have been updated" );
      _surv_rate_pred[i]->add(surv_rate);
    }
  }

  double accum = 0.0;
  double pred = 0.0;
  for (size_t i = 0; i < _stats_arrays_length; ++i) {
    pred = _g1p->get_new_prediction(_surv_rate_pred[i]);
    if (pred > 1.0) pred = 1.0;
    accum += pred;
    _accum_surv_rate_pred[i] = accum;
    // gclog_or_tty->print_cr("age %3d, accum %10.2lf", i, accum);
  }
  _last_pred = pred;
}

#ifndef PRODUCT
void
SurvRateGroup::print() {
  gclog_or_tty->print_cr("Surv Rate Group: %s (%d entries)",
                _name, _region_num);
  for (size_t i = 0; i < _region_num; ++i) {
    gclog_or_tty->print_cr("    age %4d   surv rate %6.2lf %%   pred %6.2lf %%",
                  i, _surv_rate[i] * 100.0,
                  _g1p->get_new_prediction(_surv_rate_pred[i]) * 100.0);
  }
}

void
SurvRateGroup::print_surv_rate_summary() {
  size_t length = _summary_surv_rates_max_len;
  if (length == 0)
    return;

  gclog_or_tty->print_cr("");
  gclog_or_tty->print_cr("%s Rate Summary (for up to age %d)", _name, length-1);
  gclog_or_tty->print_cr("      age range     survival rate (avg)      samples (avg)");
  gclog_or_tty->print_cr("  ---------------------------------------------------------");

  size_t index = 0;
  size_t limit = MIN2((int) length, 10);
  while (index < limit) {
    gclog_or_tty->print_cr("           %4d                 %6.2lf%%             %6.2lf",
                  index, _summary_surv_rates[index]->avg() * 100.0,
                  (double) _summary_surv_rates[index]->num());
    ++index;
  }

  gclog_or_tty->print_cr("  ---------------------------------------------------------");

  int num = 0;
  double sum = 0.0;
  int samples = 0;
  while (index < length) {
    ++num;
    sum += _summary_surv_rates[index]->avg() * 100.0;
    samples += _summary_surv_rates[index]->num();
    ++index;

    if (index == length || num % 10 == 0) {
      gclog_or_tty->print_cr("   %4d .. %4d                 %6.2lf%%             %6.2lf",
                    (index-1) / 10 * 10, index-1, sum / (double) num,
                    (double) samples / (double) num);
      sum = 0.0;
      num = 0;
      samples = 0;
    }
  }

  gclog_or_tty->print_cr("  ---------------------------------------------------------");
}
#endif // PRODUCT