view src/share/vm/oops/typeArrayKlass.cpp @ 3762:5c0a3c1858b1

7048782: CMS: assert(last_chunk_index_to_check<= last_chunk_index) failed: parCardTableModRefBS.cpp:359 Summary: The LNC array is sized before the start of a scavenge, while the heap may expand during a scavenge. With CMS, the last block of an arbitrary suffice of the LNC array may expand due to coalition with the expansion delta. We now take care not to attempt access past the end of the LNC array. LNC array code will be cleaned up and suitably encapsulated as part of the forthcoming performance RFE 7043675. Reviewed-by: brutisso
author ysr
date Thu, 02 Jun 2011 10:23:36 -0700
parents e5383553fd4e
children c9ca3f51cf41
line wrap: on
line source

/*
 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "memory/universe.inline.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klassOop.hpp"
#include "oops/objArrayKlassKlass.hpp"
#include "oops/oop.inline.hpp"
#include "oops/typeArrayKlass.hpp"
#include "oops/typeArrayOop.hpp"
#include "runtime/handles.inline.hpp"

bool typeArrayKlass::compute_is_subtype_of(klassOop k) {
  if (!k->klass_part()->oop_is_typeArray()) {
    return arrayKlass::compute_is_subtype_of(k);
  }

  typeArrayKlass* tak = typeArrayKlass::cast(k);
  if (dimension() != tak->dimension()) return false;

  return element_type() == tak->element_type();
}

klassOop typeArrayKlass::create_klass(BasicType type, int scale,
                                      const char* name_str, TRAPS) {
  typeArrayKlass o;

  Symbol* sym = NULL;
  if (name_str != NULL) {
    sym = SymbolTable::new_symbol(name_str, CHECK_NULL);
  }
  KlassHandle klassklass (THREAD, Universe::typeArrayKlassKlassObj());

  arrayKlassHandle k = base_create_array_klass(o.vtbl_value(), header_size(), klassklass, CHECK_NULL);
  typeArrayKlass* ak = typeArrayKlass::cast(k());
  ak->set_name(sym);
  ak->set_layout_helper(array_layout_helper(type));
  assert(scale == (1 << ak->log2_element_size()), "scale must check out");
  assert(ak->oop_is_javaArray(), "sanity");
  assert(ak->oop_is_typeArray(), "sanity");
  ak->set_max_length(arrayOopDesc::max_array_length(type));
  assert(k()->size() > header_size(), "bad size");

  // Call complete_create_array_klass after all instance variables have been initialized.
  KlassHandle super (THREAD, k->super());
  complete_create_array_klass(k, super, CHECK_NULL);

  return k();
}

typeArrayOop typeArrayKlass::allocate(int length, TRAPS) {
  assert(log2_element_size() >= 0, "bad scale");
  if (length >= 0) {
    if (length <= max_length()) {
      size_t size = typeArrayOopDesc::object_size(layout_helper(), length);
      KlassHandle h_k(THREAD, as_klassOop());
      typeArrayOop t;
      CollectedHeap* ch = Universe::heap();
      if (size < ch->large_typearray_limit()) {
        t = (typeArrayOop)CollectedHeap::array_allocate(h_k, (int)size, length, CHECK_NULL);
      } else {
        t = (typeArrayOop)CollectedHeap::large_typearray_allocate(h_k, (int)size, length, CHECK_NULL);
      }
      assert(t->is_parsable(), "Don't publish unless parsable");
      return t;
    } else {
      report_java_out_of_memory("Requested array size exceeds VM limit");
      THROW_OOP_0(Universe::out_of_memory_error_array_size());
    }
  } else {
    THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
  }
}

typeArrayOop typeArrayKlass::allocate_permanent(int length, TRAPS) {
  if (length < 0) THROW_0(vmSymbols::java_lang_NegativeArraySizeException());
  int size = typeArrayOopDesc::object_size(layout_helper(), length);
  KlassHandle h_k(THREAD, as_klassOop());
  typeArrayOop t = (typeArrayOop)
    CollectedHeap::permanent_array_allocate(h_k, size, length, CHECK_NULL);
  assert(t->is_parsable(), "Can't publish until parsable");
  return t;
}

oop typeArrayKlass::multi_allocate(int rank, jint* last_size, TRAPS) {
  // For typeArrays this is only called for the last dimension
  assert(rank == 1, "just checking");
  int length = *last_size;
  return allocate(length, THREAD);
}


void typeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
  assert(s->is_typeArray(), "must be type array");

  // Check destination
  if (!d->is_typeArray() || element_type() != typeArrayKlass::cast(d->klass())->element_type()) {
    THROW(vmSymbols::java_lang_ArrayStoreException());
  }

  // Check is all offsets and lengths are non negative
  if (src_pos < 0 || dst_pos < 0 || length < 0) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }
  // Check if the ranges are valid
  if  ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length())
     || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) {
    THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException());
  }
  // Check zero copy
  if (length == 0)
    return;

  // This is an attempt to make the copy_array fast.
  int l2es = log2_element_size();
  int ihs = array_header_in_bytes() / wordSize;
  char* src = (char*) ((oop*)s + ihs) + ((size_t)src_pos << l2es);
  char* dst = (char*) ((oop*)d + ihs) + ((size_t)dst_pos << l2es);
  Copy::conjoint_memory_atomic(src, dst, (size_t)length << l2es);
}


// create a klass of array holding typeArrays
klassOop typeArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) {
  typeArrayKlassHandle h_this(THREAD, as_klassOop());
  return array_klass_impl(h_this, or_null, n, THREAD);
}

klassOop typeArrayKlass::array_klass_impl(typeArrayKlassHandle h_this, bool or_null, int n, TRAPS) {
  int dimension = h_this->dimension();
  assert(dimension <= n, "check order of chain");
    if (dimension == n)
      return h_this();

  objArrayKlassHandle  h_ak(THREAD, h_this->higher_dimension());
  if (h_ak.is_null()) {
    if (or_null)  return NULL;

    ResourceMark rm;
    JavaThread *jt = (JavaThread *)THREAD;
    {
      MutexLocker mc(Compile_lock, THREAD);   // for vtables
      // Atomic create higher dimension and link into list
      MutexLocker mu(MultiArray_lock, THREAD);

      h_ak = objArrayKlassHandle(THREAD, h_this->higher_dimension());
      if (h_ak.is_null()) {
        klassOop oak = objArrayKlassKlass::cast(
          Universe::objArrayKlassKlassObj())->allocate_objArray_klass(
          dimension + 1, h_this, CHECK_NULL);
        h_ak = objArrayKlassHandle(THREAD, oak);
        h_ak->set_lower_dimension(h_this());
        OrderAccess::storestore();
        h_this->set_higher_dimension(h_ak());
        assert(h_ak->oop_is_objArray(), "incorrect initialization of objArrayKlass");
      }
    }
  } else {
    CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
  }
  if (or_null) {
    return h_ak->array_klass_or_null(n);
  }
  return h_ak->array_klass(n, CHECK_NULL);
}

klassOop typeArrayKlass::array_klass_impl(bool or_null, TRAPS) {
  return array_klass_impl(or_null, dimension() +  1, THREAD);
}

int typeArrayKlass::oop_size(oop obj) const {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  return t->object_size();
}

void typeArrayKlass::oop_follow_contents(oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::typeArrayKlass never moves.
}

#ifndef SERIALGC
void typeArrayKlass::oop_follow_contents(ParCompactionManager* cm, oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::typeArrayKlass never moves.
}
#endif // SERIALGC

int typeArrayKlass::oop_adjust_pointers(oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::typeArrayKlass never moves.
  return t->object_size();
}

int typeArrayKlass::oop_oop_iterate(oop obj, OopClosure* blk) {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::typeArrayKlass never moves.
  return t->object_size();
}

int typeArrayKlass::oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) {
  assert(obj->is_typeArray(),"must be a type array");
  typeArrayOop t = typeArrayOop(obj);
  // Performance tweak: We skip iterating over the klass pointer since we
  // know that Universe::typeArrayKlass never moves.
  return t->object_size();
}

#ifndef SERIALGC
void typeArrayKlass::oop_push_contents(PSPromotionManager* pm, oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
}

int
typeArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) {
  assert(obj->is_typeArray(),"must be a type array");
  return typeArrayOop(obj)->object_size();
}
#endif // SERIALGC

void typeArrayKlass::initialize(TRAPS) {
  // Nothing to do. Having this function is handy since objArrayKlasses can be
  // initialized by calling initialize on their bottom_klass, see objArrayKlass::initialize
}

const char* typeArrayKlass::external_name(BasicType type) {
  switch (type) {
    case T_BOOLEAN: return "[Z";
    case T_CHAR:    return "[C";
    case T_FLOAT:   return "[F";
    case T_DOUBLE:  return "[D";
    case T_BYTE:    return "[B";
    case T_SHORT:   return "[S";
    case T_INT:     return "[I";
    case T_LONG:    return "[J";
    default: ShouldNotReachHere();
  }
  return NULL;
}

#ifndef PRODUCT
// Printing

static void print_boolean_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    st->print_cr(" - %3d: %s", index, (ta->bool_at(index) == 0) ? "false" : "true");
  }
}


static void print_char_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jchar c = ta->char_at(index);
    st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' ');
  }
}


static void print_float_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    st->print_cr(" - %3d: %g", index, ta->float_at(index));
  }
}


static void print_double_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    st->print_cr(" - %3d: %g", index, ta->double_at(index));
  }
}


static void print_byte_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jbyte c = ta->byte_at(index);
    st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' ');
  }
}


static void print_short_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    int v = ta->ushort_at(index);
    st->print_cr(" - %3d: 0x%x\t %d", index, v, v);
  }
}


static void print_int_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jint v = ta->int_at(index);
    st->print_cr(" - %3d: 0x%x %d", index, v, v);
  }
}


static void print_long_array(typeArrayOop ta, int print_len, outputStream* st) {
  for (int index = 0; index < print_len; index++) {
    jlong v = ta->long_at(index);
    st->print_cr(" - %3d: 0x%x 0x%x", index, high(v), low(v));
  }
}


void typeArrayKlass::oop_print_on(oop obj, outputStream* st) {
  arrayKlass::oop_print_on(obj, st);
  typeArrayOop ta = typeArrayOop(obj);
  int print_len = MIN2((intx) ta->length(), MaxElementPrintSize);
  switch (element_type()) {
    case T_BOOLEAN: print_boolean_array(ta, print_len, st); break;
    case T_CHAR:    print_char_array(ta, print_len, st);    break;
    case T_FLOAT:   print_float_array(ta, print_len, st);   break;
    case T_DOUBLE:  print_double_array(ta, print_len, st);  break;
    case T_BYTE:    print_byte_array(ta, print_len, st);    break;
    case T_SHORT:   print_short_array(ta, print_len, st);   break;
    case T_INT:     print_int_array(ta, print_len, st);     break;
    case T_LONG:    print_long_array(ta, print_len, st);    break;
    default: ShouldNotReachHere();
  }
  int remaining = ta->length() - print_len;
  if (remaining > 0) {
    tty->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining);
  }
}

#endif // PRODUCT

const char* typeArrayKlass::internal_name() const {
  return Klass::external_name();
}