view src/share/vm/prims/methodHandles.cpp @ 3762:5c0a3c1858b1

7048782: CMS: assert(last_chunk_index_to_check<= last_chunk_index) failed: parCardTableModRefBS.cpp:359 Summary: The LNC array is sized before the start of a scavenge, while the heap may expand during a scavenge. With CMS, the last block of an arbitrary suffice of the LNC array may expand due to coalition with the expansion delta. We now take care not to attempt access past the end of the LNC array. LNC array code will be cleaned up and suitably encapsulated as part of the forthcoming performance RFE 7043675. Reviewed-by: brutisso
author ysr
date Thu, 02 Jun 2011 10:23:36 -0700
parents b79e8b4ecd76
children 88559690c95a
line wrap: on
line source

/*
 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/oopMapCache.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/oopFactory.hpp"
#include "prims/methodHandles.hpp"
#include "prims/methodHandleWalk.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/reflection.hpp"
#include "runtime/signature.hpp"
#include "runtime/stubRoutines.hpp"

/*
 * JSR 292 reference implementation: method handles
 */

bool MethodHandles::_enabled = false; // set true after successful native linkage

MethodHandleEntry* MethodHandles::_entries[MethodHandles::_EK_LIMIT] = {NULL};
const char*        MethodHandles::_entry_names[_EK_LIMIT+1] = {
  "raise_exception",
  "invokestatic",               // how a MH emulates invokestatic
  "invokespecial",              // ditto for the other invokes...
  "invokevirtual",
  "invokeinterface",
  "bound_ref",                  // these are for BMH...
  "bound_int",
  "bound_long",
  "bound_ref_direct",           // (direct versions have a direct methodOop)
  "bound_int_direct",
  "bound_long_direct",

  // starting at _adapter_mh_first:
  "adapter_retype_only",       // these are for AMH...
  "adapter_retype_raw",
  "adapter_check_cast",
  "adapter_prim_to_prim",
  "adapter_ref_to_prim",
  "adapter_prim_to_ref",
  "adapter_swap_args",
  "adapter_rot_args",
  "adapter_dup_args",
  "adapter_drop_args",
  "adapter_collect_args",
  "adapter_spread_args",
  "adapter_fold_args",
  "adapter_unused_13",

  // optimized adapter types:
  "adapter_swap_args/1",
  "adapter_swap_args/2",
  "adapter_rot_args/1,up",
  "adapter_rot_args/1,down",
  "adapter_rot_args/2,up",
  "adapter_rot_args/2,down",
  "adapter_prim_to_prim/i2i",
  "adapter_prim_to_prim/l2i",
  "adapter_prim_to_prim/d2f",
  "adapter_prim_to_prim/i2l",
  "adapter_prim_to_prim/f2d",
  "adapter_ref_to_prim/unboxi",
  "adapter_ref_to_prim/unboxl",

  // return value handlers for collect/filter/fold adapters:
  "return/ref",
  "return/int",
  "return/long",
  "return/float",
  "return/double",
  "return/void",
  "return/S0/ref",
  "return/S1/ref",
  "return/S2/ref",
  "return/S3/ref",
  "return/S4/ref",
  "return/S5/ref",
  "return/any",

  // spreading (array length cases 0, 1, ...)
  "adapter_spread/0",
  "adapter_spread/1/ref",
  "adapter_spread/2/ref",
  "adapter_spread/3/ref",
  "adapter_spread/4/ref",
  "adapter_spread/5/ref",
  "adapter_spread/ref",
  "adapter_spread/byte",
  "adapter_spread/char",
  "adapter_spread/short",
  "adapter_spread/int",
  "adapter_spread/long",
  "adapter_spread/float",
  "adapter_spread/double",

  // blocking filter/collect conversions:
  "adapter_collect/ref",
  "adapter_collect/int",
  "adapter_collect/long",
  "adapter_collect/float",
  "adapter_collect/double",
  "adapter_collect/void",
  "adapter_collect/0/ref",
  "adapter_collect/1/ref",
  "adapter_collect/2/ref",
  "adapter_collect/3/ref",
  "adapter_collect/4/ref",
  "adapter_collect/5/ref",
  "adapter_filter/S0/ref",
  "adapter_filter/S1/ref",
  "adapter_filter/S2/ref",
  "adapter_filter/S3/ref",
  "adapter_filter/S4/ref",
  "adapter_filter/S5/ref",
  "adapter_collect/2/S0/ref",
  "adapter_collect/2/S1/ref",
  "adapter_collect/2/S2/ref",
  "adapter_collect/2/S3/ref",
  "adapter_collect/2/S4/ref",
  "adapter_collect/2/S5/ref",

  // blocking fold conversions:
  "adapter_fold/ref",
  "adapter_fold/int",
  "adapter_fold/long",
  "adapter_fold/float",
  "adapter_fold/double",
  "adapter_fold/void",
  "adapter_fold/1/ref",
  "adapter_fold/2/ref",
  "adapter_fold/3/ref",
  "adapter_fold/4/ref",
  "adapter_fold/5/ref",

  NULL
};

// Adapters.
MethodHandlesAdapterBlob* MethodHandles::_adapter_code      = NULL;
int                       MethodHandles::_adapter_code_size = StubRoutines::method_handles_adapters_code_size;

jobject MethodHandles::_raise_exception_method;

address MethodHandles::_adapter_return_handlers[CONV_TYPE_MASK+1];

#ifdef ASSERT
bool MethodHandles::spot_check_entry_names() {
  assert(!strcmp(entry_name(_invokestatic_mh), "invokestatic"), "");
  assert(!strcmp(entry_name(_bound_ref_mh), "bound_ref"), "");
  assert(!strcmp(entry_name(_adapter_retype_only), "adapter_retype_only"), "");
  assert(!strcmp(entry_name(_adapter_fold_args), "adapter_fold_args"), "");
  assert(!strcmp(entry_name(_adapter_opt_unboxi), "adapter_ref_to_prim/unboxi"), "");
  assert(!strcmp(entry_name(_adapter_opt_spread_char), "adapter_spread/char"), "");
  assert(!strcmp(entry_name(_adapter_opt_spread_double), "adapter_spread/double"), "");
  assert(!strcmp(entry_name(_adapter_opt_collect_int), "adapter_collect/int"), "");
  assert(!strcmp(entry_name(_adapter_opt_collect_0_ref), "adapter_collect/0/ref"), "");
  assert(!strcmp(entry_name(_adapter_opt_collect_2_S3_ref), "adapter_collect/2/S3/ref"), "");
  assert(!strcmp(entry_name(_adapter_opt_filter_S5_ref), "adapter_filter/S5/ref"), "");
  assert(!strcmp(entry_name(_adapter_opt_fold_3_ref), "adapter_fold/3/ref"), "");
  assert(!strcmp(entry_name(_adapter_opt_fold_void), "adapter_fold/void"), "");
  return true;
}
#endif


//------------------------------------------------------------------------------
// MethodHandles::generate_adapters
//
void MethodHandles::generate_adapters() {
#ifdef TARGET_ARCH_NYI_6939861
  if (FLAG_IS_DEFAULT(UseRicochetFrames))  UseRicochetFrames = false;
#endif
  if (!EnableInvokeDynamic || SystemDictionary::MethodHandle_klass() == NULL)  return;

  assert(_adapter_code == NULL, "generate only once");

  ResourceMark rm;
  TraceTime timer("MethodHandles adapters generation", TraceStartupTime);
  _adapter_code = MethodHandlesAdapterBlob::create(_adapter_code_size);
  if (_adapter_code == NULL)
    vm_exit_out_of_memory(_adapter_code_size, "CodeCache: no room for MethodHandles adapters");
  CodeBuffer code(_adapter_code);
  MethodHandlesAdapterGenerator g(&code);
  g.generate();
}

//------------------------------------------------------------------------------
// MethodHandlesAdapterGenerator::generate
//
void MethodHandlesAdapterGenerator::generate() {
  // Generate generic method handle adapters.
  for (MethodHandles::EntryKind ek = MethodHandles::_EK_FIRST;
       ek < MethodHandles::_EK_LIMIT;
       ek = MethodHandles::EntryKind(1 + (int)ek)) {
    if (MethodHandles::ek_supported(ek)) {
      StubCodeMark mark(this, "MethodHandle", MethodHandles::entry_name(ek));
      MethodHandles::generate_method_handle_stub(_masm, ek);
    }
  }
}


#ifdef TARGET_ARCH_NYI_6939861
// these defs belong in methodHandles_<arch>.cpp
frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
  ShouldNotCallThis();
  return fr;
}
void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* f, const RegisterMap* reg_map) {
  ShouldNotCallThis();
}
#endif //TARGET_ARCH_NYI_6939861


//------------------------------------------------------------------------------
// MethodHandles::ek_supported
//
bool MethodHandles::ek_supported(MethodHandles::EntryKind ek) {
  MethodHandles::EntryKind ek_orig = MethodHandles::ek_original_kind(ek);
  switch (ek_orig) {
  case _adapter_unused_13:
    return false;  // not defined yet
  case _adapter_prim_to_ref:
    return UseRicochetFrames && conv_op_supported(java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF);
  case _adapter_collect_args:
    return UseRicochetFrames && conv_op_supported(java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS);
  case _adapter_fold_args:
    return UseRicochetFrames && conv_op_supported(java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS);
  case _adapter_opt_return_any:
    return UseRicochetFrames;
#ifdef TARGET_ARCH_NYI_6939861
  // ports before 6939861 supported only three kinds of spread ops
  case _adapter_spread_args:
    // restrict spreads to three kinds:
    switch (ek) {
    case _adapter_opt_spread_0:
    case _adapter_opt_spread_1:
    case _adapter_opt_spread_more:
      break;
    default:
      return false;
      break;
    }
    break;
#endif //TARGET_ARCH_NYI_6939861
  }
  return true;
}


void MethodHandles::set_enabled(bool z) {
  if (_enabled != z) {
    guarantee(z && EnableInvokeDynamic, "can only enable once, and only if -XX:+EnableInvokeDynamic");
    _enabled = z;
  }
}

// Note: A method which does not have a TRAPS argument cannot block in the GC
// or throw exceptions.  Such methods are used in this file to do something quick
// and local, like parse a data structure.  For speed, such methods work on plain
// oops, not handles.  Trapping methods uniformly operate on handles.

methodHandle MethodHandles::decode_vmtarget(oop vmtarget, int vmindex, oop mtype,
                                            KlassHandle& receiver_limit_result, int& decode_flags_result) {
  if (vmtarget == NULL)  return methodHandle();
  assert(methodOopDesc::nonvirtual_vtable_index < 0, "encoding");
  if (vmindex < 0) {
    // this DMH performs no dispatch; it is directly bound to a methodOop
    // A MemberName may either be directly bound to a methodOop,
    // or it may use the klass/index form; both forms mean the same thing.
    methodOop m = decode_methodOop(methodOop(vmtarget), decode_flags_result);
    if ((decode_flags_result & _dmf_has_receiver) != 0
        && java_lang_invoke_MethodType::is_instance(mtype)) {
      // Extract receiver type restriction from mtype.ptypes[0].
      objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(mtype);
      oop ptype0 = (ptypes == NULL || ptypes->length() < 1) ? oop(NULL) : ptypes->obj_at(0);
      if (java_lang_Class::is_instance(ptype0))
        receiver_limit_result = java_lang_Class::as_klassOop(ptype0);
    }
    if (vmindex == methodOopDesc::nonvirtual_vtable_index) {
      // this DMH can be an "invokespecial" version
      decode_flags_result &= ~_dmf_does_dispatch;
    } else {
      assert(vmindex == methodOopDesc::invalid_vtable_index, "random vmindex?");
    }
    return m;
  } else {
    assert(vmtarget->is_klass(), "must be class or interface");
    decode_flags_result |= MethodHandles::_dmf_does_dispatch;
    decode_flags_result |= MethodHandles::_dmf_has_receiver;
    receiver_limit_result = (klassOop)vmtarget;
    Klass* tk = Klass::cast((klassOop)vmtarget);
    if (tk->is_interface()) {
      // an itable linkage is <interface, itable index>
      decode_flags_result |= MethodHandles::_dmf_from_interface;
      return klassItable::method_for_itable_index((klassOop)vmtarget, vmindex);
    } else {
      if (!tk->oop_is_instance())
        tk = instanceKlass::cast(SystemDictionary::Object_klass());
      return ((instanceKlass*)tk)->method_at_vtable(vmindex);
    }
  }
}

// MemberName and DirectMethodHandle have the same linkage to the JVM internals.
// (MemberName is the non-operational name used for queries and setup.)

methodHandle MethodHandles::decode_DirectMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
  oop vmtarget = java_lang_invoke_DirectMethodHandle::vmtarget(mh);
  int vmindex  = java_lang_invoke_DirectMethodHandle::vmindex(mh);
  oop mtype    = java_lang_invoke_DirectMethodHandle::type(mh);
  return decode_vmtarget(vmtarget, vmindex, mtype, receiver_limit_result, decode_flags_result);
}

methodHandle MethodHandles::decode_BoundMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
  assert(java_lang_invoke_BoundMethodHandle::is_instance(mh), "");
  assert(mh->klass() != SystemDictionary::AdapterMethodHandle_klass(), "");
  for (oop bmh = mh;;) {
    // Bound MHs can be stacked to bind several arguments.
    oop target = java_lang_invoke_MethodHandle::vmtarget(bmh);
    if (target == NULL)  return methodHandle();
    decode_flags_result |= MethodHandles::_dmf_binds_argument;
    klassOop tk = target->klass();
    if (tk == SystemDictionary::BoundMethodHandle_klass()) {
      bmh = target;
      continue;
    } else {
      if (java_lang_invoke_MethodHandle::is_subclass(tk)) {
        //assert(tk == SystemDictionary::DirectMethodHandle_klass(), "end of BMH chain must be DMH");
        return decode_MethodHandle(target, receiver_limit_result, decode_flags_result);
      } else {
        // Optimized case:  binding a receiver to a non-dispatched DMH
        // short-circuits directly to the methodOop.
        // (It might be another argument besides a receiver also.)
        assert(target->is_method(), "must be a simple method");
        decode_flags_result |= MethodHandles::_dmf_binds_method;
        methodOop m = (methodOop) target;
        if (!m->is_static())
          decode_flags_result |= MethodHandles::_dmf_has_receiver;
        return m;
      }
    }
  }
}

methodHandle MethodHandles::decode_AdapterMethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
  assert(mh->klass() == SystemDictionary::AdapterMethodHandle_klass(), "");
  for (oop amh = mh;;) {
    // Adapter MHs can be stacked to convert several arguments.
    int conv_op = adapter_conversion_op(java_lang_invoke_AdapterMethodHandle::conversion(amh));
    decode_flags_result |= (_dmf_adapter_lsb << conv_op) & _DMF_ADAPTER_MASK;
    oop target = java_lang_invoke_MethodHandle::vmtarget(amh);
    if (target == NULL)  return methodHandle();
    klassOop tk = target->klass();
    if (tk == SystemDictionary::AdapterMethodHandle_klass()) {
      amh = target;
      continue;
    } else {
      // must be a BMH (which will bind some more arguments) or a DMH (for the final call)
      return MethodHandles::decode_MethodHandle(target, receiver_limit_result, decode_flags_result);
    }
  }
}

methodHandle MethodHandles::decode_MethodHandle(oop mh, KlassHandle& receiver_limit_result, int& decode_flags_result) {
  if (mh == NULL)  return methodHandle();
  klassOop mhk = mh->klass();
  assert(java_lang_invoke_MethodHandle::is_subclass(mhk), "must be a MethodHandle");
  if (mhk == SystemDictionary::DirectMethodHandle_klass()) {
    return decode_DirectMethodHandle(mh, receiver_limit_result, decode_flags_result);
  } else if (mhk == SystemDictionary::BoundMethodHandle_klass()) {
    return decode_BoundMethodHandle(mh, receiver_limit_result, decode_flags_result);
  } else if (mhk == SystemDictionary::AdapterMethodHandle_klass()) {
    return decode_AdapterMethodHandle(mh, receiver_limit_result, decode_flags_result);
  } else if (java_lang_invoke_BoundMethodHandle::is_subclass(mhk)) {
    // could be a JavaMethodHandle (but not an adapter MH)
    return decode_BoundMethodHandle(mh, receiver_limit_result, decode_flags_result);
  } else {
    assert(false, "cannot parse this MH");
    return methodHandle();  // random MH?
  }
}

methodOop MethodHandles::decode_methodOop(methodOop m, int& decode_flags_result) {
  assert(m->is_method(), "");
  if (m->is_static()) {
    // check that signature begins '(L' or '([' (not '(I', '()', etc.)
    Symbol* sig = m->signature();
    BasicType recv_bt = char2type(sig->byte_at(1));
    // Note: recv_bt might be T_ILLEGAL if byte_at(2) is ')'
    assert(sig->byte_at(0) == '(', "must be method sig");
//     if (recv_bt == T_OBJECT || recv_bt == T_ARRAY)
//       decode_flags_result |= _dmf_has_receiver;
  } else {
    // non-static method
    decode_flags_result |= _dmf_has_receiver;
    if (!m->can_be_statically_bound() && !m->is_initializer()) {
      decode_flags_result |= _dmf_does_dispatch;
      if (Klass::cast(m->method_holder())->is_interface())
        decode_flags_result |= _dmf_from_interface;
    }
  }
  return m;
}


// A trusted party is handing us a cookie to determine a method.
// Let's boil it down to the method oop they really want.
methodHandle MethodHandles::decode_method(oop x, KlassHandle& receiver_limit_result, int& decode_flags_result) {
  decode_flags_result = 0;
  receiver_limit_result = KlassHandle();
  klassOop xk = x->klass();
  if (xk == Universe::methodKlassObj()) {
    return decode_methodOop((methodOop) x, decode_flags_result);
  } else if (xk == SystemDictionary::MemberName_klass()) {
    // Note: This only works if the MemberName has already been resolved.
    return decode_MemberName(x, receiver_limit_result, decode_flags_result);
  } else if (java_lang_invoke_MethodHandle::is_subclass(xk)) {
    return decode_MethodHandle(x, receiver_limit_result, decode_flags_result);
  } else if (xk == SystemDictionary::reflect_Method_klass()) {
    oop clazz  = java_lang_reflect_Method::clazz(x);
    int slot   = java_lang_reflect_Method::slot(x);
    klassOop k = java_lang_Class::as_klassOop(clazz);
    if (k != NULL && Klass::cast(k)->oop_is_instance())
      return decode_methodOop(instanceKlass::cast(k)->method_with_idnum(slot),
                              decode_flags_result);
  } else if (xk == SystemDictionary::reflect_Constructor_klass()) {
    oop clazz  = java_lang_reflect_Constructor::clazz(x);
    int slot   = java_lang_reflect_Constructor::slot(x);
    klassOop k = java_lang_Class::as_klassOop(clazz);
    if (k != NULL && Klass::cast(k)->oop_is_instance())
      return decode_methodOop(instanceKlass::cast(k)->method_with_idnum(slot),
                              decode_flags_result);
  } else {
    // unrecognized object
    assert(!x->is_method(), "already checked");
    assert(!java_lang_invoke_MemberName::is_instance(x), "already checked");
  }
  return methodHandle();
}


int MethodHandles::decode_MethodHandle_stack_pushes(oop mh) {
  if (mh->klass() == SystemDictionary::DirectMethodHandle_klass())
    return 0;                   // no push/pop
  int this_vmslots = java_lang_invoke_MethodHandle::vmslots(mh);
  int last_vmslots = 0;
  oop last_mh = mh;
  for (;;) {
    oop target = java_lang_invoke_MethodHandle::vmtarget(last_mh);
    if (target->klass() == SystemDictionary::DirectMethodHandle_klass()) {
      last_vmslots = java_lang_invoke_MethodHandle::vmslots(target);
      break;
    } else if (!java_lang_invoke_MethodHandle::is_instance(target)) {
      // might be klass or method
      assert(target->is_method(), "must get here with a direct ref to method");
      last_vmslots = methodOop(target)->size_of_parameters();
      break;
    }
    last_mh = target;
  }
  // If I am called with fewer VM slots than my ultimate callee,
  // it must be that I push the additionally needed slots.
  // Likewise if am called with more VM slots, I will pop them.
  return (last_vmslots - this_vmslots);
}


// MemberName support

// import java_lang_invoke_MemberName.*
enum {
  IS_METHOD      = java_lang_invoke_MemberName::MN_IS_METHOD,
  IS_CONSTRUCTOR = java_lang_invoke_MemberName::MN_IS_CONSTRUCTOR,
  IS_FIELD       = java_lang_invoke_MemberName::MN_IS_FIELD,
  IS_TYPE        = java_lang_invoke_MemberName::MN_IS_TYPE,
  SEARCH_SUPERCLASSES = java_lang_invoke_MemberName::MN_SEARCH_SUPERCLASSES,
  SEARCH_INTERFACES   = java_lang_invoke_MemberName::MN_SEARCH_INTERFACES,
  ALL_KINDS      = IS_METHOD | IS_CONSTRUCTOR | IS_FIELD | IS_TYPE,
  VM_INDEX_UNINITIALIZED = java_lang_invoke_MemberName::VM_INDEX_UNINITIALIZED
};

Handle MethodHandles::new_MemberName(TRAPS) {
  Handle empty;
  instanceKlassHandle k(THREAD, SystemDictionary::MemberName_klass());
  if (!k->is_initialized())  k->initialize(CHECK_(empty));
  return Handle(THREAD, k->allocate_instance(THREAD));
}

void MethodHandles::init_MemberName(oop mname_oop, oop target_oop) {
  if (target_oop->klass() == SystemDictionary::reflect_Field_klass()) {
    oop clazz = java_lang_reflect_Field::clazz(target_oop); // fd.field_holder()
    int slot  = java_lang_reflect_Field::slot(target_oop);  // fd.index()
    int mods  = java_lang_reflect_Field::modifiers(target_oop);
    klassOop k = java_lang_Class::as_klassOop(clazz);
    int offset = instanceKlass::cast(k)->offset_from_fields(slot);
    init_MemberName(mname_oop, k, accessFlags_from(mods), offset);
  } else {
    KlassHandle receiver_limit; int decode_flags = 0;
    methodHandle m = MethodHandles::decode_method(target_oop, receiver_limit, decode_flags);
    bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0);
    init_MemberName(mname_oop, m(), do_dispatch);
  }
}

void MethodHandles::init_MemberName(oop mname_oop, methodOop m, bool do_dispatch) {
  int flags = ((m->is_initializer() ? IS_CONSTRUCTOR : IS_METHOD)
               | (jushort)( m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS ));
  oop vmtarget = m;
  int vmindex  = methodOopDesc::invalid_vtable_index;  // implies no info yet
  if (!do_dispatch || (flags & IS_CONSTRUCTOR) || m->can_be_statically_bound())
    vmindex = methodOopDesc::nonvirtual_vtable_index; // implies never any dispatch
  assert(vmindex != VM_INDEX_UNINITIALIZED, "Java sentinel value");
  java_lang_invoke_MemberName::set_vmtarget(mname_oop, vmtarget);
  java_lang_invoke_MemberName::set_vmindex(mname_oop,  vmindex);
  java_lang_invoke_MemberName::set_flags(mname_oop,    flags);
  java_lang_invoke_MemberName::set_clazz(mname_oop,    Klass::cast(m->method_holder())->java_mirror());
}

void MethodHandles::init_MemberName(oop mname_oop, klassOop field_holder, AccessFlags mods, int offset) {
  int flags = (IS_FIELD | (jushort)( mods.as_short() & JVM_RECOGNIZED_FIELD_MODIFIERS ));
  oop vmtarget = field_holder;
  int vmindex  = offset;  // determines the field uniquely when combined with static bit
  assert(vmindex != VM_INDEX_UNINITIALIZED, "bad alias on vmindex");
  java_lang_invoke_MemberName::set_vmtarget(mname_oop, vmtarget);
  java_lang_invoke_MemberName::set_vmindex(mname_oop,  vmindex);
  java_lang_invoke_MemberName::set_flags(mname_oop,    flags);
  java_lang_invoke_MemberName::set_clazz(mname_oop,    Klass::cast(field_holder)->java_mirror());
}


methodHandle MethodHandles::decode_MemberName(oop mname, KlassHandle& receiver_limit_result, int& decode_flags_result) {
  methodHandle empty;
  int flags  = java_lang_invoke_MemberName::flags(mname);
  if ((flags & (IS_METHOD | IS_CONSTRUCTOR)) == 0)  return empty;  // not invocable
  oop vmtarget = java_lang_invoke_MemberName::vmtarget(mname);
  int vmindex  = java_lang_invoke_MemberName::vmindex(mname);
  if (vmindex == VM_INDEX_UNINITIALIZED)  return empty;  // not resolved
  methodHandle m = decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit_result, decode_flags_result);
  oop clazz = java_lang_invoke_MemberName::clazz(mname);
  if (clazz != NULL && java_lang_Class::is_instance(clazz)) {
    klassOop klass = java_lang_Class::as_klassOop(clazz);
    if (klass != NULL)  receiver_limit_result = klass;
  }
  return m;
}

// convert the external string or reflective type to an internal signature
Symbol* MethodHandles::convert_to_signature(oop type_str, bool polymorphic, TRAPS) {
  if (java_lang_invoke_MethodType::is_instance(type_str)) {
    return java_lang_invoke_MethodType::as_signature(type_str, polymorphic, CHECK_NULL);
  } else if (java_lang_Class::is_instance(type_str)) {
    return java_lang_Class::as_signature(type_str, false, CHECK_NULL);
  } else if (java_lang_String::is_instance(type_str)) {
    if (polymorphic) {
      return java_lang_String::as_symbol(type_str, CHECK_NULL);
    } else {
      return java_lang_String::as_symbol_or_null(type_str);
    }
  } else {
    THROW_MSG_(vmSymbols::java_lang_InternalError(), "unrecognized type", NULL);
  }
}

// An unresolved member name is a mere symbolic reference.
// Resolving it plants a vmtarget/vmindex in it,
// which refers dirctly to JVM internals.
void MethodHandles::resolve_MemberName(Handle mname, TRAPS) {
  assert(java_lang_invoke_MemberName::is_instance(mname()), "");
#ifdef ASSERT
  // If this assert throws, renegotiate the sentinel value used by the Java code,
  // so that it is distinct from any valid vtable index value, and any special
  // values defined in methodOopDesc::VtableIndexFlag.
  // The point of the slop is to give the Java code and the JVM some room
  // to independently specify sentinel values.
  const int sentinel_slop  = 10;
  const int sentinel_limit = methodOopDesc::highest_unused_vtable_index_value - sentinel_slop;
  assert(VM_INDEX_UNINITIALIZED < sentinel_limit, "Java sentinel != JVM sentinels");
#endif
  if (java_lang_invoke_MemberName::vmindex(mname()) != VM_INDEX_UNINITIALIZED)
    return;  // already resolved
  Handle defc_oop(THREAD, java_lang_invoke_MemberName::clazz(mname()));
  Handle name_str(THREAD, java_lang_invoke_MemberName::name( mname()));
  Handle type_str(THREAD, java_lang_invoke_MemberName::type( mname()));
  int    flags    =       java_lang_invoke_MemberName::flags(mname());

  if (defc_oop.is_null() || name_str.is_null() || type_str.is_null()) {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "nothing to resolve");
  }

  instanceKlassHandle defc;
  {
    klassOop defc_klassOop = java_lang_Class::as_klassOop(defc_oop());
    if (defc_klassOop == NULL)  return;  // a primitive; no resolution possible
    if (!Klass::cast(defc_klassOop)->oop_is_instance()) {
      if (!Klass::cast(defc_klassOop)->oop_is_array())  return;
      defc_klassOop = SystemDictionary::Object_klass();
    }
    defc = instanceKlassHandle(THREAD, defc_klassOop);
  }
  if (defc.is_null()) {
    THROW_MSG(vmSymbols::java_lang_InternalError(), "primitive class");
  }
  defc->link_class(CHECK);  // possible safepoint

  // convert the external string name to an internal symbol
  TempNewSymbol name = java_lang_String::as_symbol_or_null(name_str());
  if (name == NULL)  return;  // no such name

  Handle polymorphic_method_type;
  bool polymorphic_signature = false;
  if ((flags & ALL_KINDS) == IS_METHOD &&
      (defc() == SystemDictionary::MethodHandle_klass() &&
       methodOopDesc::is_method_handle_invoke_name(name))) {
    polymorphic_signature = true;
  }

  // convert the external string or reflective type to an internal signature
  TempNewSymbol type = convert_to_signature(type_str(), polymorphic_signature, CHECK);
  if (java_lang_invoke_MethodType::is_instance(type_str()) && polymorphic_signature) {
    polymorphic_method_type = type_str;  // preserve exactly
  }
  if (type == NULL)  return;  // no such signature exists in the VM

  // Time to do the lookup.
  switch (flags & ALL_KINDS) {
  case IS_METHOD:
    {
      CallInfo result;
      {
        EXCEPTION_MARK;
        if ((flags & JVM_ACC_STATIC) != 0) {
          LinkResolver::resolve_static_call(result,
                        defc, name, type, KlassHandle(), false, false, THREAD);
        } else if (defc->is_interface()) {
          LinkResolver::resolve_interface_call(result, Handle(), defc,
                        defc, name, type, KlassHandle(), false, false, THREAD);
        } else {
          LinkResolver::resolve_virtual_call(result, Handle(), defc,
                        defc, name, type, KlassHandle(), false, false, THREAD);
        }
        if (HAS_PENDING_EXCEPTION) {
          CLEAR_PENDING_EXCEPTION;
          break;  // go to second chance
        }
      }
      methodHandle m = result.resolved_method();
      oop vmtarget = NULL;
      int vmindex = methodOopDesc::nonvirtual_vtable_index;
      if (defc->is_interface()) {
        vmindex = klassItable::compute_itable_index(m());
        assert(vmindex >= 0, "");
      } else if (result.has_vtable_index()) {
        vmindex = result.vtable_index();
        assert(vmindex >= 0, "");
      }
      assert(vmindex != VM_INDEX_UNINITIALIZED, "");
      if (vmindex < 0) {
        assert(result.is_statically_bound(), "");
        vmtarget = m();
      } else {
        vmtarget = result.resolved_klass()->as_klassOop();
      }
      int mods = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS);
      java_lang_invoke_MemberName::set_vmtarget(mname(), vmtarget);
      java_lang_invoke_MemberName::set_vmindex(mname(),  vmindex);
      java_lang_invoke_MemberName::set_modifiers(mname(), mods);
      DEBUG_ONLY(KlassHandle junk1; int junk2);
      assert(decode_MemberName(mname(), junk1, junk2) == result.resolved_method(),
             "properly stored for later decoding");
      return;
    }
  case IS_CONSTRUCTOR:
    {
      CallInfo result;
      {
        EXCEPTION_MARK;
        if (name == vmSymbols::object_initializer_name()) {
          LinkResolver::resolve_special_call(result,
                        defc, name, type, KlassHandle(), false, THREAD);
        } else {
          break;                // will throw after end of switch
        }
        if (HAS_PENDING_EXCEPTION) {
          CLEAR_PENDING_EXCEPTION;
          return;
        }
      }
      assert(result.is_statically_bound(), "");
      methodHandle m = result.resolved_method();
      oop vmtarget = m();
      int vmindex  = methodOopDesc::nonvirtual_vtable_index;
      int mods     = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS);
      java_lang_invoke_MemberName::set_vmtarget(mname(), vmtarget);
      java_lang_invoke_MemberName::set_vmindex(mname(),  vmindex);
      java_lang_invoke_MemberName::set_modifiers(mname(), mods);
      DEBUG_ONLY(KlassHandle junk1; int junk2);
      assert(decode_MemberName(mname(), junk1, junk2) == result.resolved_method(),
             "properly stored for later decoding");
      return;
    }
  case IS_FIELD:
    {
      // This is taken from LinkResolver::resolve_field, sans access checks.
      fieldDescriptor fd; // find_field initializes fd if found
      KlassHandle sel_klass(THREAD, instanceKlass::cast(defc())->find_field(name, type, &fd));
      // check if field exists; i.e., if a klass containing the field def has been selected
      if (sel_klass.is_null())  return;
      oop vmtarget = sel_klass->as_klassOop();
      int vmindex  = fd.offset();
      int mods     = (fd.access_flags().as_short() & JVM_RECOGNIZED_FIELD_MODIFIERS);
      if (vmindex == VM_INDEX_UNINITIALIZED)  break;  // should not happen
      java_lang_invoke_MemberName::set_vmtarget(mname(),  vmtarget);
      java_lang_invoke_MemberName::set_vmindex(mname(),   vmindex);
      java_lang_invoke_MemberName::set_modifiers(mname(), mods);
      return;
    }
  default:
    THROW_MSG(vmSymbols::java_lang_InternalError(), "unrecognized MemberName format");
  }

  // Second chance.
  if (polymorphic_method_type.not_null()) {
    // Look on a non-null class loader.
    Handle cur_class_loader;
    const int nptypes = java_lang_invoke_MethodType::ptype_count(polymorphic_method_type());
    for (int i = 0; i <= nptypes; i++) {
      oop type_mirror;
      if (i < nptypes)  type_mirror = java_lang_invoke_MethodType::ptype(polymorphic_method_type(), i);
      else              type_mirror = java_lang_invoke_MethodType::rtype(polymorphic_method_type());
      klassOop example_type = java_lang_Class::as_klassOop(type_mirror);
      if (example_type == NULL)  continue;
      oop class_loader = Klass::cast(example_type)->class_loader();
      if (class_loader == NULL || class_loader == cur_class_loader())  continue;
      cur_class_loader = Handle(THREAD, class_loader);
      methodOop m = SystemDictionary::find_method_handle_invoke(name,
                                                                type,
                                                                KlassHandle(THREAD, example_type),
                                                                THREAD);
      if (HAS_PENDING_EXCEPTION) {
        CLEAR_PENDING_EXCEPTION;
        m = NULL;
        // try again with a different class loader...
      }
      if (m != NULL) {
        int mods = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS);
        java_lang_invoke_MemberName::set_vmtarget(mname(),  m);
        java_lang_invoke_MemberName::set_vmindex(mname(),   m->vtable_index());
        java_lang_invoke_MemberName::set_modifiers(mname(), mods);
        return;
      }
    }
  }
}

// Conversely, a member name which is only initialized from JVM internals
// may have null defc, name, and type fields.
// Resolving it plants a vmtarget/vmindex in it,
// which refers directly to JVM internals.
void MethodHandles::expand_MemberName(Handle mname, int suppress, TRAPS) {
  assert(java_lang_invoke_MemberName::is_instance(mname()), "");
  oop vmtarget = java_lang_invoke_MemberName::vmtarget(mname());
  int vmindex  = java_lang_invoke_MemberName::vmindex(mname());
  if (vmtarget == NULL || vmindex == VM_INDEX_UNINITIALIZED) {
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "nothing to expand");
  }

  bool have_defc = (java_lang_invoke_MemberName::clazz(mname()) != NULL);
  bool have_name = (java_lang_invoke_MemberName::name(mname()) != NULL);
  bool have_type = (java_lang_invoke_MemberName::type(mname()) != NULL);
  int flags      = java_lang_invoke_MemberName::flags(mname());

  if (suppress != 0) {
    if (suppress & _suppress_defc)  have_defc = true;
    if (suppress & _suppress_name)  have_name = true;
    if (suppress & _suppress_type)  have_type = true;
  }

  if (have_defc && have_name && have_type)  return;  // nothing needed

  switch (flags & ALL_KINDS) {
  case IS_METHOD:
  case IS_CONSTRUCTOR:
    {
      KlassHandle receiver_limit; int decode_flags = 0;
      methodHandle m = decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit, decode_flags);
      if (m.is_null())  break;
      if (!have_defc) {
        klassOop defc = m->method_holder();
        if (receiver_limit.not_null() && receiver_limit() != defc
            && Klass::cast(receiver_limit())->is_subtype_of(defc))
          defc = receiver_limit();
        java_lang_invoke_MemberName::set_clazz(mname(), Klass::cast(defc)->java_mirror());
      }
      if (!have_name) {
        //not java_lang_String::create_from_symbol; let's intern member names
        Handle name = StringTable::intern(m->name(), CHECK);
        java_lang_invoke_MemberName::set_name(mname(), name());
      }
      if (!have_type) {
        Handle type = java_lang_String::create_from_symbol(m->signature(), CHECK);
        java_lang_invoke_MemberName::set_type(mname(), type());
      }
      return;
    }
  case IS_FIELD:
    {
      // This is taken from LinkResolver::resolve_field, sans access checks.
      if (!vmtarget->is_klass())  break;
      if (!Klass::cast((klassOop) vmtarget)->oop_is_instance())  break;
      instanceKlassHandle defc(THREAD, (klassOop) vmtarget);
      bool is_static = ((flags & JVM_ACC_STATIC) != 0);
      fieldDescriptor fd; // find_field initializes fd if found
      if (!defc->find_field_from_offset(vmindex, is_static, &fd))
        break;                  // cannot expand
      if (!have_defc) {
        java_lang_invoke_MemberName::set_clazz(mname(), defc->java_mirror());
      }
      if (!have_name) {
        //not java_lang_String::create_from_symbol; let's intern member names
        Handle name = StringTable::intern(fd.name(), CHECK);
        java_lang_invoke_MemberName::set_name(mname(), name());
      }
      if (!have_type) {
        Handle type = java_lang_String::create_from_symbol(fd.signature(), CHECK);
        java_lang_invoke_MemberName::set_type(mname(), type());
      }
      return;
    }
  }
  THROW_MSG(vmSymbols::java_lang_InternalError(), "unrecognized MemberName format");
}

int MethodHandles::find_MemberNames(klassOop k,
                                    Symbol* name, Symbol* sig,
                                    int mflags, klassOop caller,
                                    int skip, objArrayOop results) {
  DEBUG_ONLY(No_Safepoint_Verifier nsv);
  // this code contains no safepoints!

  // %%% take caller into account!

  if (k == NULL || !Klass::cast(k)->oop_is_instance())  return -1;

  int rfill = 0, rlimit = results->length(), rskip = skip;
  // overflow measurement:
  int overflow = 0, overflow_limit = MAX2(1000, rlimit);

  int match_flags = mflags;
  bool search_superc = ((match_flags & SEARCH_SUPERCLASSES) != 0);
  bool search_intfc  = ((match_flags & SEARCH_INTERFACES)   != 0);
  bool local_only = !(search_superc | search_intfc);
  bool classes_only = false;

  if (name != NULL) {
    if (name->utf8_length() == 0)  return 0; // a match is not possible
  }
  if (sig != NULL) {
    if (sig->utf8_length() == 0)  return 0; // a match is not possible
    if (sig->byte_at(0) == '(')
      match_flags &= ~(IS_FIELD | IS_TYPE);
    else
      match_flags &= ~(IS_CONSTRUCTOR | IS_METHOD);
  }

  if ((match_flags & IS_TYPE) != 0) {
    // NYI, and Core Reflection works quite well for this query
  }

  if ((match_flags & IS_FIELD) != 0) {
    for (FieldStream st(k, local_only, !search_intfc); !st.eos(); st.next()) {
      if (name != NULL && st.name() != name)
          continue;
      if (sig != NULL && st.signature() != sig)
        continue;
      // passed the filters
      if (rskip > 0) {
        --rskip;
      } else if (rfill < rlimit) {
        oop result = results->obj_at(rfill++);
        if (!java_lang_invoke_MemberName::is_instance(result))
          return -99;  // caller bug!
        MethodHandles::init_MemberName(result, st.klass()->as_klassOop(), st.access_flags(), st.offset());
      } else if (++overflow >= overflow_limit) {
        match_flags = 0; break; // got tired of looking at overflow
      }
    }
  }

  if ((match_flags & (IS_METHOD | IS_CONSTRUCTOR)) != 0) {
    // watch out for these guys:
    Symbol* init_name   = vmSymbols::object_initializer_name();
    Symbol* clinit_name = vmSymbols::class_initializer_name();
    if (name == clinit_name)  clinit_name = NULL; // hack for exposing <clinit>
    bool negate_name_test = false;
    // fix name so that it captures the intention of IS_CONSTRUCTOR
    if (!(match_flags & IS_METHOD)) {
      // constructors only
      if (name == NULL) {
        name = init_name;
      } else if (name != init_name) {
        return 0;               // no constructors of this method name
      }
    } else if (!(match_flags & IS_CONSTRUCTOR)) {
      // methods only
      if (name == NULL) {
        name = init_name;
        negate_name_test = true; // if we see the name, we *omit* the entry
      } else if (name == init_name) {
        return 0;               // no methods of this constructor name
      }
    } else {
      // caller will accept either sort; no need to adjust name
    }
    for (MethodStream st(k, local_only, !search_intfc); !st.eos(); st.next()) {
      methodOop m = st.method();
      Symbol* m_name = m->name();
      if (m_name == clinit_name)
        continue;
      if (name != NULL && ((m_name != name) ^ negate_name_test))
          continue;
      if (sig != NULL && m->signature() != sig)
        continue;
      // passed the filters
      if (rskip > 0) {
        --rskip;
      } else if (rfill < rlimit) {
        oop result = results->obj_at(rfill++);
        if (!java_lang_invoke_MemberName::is_instance(result))
          return -99;  // caller bug!
        MethodHandles::init_MemberName(result, m, true);
      } else if (++overflow >= overflow_limit) {
        match_flags = 0; break; // got tired of looking at overflow
      }
    }
  }

  // return number of elements we at leasted wanted to initialize
  return rfill + overflow;
}


// Decode this java.lang.Class object into an instanceKlass, if possible.
// Throw IAE if not
instanceKlassHandle MethodHandles::resolve_instance_klass(oop java_mirror_oop, TRAPS) {
  instanceKlassHandle empty;
  klassOop caller = NULL;
  if (java_lang_Class::is_instance(java_mirror_oop)) {
    caller = java_lang_Class::as_klassOop(java_mirror_oop);
  }
  if (caller == NULL || !Klass::cast(caller)->oop_is_instance()) {
    THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(), "not a class", empty);
  }
  return instanceKlassHandle(THREAD, caller);
}



// Decode the vmtarget field of a method handle.
// Sanitize out methodOops, klassOops, and any other non-Java data.
// This is for debugging and reflection.
oop MethodHandles::encode_target(Handle mh, int format, TRAPS) {
  assert(java_lang_invoke_MethodHandle::is_instance(mh()), "must be a MH");
  if (format == ETF_HANDLE_OR_METHOD_NAME) {
    oop target = java_lang_invoke_MethodHandle::vmtarget(mh());
    if (target == NULL) {
      return NULL;                // unformed MH
    }
    klassOop tklass = target->klass();
    if (Klass::cast(tklass)->is_subclass_of(SystemDictionary::Object_klass())) {
      return target;              // target is another MH (or something else?)
    }
  }
  if (format == ETF_DIRECT_HANDLE) {
    oop target = mh();
    for (;;) {
      if (target->klass() == SystemDictionary::DirectMethodHandle_klass()) {
        return target;
      }
      if (!java_lang_invoke_MethodHandle::is_instance(target)){
        return NULL;                // unformed MH
      }
      target = java_lang_invoke_MethodHandle::vmtarget(target);
    }
  }
  // cases of metadata in MH.vmtarget:
  // - AMH can have methodOop for static invoke with bound receiver
  // - DMH can have methodOop for static invoke (on variable receiver)
  // - DMH can have klassOop for dispatched (non-static) invoke
  KlassHandle receiver_limit; int decode_flags = 0;
  methodHandle m = decode_MethodHandle(mh(), receiver_limit, decode_flags);
  if (m.is_null())  return NULL;
  switch (format) {
  case ETF_REFLECT_METHOD:
    // same as jni_ToReflectedMethod:
    if (m->is_initializer()) {
      return Reflection::new_constructor(m, THREAD);
    } else {
      return Reflection::new_method(m, UseNewReflection, false, THREAD);
    }

  case ETF_HANDLE_OR_METHOD_NAME:   // method, not handle
  case ETF_METHOD_NAME:
    {
      if (SystemDictionary::MemberName_klass() == NULL)  break;
      instanceKlassHandle mname_klass(THREAD, SystemDictionary::MemberName_klass());
      mname_klass->initialize(CHECK_NULL);
      Handle mname = mname_klass->allocate_instance_handle(CHECK_NULL);  // possible safepoint
      java_lang_invoke_MemberName::set_vmindex(mname(), VM_INDEX_UNINITIALIZED);
      bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0);
      init_MemberName(mname(), m(), do_dispatch);
      expand_MemberName(mname, 0, CHECK_NULL);
      return mname();
    }
  }

  // Unknown format code.
  char msg[50];
  jio_snprintf(msg, sizeof(msg), "unknown getTarget format=%d", format);
  THROW_MSG_NULL(vmSymbols::java_lang_IllegalArgumentException(), msg);
}

static const char* always_null_names[] = {
  "java/lang/Void",
  "java/lang/Null",
  //"java/lang/Nothing",
  "sun/dyn/empty/Empty",
  "sun/invoke/empty/Empty",
  NULL
};

static bool is_always_null_type(klassOop klass) {
  if (klass == NULL)  return false;  // safety
  if (!Klass::cast(klass)->oop_is_instance())  return false;
  instanceKlass* ik = instanceKlass::cast(klass);
  // Must be on the boot class path:
  if (ik->class_loader() != NULL)  return false;
  // Check the name.
  Symbol* name = ik->name();
  for (int i = 0; ; i++) {
    const char* test_name = always_null_names[i];
    if (test_name == NULL)  break;
    if (name->equals(test_name))
      return true;
  }
  return false;
}

bool MethodHandles::class_cast_needed(klassOop src, klassOop dst) {
  if (dst == NULL)  return true;
  if (src == NULL)  return (dst != SystemDictionary::Object_klass());
  if (src == dst || dst == SystemDictionary::Object_klass())
    return false;                               // quickest checks
  Klass* srck = Klass::cast(src);
  Klass* dstk = Klass::cast(dst);
  if (dstk->is_interface()) {
    // interface receivers can safely be viewed as untyped,
    // because interface calls always include a dynamic check
    //dstk = Klass::cast(SystemDictionary::Object_klass());
    return false;
  }
  if (srck->is_interface()) {
    // interface arguments must be viewed as untyped
    //srck = Klass::cast(SystemDictionary::Object_klass());
    return true;
  }
  if (is_always_null_type(src)) {
    // some source types are known to be never instantiated;
    // they represent references which are always null
    // such null references never fail to convert safely
    return false;
  }
  return !srck->is_subclass_of(dstk->as_klassOop());
}

static oop object_java_mirror() {
  return Klass::cast(SystemDictionary::Object_klass())->java_mirror();
}

bool MethodHandles::is_float_fixed_reinterpretation_cast(BasicType src, BasicType dst) {
  if (src == T_FLOAT)   return dst == T_INT;
  if (src == T_INT)     return dst == T_FLOAT;
  if (src == T_DOUBLE)  return dst == T_LONG;
  if (src == T_LONG)    return dst == T_DOUBLE;
  return false;
}

bool MethodHandles::same_basic_type_for_arguments(BasicType src,
                                                  BasicType dst,
                                                  bool raw,
                                                  bool for_return) {
  if (for_return) {
    // return values can always be forgotten:
    if (dst == T_VOID)  return true;
    if (src == T_VOID)  return raw && (dst == T_INT);
    // We allow caller to receive a garbage int, which is harmless.
    // This trick is pulled by trusted code (see VerifyType.canPassRaw).
  }
  assert(src != T_VOID && dst != T_VOID, "should not be here");
  if (src == dst)  return true;
  if (type2size[src] != type2size[dst])  return false;
  if (src == T_OBJECT || dst == T_OBJECT)  return false;
  if (raw)  return true;  // bitwise reinterpretation; caller guarantees safety
  // allow reinterpretation casts for integral widening
  if (is_subword_type(src)) { // subwords can fit in int or other subwords
    if (dst == T_INT)         // any subword fits in an int
      return true;
    if (src == T_BOOLEAN)     // boolean fits in any subword
      return is_subword_type(dst);
    if (src == T_BYTE && dst == T_SHORT)
      return true;            // remaining case: byte fits in short
  }
  // allow float/fixed reinterpretation casts
  if (is_float_fixed_reinterpretation_cast(src, dst))
    return true;
  return false;
}

const char* MethodHandles::check_method_receiver(methodOop m,
                                                 klassOop passed_recv_type) {
  assert(!m->is_static(), "caller resp.");
  if (passed_recv_type == NULL)
    return "receiver type is primitive";
  if (class_cast_needed(passed_recv_type, m->method_holder())) {
    Klass* formal = Klass::cast(m->method_holder());
    return SharedRuntime::generate_class_cast_message("receiver type",
                                                      formal->external_name());
  }
  return NULL;                  // checks passed
}

// Verify that m's signature can be called type-safely by a method handle
// of the given method type 'mtype'.
// It takes a TRAPS argument because it must perform symbol lookups.
void MethodHandles::verify_method_signature(methodHandle m,
                                            Handle mtype,
                                            int first_ptype_pos,
                                            KlassHandle insert_ptype,
                                            TRAPS) {
  Handle mhi_type;
  if (m->is_method_handle_invoke()) {
    // use this more exact typing instead of the symbolic signature:
    mhi_type = Handle(THREAD, m->method_handle_type());
  }
  objArrayHandle ptypes(THREAD, java_lang_invoke_MethodType::ptypes(mtype()));
  int pnum = first_ptype_pos;
  int pmax = ptypes->length();
  int anum = 0;                 // method argument
  const char* err = NULL;
  ResourceMark rm(THREAD);
  for (SignatureStream ss(m->signature()); !ss.is_done(); ss.next()) {
    oop ptype_oop = NULL;
    if (ss.at_return_type()) {
      if (pnum != pmax)
        { err = "too many arguments"; break; }
      ptype_oop = java_lang_invoke_MethodType::rtype(mtype());
    } else {
      if (pnum >= pmax)
        { err = "not enough arguments"; break; }
      if (pnum >= 0)
        ptype_oop = ptypes->obj_at(pnum);
      else if (insert_ptype.is_null())
        ptype_oop = NULL;
      else
        ptype_oop = insert_ptype->java_mirror();
      pnum += 1;
      anum += 1;
    }
    KlassHandle pklass;
    BasicType   ptype = T_OBJECT;
    bool   have_ptype = false;
    // missing ptype_oop does not match any non-reference; use Object to report the error
    pklass = SystemDictionaryHandles::Object_klass();
    if (ptype_oop != NULL) {
      have_ptype = true;
      klassOop pklass_oop = NULL;
      ptype = java_lang_Class::as_BasicType(ptype_oop, &pklass_oop);
      pklass = KlassHandle(THREAD, pklass_oop);
    }
    ptype_oop = NULL; //done with this
    KlassHandle aklass;
    BasicType   atype = ss.type();
    if (atype == T_ARRAY)  atype = T_OBJECT; // fold all refs to T_OBJECT
    if (atype == T_OBJECT) {
      if (!have_ptype) {
        // null matches any reference
        continue;
      }
      if (mhi_type.is_null()) {
        // If we fail to resolve types at this point, we will usually throw an error.
        TempNewSymbol name = ss.as_symbol_or_null();
        if (name != NULL) {
          instanceKlass* mk = instanceKlass::cast(m->method_holder());
          Handle loader(THREAD, mk->class_loader());
          Handle domain(THREAD, mk->protection_domain());
          klassOop aklass_oop = SystemDictionary::resolve_or_null(name, loader, domain, CHECK);
          if (aklass_oop != NULL)
            aklass = KlassHandle(THREAD, aklass_oop);
        }
      } else {
        // for method handle invokers we don't look at the name in the signature
        oop atype_oop;
        if (ss.at_return_type())
          atype_oop = java_lang_invoke_MethodType::rtype(mhi_type());
        else
          atype_oop = java_lang_invoke_MethodType::ptype(mhi_type(), anum-1);
        klassOop aklass_oop = NULL;
        atype = java_lang_Class::as_BasicType(atype_oop, &aklass_oop);
        aklass = KlassHandle(THREAD, aklass_oop);
      }
    }
    if (!ss.at_return_type()) {
      err = check_argument_type_change(ptype, pklass(), atype, aklass(), anum);
    } else {
      err = check_return_type_change(atype, aklass(), ptype, pklass()); // note reversal!
    }
    if (err != NULL)  break;
  }

  if (err != NULL) {
#ifndef PRODUCT
    if (PrintMiscellaneous && (Verbose || WizardMode)) {
      tty->print("*** verify_method_signature failed: ");
      java_lang_invoke_MethodType::print_signature(mtype(), tty);
      tty->cr();
      tty->print_cr("    first_ptype_pos = %d, insert_ptype = "UINTX_FORMAT, first_ptype_pos, insert_ptype());
      tty->print("    Failing method: ");
      m->print();
    }
#endif //PRODUCT
    THROW_MSG(vmSymbols::java_lang_InternalError(), err);
  }
}

// Main routine for verifying the MethodHandle.type of a proposed
// direct or bound-direct method handle.
void MethodHandles::verify_method_type(methodHandle m,
                                       Handle mtype,
                                       bool has_bound_recv,
                                       KlassHandle bound_recv_type,
                                       TRAPS) {
  bool m_needs_receiver = !m->is_static();

  const char* err = NULL;

  int first_ptype_pos = m_needs_receiver ? 1 : 0;
  if (has_bound_recv) {
    first_ptype_pos -= 1;  // ptypes do not include the bound argument; start earlier in them
    if (m_needs_receiver && bound_recv_type.is_null())
      { err = "bound receiver is not an object"; goto die; }
  }

  if (m_needs_receiver && err == NULL) {
    objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(mtype());
    if (ptypes->length() < first_ptype_pos)
      { err = "receiver argument is missing"; goto die; }
    if (has_bound_recv)
      err = check_method_receiver(m(), bound_recv_type->as_klassOop());
    else
      err = check_method_receiver(m(), java_lang_Class::as_klassOop(ptypes->obj_at(first_ptype_pos-1)));
    if (err != NULL)  goto die;
  }

  // Check the other arguments for mistypes.
  verify_method_signature(m, mtype, first_ptype_pos, bound_recv_type, CHECK);
  return;

 die:
  THROW_MSG(vmSymbols::java_lang_InternalError(), err);
}

void MethodHandles::verify_vmslots(Handle mh, TRAPS) {
  // Verify vmslots.
  int check_slots = argument_slot_count(java_lang_invoke_MethodHandle::type(mh()));
  if (java_lang_invoke_MethodHandle::vmslots(mh()) != check_slots) {
    THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in BMH");
  }
}

void MethodHandles::verify_vmargslot(Handle mh, int argnum, int argslot, TRAPS) {
  // Verify that argslot points at the given argnum.
  int check_slot = argument_slot(java_lang_invoke_MethodHandle::type(mh()), argnum);
  if (argslot != check_slot || argslot < 0) {
    const char* fmt = "for argnum of %d, vmargslot is %d, should be %d";
    size_t msglen = strlen(fmt) + 3*11 + 1;
    char* msg = NEW_RESOURCE_ARRAY(char, msglen);
    jio_snprintf(msg, msglen, fmt, argnum, argslot, check_slot);
    THROW_MSG(vmSymbols::java_lang_InternalError(), msg);
  }
}

// Verify the correspondence between two method types.
// Apart from the advertised changes, caller method type X must
// be able to invoke the callee method Y type with no violations
// of type integrity.
// Return NULL if all is well, else a short error message.
const char* MethodHandles::check_method_type_change(oop src_mtype, int src_beg, int src_end,
                                                    int insert_argnum, oop insert_type,
                                                    int change_argnum, oop change_type,
                                                    int delete_argnum,
                                                    oop dst_mtype, int dst_beg, int dst_end,
                                                    bool raw) {
  objArrayOop src_ptypes = java_lang_invoke_MethodType::ptypes(src_mtype);
  objArrayOop dst_ptypes = java_lang_invoke_MethodType::ptypes(dst_mtype);

  int src_max = src_ptypes->length();
  int dst_max = dst_ptypes->length();

  if (src_end == -1)  src_end = src_max;
  if (dst_end == -1)  dst_end = dst_max;

  assert(0 <= src_beg && src_beg <= src_end && src_end <= src_max, "oob");
  assert(0 <= dst_beg && dst_beg <= dst_end && dst_end <= dst_max, "oob");

  // pending actions; set to -1 when done:
  int ins_idx = insert_argnum, chg_idx = change_argnum, del_idx = delete_argnum;

  const char* err = NULL;

  // Walk along each array of parameter types, including a virtual
  // NULL end marker at the end of each.
  for (int src_idx = src_beg, dst_idx = dst_beg;
       (src_idx <= src_end && dst_idx <= dst_end);
       src_idx++, dst_idx++) {
    oop src_type = (src_idx == src_end) ? oop(NULL) : src_ptypes->obj_at(src_idx);
    oop dst_type = (dst_idx == dst_end) ? oop(NULL) : dst_ptypes->obj_at(dst_idx);
    bool fix_null_src_type = false;

    // Perform requested edits.
    if (ins_idx == src_idx) {
      // note that the inserted guy is never affected by a change or deletion
      ins_idx = -1;
      src_type = insert_type;
      fix_null_src_type = true;
      --src_idx;                // back up to process src type on next loop
      src_idx = src_end;
    } else {
      // note that the changed guy can be immediately deleted
      if (chg_idx == src_idx) {
        chg_idx = -1;
        assert(src_idx < src_end, "oob");
        src_type = change_type;
        fix_null_src_type = true;
      }
      if (del_idx == src_idx) {
        del_idx = -1;
        assert(src_idx < src_end, "oob");
        --dst_idx;
        continue;               // rerun loop after skipping this position
      }
    }

    if (src_type == NULL && fix_null_src_type)
      // explicit null in this case matches any dest reference
      src_type = (java_lang_Class::is_primitive(dst_type) ? object_java_mirror() : dst_type);

    // Compare the two argument types.
    if (src_type != dst_type) {
      if (src_type == NULL)  return "not enough arguments";
      if (dst_type == NULL)  return "too many arguments";
      err = check_argument_type_change(src_type, dst_type, dst_idx, raw);
      if (err != NULL)  return err;
    }
  }

  // Now compare return types also.
  oop src_rtype = java_lang_invoke_MethodType::rtype(src_mtype);
  oop dst_rtype = java_lang_invoke_MethodType::rtype(dst_mtype);
  if (src_rtype != dst_rtype) {
    err = check_return_type_change(dst_rtype, src_rtype, raw); // note reversal!
    if (err != NULL)  return err;
  }

  assert(err == NULL, "");
  return NULL;  // all is well
}


const char* MethodHandles::check_argument_type_change(BasicType src_type,
                                                      klassOop src_klass,
                                                      BasicType dst_type,
                                                      klassOop dst_klass,
                                                      int argnum,
                                                      bool raw) {
  const char* err = NULL;
  const bool for_return = (argnum < 0);

  // just in case:
  if (src_type == T_ARRAY)  src_type = T_OBJECT;
  if (dst_type == T_ARRAY)  dst_type = T_OBJECT;

  // Produce some nice messages if VerifyMethodHandles is turned on:
  if (!same_basic_type_for_arguments(src_type, dst_type, raw, for_return)) {
    if (src_type == T_OBJECT) {
      if (raw && is_java_primitive(dst_type))
        return NULL;    // ref-to-prim discards ref and returns zero
      err = (!for_return
             ? "type mismatch: passing a %s for method argument #%d, which expects primitive %s"
             : "type mismatch: returning a %s, but caller expects primitive %s");
    } else if (dst_type == T_OBJECT) {
      err = (!for_return
             ? "type mismatch: passing a primitive %s for method argument #%d, which expects %s"
             : "type mismatch: returning a primitive %s, but caller expects %s");
    } else {
      err = (!for_return
             ? "type mismatch: passing a %s for method argument #%d, which expects %s"
             : "type mismatch: returning a %s, but caller expects %s");
    }
  } else if (src_type == T_OBJECT && dst_type == T_OBJECT &&
             class_cast_needed(src_klass, dst_klass)) {
    if (!class_cast_needed(dst_klass, src_klass)) {
      if (raw)
        return NULL;    // reverse cast is OK; the MH target is trusted to enforce it
      err = (!for_return
             ? "cast required: passing a %s for method argument #%d, which expects %s"
             : "cast required: returning a %s, but caller expects %s");
    } else {
      err = (!for_return
             ? "reference mismatch: passing a %s for method argument #%d, which expects %s"
             : "reference mismatch: returning a %s, but caller expects %s");
    }
  } else {
    // passed the obstacle course
    return NULL;
  }

  // format, format, format
  const char* src_name = type2name(src_type);
  const char* dst_name = type2name(dst_type);
  if (src_name == NULL)  src_name = "unknown type";
  if (dst_name == NULL)  dst_name = "unknown type";
  if (src_type == T_OBJECT)
    src_name = (src_klass != NULL) ? Klass::cast(src_klass)->external_name() : "an unresolved class";
  if (dst_type == T_OBJECT)
    dst_name = (dst_klass != NULL) ? Klass::cast(dst_klass)->external_name() : "an unresolved class";

  size_t msglen = strlen(err) + strlen(src_name) + strlen(dst_name) + (argnum < 10 ? 1 : 11);
  char* msg = NEW_RESOURCE_ARRAY(char, msglen + 1);
  if (!for_return) {
    assert(strstr(err, "%d") != NULL, "");
    jio_snprintf(msg, msglen, err, src_name, argnum, dst_name);
  } else {
    assert(strstr(err, "%d") == NULL, "");
    jio_snprintf(msg, msglen, err, src_name,         dst_name);
  }
  return msg;
}

// Compute the depth within the stack of the given argument, i.e.,
// the combined size of arguments to the right of the given argument.
// For the last argument (ptypes.length-1) this will be zero.
// For the first argument (0) this will be the size of all
// arguments but that one.  For the special number -1, this
// will be the size of all arguments, including the first.
// If the argument is neither -1 nor a valid argument index,
// then return a negative number.  Otherwise, the result
// is in the range [0..vmslots] inclusive.
int MethodHandles::argument_slot(oop method_type, int arg) {
  objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(method_type);
  int argslot = 0;
  int len = ptypes->length();
  if (arg < -1 || arg >= len)  return -99;
  for (int i = len-1; i > arg; i--) {
    BasicType bt = java_lang_Class::as_BasicType(ptypes->obj_at(i));
    argslot += type2size[bt];
  }
  assert(argument_slot_to_argnum(method_type, argslot) == arg, "inverse works");
  return argslot;
}

// Given a slot number, return the argument number.
int MethodHandles::argument_slot_to_argnum(oop method_type, int query_argslot) {
  objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(method_type);
  int argslot = 0;
  int len = ptypes->length();
  for (int i = len-1; i >= 0; i--) {
    if (query_argslot == argslot)  return i;
    BasicType bt = java_lang_Class::as_BasicType(ptypes->obj_at(i));
    argslot += type2size[bt];
  }
  // return pseudo-arg deepest in stack:
  if (query_argslot == argslot)  return -1;
  return -99;                   // oob slot, or splitting a double-slot arg
}

methodHandle MethodHandles::dispatch_decoded_method(methodHandle m,
                                                    KlassHandle receiver_limit,
                                                    int decode_flags,
                                                    KlassHandle receiver_klass,
                                                    TRAPS) {
  assert((decode_flags & ~_DMF_DIRECT_MASK) == 0, "must be direct method reference");
  assert((decode_flags & _dmf_has_receiver) != 0, "must have a receiver or first reference argument");

  if (!m->is_static() &&
      (receiver_klass.is_null() || !receiver_klass->is_subtype_of(m->method_holder())))
    // given type does not match class of method, or receiver is null!
    // caller should have checked this, but let's be extra careful...
    return methodHandle();

  if (receiver_limit.not_null() &&
      (receiver_klass.not_null() && !receiver_klass->is_subtype_of(receiver_limit())))
    // given type is not limited to the receiver type
    // note that a null receiver can match any reference value, for a static method
    return methodHandle();

  if (!(decode_flags & MethodHandles::_dmf_does_dispatch)) {
    // pre-dispatched or static method (null receiver is OK for static)
    return m;

  } else if (receiver_klass.is_null()) {
    // null receiver value; cannot dispatch
    return methodHandle();

  } else if (!(decode_flags & MethodHandles::_dmf_from_interface)) {
    // perform virtual dispatch
    int vtable_index = m->vtable_index();
    guarantee(vtable_index >= 0, "valid vtable index");

    // receiver_klass might be an arrayKlassOop but all vtables start at
    // the same place. The cast is to avoid virtual call and assertion.
    // See also LinkResolver::runtime_resolve_virtual_method.
    instanceKlass* inst = (instanceKlass*)Klass::cast(receiver_klass());
    DEBUG_ONLY(inst->verify_vtable_index(vtable_index));
    methodOop m_oop = inst->method_at_vtable(vtable_index);
    return methodHandle(THREAD, m_oop);

  } else {
    // perform interface dispatch
    int itable_index = klassItable::compute_itable_index(m());
    guarantee(itable_index >= 0, "valid itable index");
    instanceKlass* inst = instanceKlass::cast(receiver_klass());
    methodOop m_oop = inst->method_at_itable(m->method_holder(), itable_index, THREAD);
    return methodHandle(THREAD, m_oop);
  }
}

void MethodHandles::verify_DirectMethodHandle(Handle mh, methodHandle m, TRAPS) {
  // Verify type.
  Handle mtype(THREAD, java_lang_invoke_MethodHandle::type(mh()));
  verify_method_type(m, mtype, false, KlassHandle(), CHECK);

  // Verify vmslots.
  if (java_lang_invoke_MethodHandle::vmslots(mh()) != m->size_of_parameters()) {
    THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in DMH");
  }
}

void MethodHandles::init_DirectMethodHandle(Handle mh, methodHandle m, bool do_dispatch, TRAPS) {
  // Check arguments.
  if (mh.is_null() || m.is_null() ||
      (!do_dispatch && m->is_abstract())) {
    THROW(vmSymbols::java_lang_InternalError());
  }

  java_lang_invoke_MethodHandle::init_vmslots(mh());

  if (VerifyMethodHandles) {
    // The privileged code which invokes this routine should not make
    // a mistake about types, but it's better to verify.
    verify_DirectMethodHandle(mh, m, CHECK);
  }

  // Finally, after safety checks are done, link to the target method.
  // We will follow the same path as the latter part of
  // InterpreterRuntime::resolve_invoke(), which first finds the method
  // and then decides how to populate the constant pool cache entry
  // that links the interpreter calls to the method.  We need the same
  // bits, and will use the same calling sequence code.

  int    vmindex = methodOopDesc::garbage_vtable_index;
  Handle vmtarget;

  instanceKlass::cast(m->method_holder())->link_class(CHECK);

  MethodHandleEntry* me = NULL;
  if (do_dispatch && Klass::cast(m->method_holder())->is_interface()) {
    // We are simulating an invokeinterface instruction.
    // (We might also be simulating an invokevirtual on a miranda method,
    // but it is safe to treat it as an invokeinterface.)
    assert(!m->can_be_statically_bound(), "no final methods on interfaces");
    vmindex = klassItable::compute_itable_index(m());
    assert(vmindex >= 0, "(>=0) == do_dispatch");
    // Set up same bits as ConstantPoolCacheEntry::set_interface_call().
    vmtarget = m->method_holder(); // the interface
    me = MethodHandles::entry(MethodHandles::_invokeinterface_mh);
  } else if (!do_dispatch || m->can_be_statically_bound()) {
    // We are simulating an invokestatic or invokespecial instruction.
    // Set up the method pointer, just like ConstantPoolCacheEntry::set_method().
    vmtarget = m;
    // this does not help dispatch, but it will make it possible to parse this MH:
    vmindex  = methodOopDesc::nonvirtual_vtable_index;
    assert(vmindex < 0, "(>=0) == do_dispatch");
    if (!m->is_static()) {
      me = MethodHandles::entry(MethodHandles::_invokespecial_mh);
    } else {
      me = MethodHandles::entry(MethodHandles::_invokestatic_mh);
      // Part of the semantics of a static call is an initialization barrier.
      // For a DMH, it is done now, when the handle is created.
      Klass* k = Klass::cast(m->method_holder());
      if (k->should_be_initialized()) {
        k->initialize(CHECK);  // possible safepoint
      }
    }
  } else {
    // We are simulating an invokevirtual instruction.
    // Set up the vtable index, just like ConstantPoolCacheEntry::set_method().
    // The key logic is LinkResolver::runtime_resolve_virtual_method.
    vmindex  = m->vtable_index();
    vmtarget = m->method_holder();
    me = MethodHandles::entry(MethodHandles::_invokevirtual_mh);
  }

  if (me == NULL) { THROW(vmSymbols::java_lang_InternalError()); }

  java_lang_invoke_DirectMethodHandle::set_vmtarget(mh(), vmtarget());
  java_lang_invoke_DirectMethodHandle::set_vmindex( mh(), vmindex);
  DEBUG_ONLY(KlassHandle rlimit; int flags);
  assert(MethodHandles::decode_method(mh(), rlimit, flags) == m,
         "properly stored for later decoding");
  DEBUG_ONLY(bool actual_do_dispatch = ((flags & _dmf_does_dispatch) != 0));
  assert(!(actual_do_dispatch && !do_dispatch),
         "do not perform dispatch if !do_dispatch specified");
  assert(actual_do_dispatch == (vmindex >= 0), "proper later decoding of do_dispatch");
  assert(decode_MethodHandle_stack_pushes(mh()) == 0, "DMH does not move stack");

  // Done!
  java_lang_invoke_MethodHandle::set_vmentry(mh(), me);
}

void MethodHandles::verify_BoundMethodHandle_with_receiver(Handle mh,
                                                           methodHandle m,
                                                           TRAPS) {
  // Verify type.
  KlassHandle bound_recv_type;
  {
    oop receiver = java_lang_invoke_BoundMethodHandle::argument(mh());
    if (receiver != NULL)
      bound_recv_type = KlassHandle(THREAD, receiver->klass());
  }
  Handle mtype(THREAD, java_lang_invoke_MethodHandle::type(mh()));
  verify_method_type(m, mtype, true, bound_recv_type, CHECK);

  int receiver_pos = m->size_of_parameters() - 1;

  // Verify MH.vmargslot, which should point at the bound receiver.
  verify_vmargslot(mh, -1, java_lang_invoke_BoundMethodHandle::vmargslot(mh()), CHECK);
  //verify_vmslots(mh, CHECK);

  // Verify vmslots.
  if (java_lang_invoke_MethodHandle::vmslots(mh()) != receiver_pos) {
    THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in BMH (receiver)");
  }
}

// Initialize a BMH with a receiver bound directly to a methodOop.
void MethodHandles::init_BoundMethodHandle_with_receiver(Handle mh,
                                                         methodHandle original_m,
                                                         KlassHandle receiver_limit,
                                                         int decode_flags,
                                                         TRAPS) {
  // Check arguments.
  if (mh.is_null() || original_m.is_null()) {
    THROW(vmSymbols::java_lang_InternalError());
  }

  KlassHandle receiver_klass;
  {
    oop receiver_oop = java_lang_invoke_BoundMethodHandle::argument(mh());
    if (receiver_oop != NULL)
      receiver_klass = KlassHandle(THREAD, receiver_oop->klass());
  }
  methodHandle m = dispatch_decoded_method(original_m,
                                           receiver_limit, decode_flags,
                                           receiver_klass,
                                           CHECK);
  if (m.is_null())      { THROW(vmSymbols::java_lang_InternalError()); }
  if (m->is_abstract()) { THROW(vmSymbols::java_lang_AbstractMethodError()); }

  java_lang_invoke_MethodHandle::init_vmslots(mh());
  int vmargslot = m->size_of_parameters() - 1;
  assert(java_lang_invoke_BoundMethodHandle::vmargslot(mh()) == vmargslot, "");

  if (VerifyMethodHandles) {
    verify_BoundMethodHandle_with_receiver(mh, m, CHECK);
  }

  java_lang_invoke_BoundMethodHandle::set_vmtarget(mh(), m());

  DEBUG_ONLY(KlassHandle junk1; int junk2);
  assert(MethodHandles::decode_method(mh(), junk1, junk2) == m, "properly stored for later decoding");
  assert(decode_MethodHandle_stack_pushes(mh()) == 1, "BMH pushes one stack slot");

  // Done!
  java_lang_invoke_MethodHandle::set_vmentry(mh(), MethodHandles::entry(MethodHandles::_bound_ref_direct_mh));
}

void MethodHandles::verify_BoundMethodHandle(Handle mh, Handle target, int argnum,
                                             bool direct_to_method, TRAPS) {
  Handle ptype_handle(THREAD,
                           java_lang_invoke_MethodType::ptype(java_lang_invoke_MethodHandle::type(target()), argnum));
  KlassHandle ptype_klass;
  BasicType ptype = java_lang_Class::as_BasicType(ptype_handle(), &ptype_klass);
  int slots_pushed = type2size[ptype];

  oop argument = java_lang_invoke_BoundMethodHandle::argument(mh());

  const char* err = NULL;

  switch (ptype) {
  case T_OBJECT:
    if (argument != NULL)
      // we must implicitly convert from the arg type to the outgoing ptype
      err = check_argument_type_change(T_OBJECT, argument->klass(), ptype, ptype_klass(), argnum);
    break;

  case T_ARRAY: case T_VOID:
    assert(false, "array, void do not appear here");
  default:
    if (ptype != T_INT && !is_subword_type(ptype)) {
      err = "unexpected parameter type";
      break;
    }
    // check subrange of Integer.value, if necessary
    if (argument == NULL || argument->klass() != SystemDictionary::Integer_klass()) {
      err = "bound integer argument must be of type java.lang.Integer";
      break;
    }
    if (ptype != T_INT) {
      int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
      jint value = argument->int_field(value_offset);
      int vminfo = adapter_unbox_subword_vminfo(ptype);
      jint subword = truncate_subword_from_vminfo(value, vminfo);
      if (value != subword) {
        err = "bound subword value does not fit into the subword type";
        break;
      }
    }
    break;
  case T_FLOAT:
  case T_DOUBLE:
  case T_LONG:
    {
      // we must implicitly convert from the unboxed arg type to the outgoing ptype
      BasicType argbox = java_lang_boxing_object::basic_type(argument);
      if (argbox != ptype) {
        err = check_argument_type_change(T_OBJECT, (argument == NULL
                                                    ? SystemDictionary::Object_klass()
                                                    : argument->klass()),
                                         ptype, ptype_klass(), argnum);
        assert(err != NULL, "this must be an error");
      }
      break;
    }
  }

  if (err == NULL) {
    DEBUG_ONLY(int this_pushes = decode_MethodHandle_stack_pushes(mh()));
    if (direct_to_method) {
      assert(this_pushes == slots_pushed, "BMH pushes one or two stack slots");
    } else {
      int target_pushes = decode_MethodHandle_stack_pushes(target());
      assert(this_pushes == slots_pushed + target_pushes, "BMH stack motion must be correct");
    }
  }

  if (err == NULL) {
    // Verify the rest of the method type.
    err = check_method_type_insertion(java_lang_invoke_MethodHandle::type(mh()),
                                      argnum, ptype_handle(),
                                      java_lang_invoke_MethodHandle::type(target()));
  }

  if (err != NULL) {
    THROW_MSG(vmSymbols::java_lang_InternalError(), err);
  }
}

void MethodHandles::init_BoundMethodHandle(Handle mh, Handle target, int argnum, TRAPS) {
  // Check arguments.
  if (mh.is_null() || target.is_null() || !java_lang_invoke_MethodHandle::is_instance(target())) {
    THROW(vmSymbols::java_lang_InternalError());
  }

  java_lang_invoke_MethodHandle::init_vmslots(mh());
  int argslot = java_lang_invoke_BoundMethodHandle::vmargslot(mh());

  if (VerifyMethodHandles) {
    int insert_after = argnum - 1;
    verify_vmargslot(mh, insert_after, argslot, CHECK);
    verify_vmslots(mh, CHECK);
  }

  // Get bound type and required slots.
  BasicType ptype;
  {
    oop ptype_oop = java_lang_invoke_MethodType::ptype(java_lang_invoke_MethodHandle::type(target()), argnum);
    ptype = java_lang_Class::as_BasicType(ptype_oop);
  }
  int slots_pushed = type2size[ptype];

  // If (a) the target is a direct non-dispatched method handle,
  // or (b) the target is a dispatched direct method handle and we
  // are binding the receiver, cut out the middle-man.
  // Do this by decoding the DMH and using its methodOop directly as vmtarget.
  bool direct_to_method = false;
  if (OptimizeMethodHandles &&
      target->klass() == SystemDictionary::DirectMethodHandle_klass() &&
      (argnum == 0 || java_lang_invoke_DirectMethodHandle::vmindex(target()) < 0)) {
    KlassHandle receiver_limit; int decode_flags = 0;
    methodHandle m = decode_method(target(), receiver_limit, decode_flags);
    if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "DMH failed to decode"); }
    DEBUG_ONLY(int m_vmslots = m->size_of_parameters() - slots_pushed); // pos. of 1st arg.
    assert(java_lang_invoke_BoundMethodHandle::vmslots(mh()) == m_vmslots, "type w/ m sig");
    if (argnum == 0 && (decode_flags & _dmf_has_receiver) != 0) {
      init_BoundMethodHandle_with_receiver(mh, m,
                                           receiver_limit, decode_flags,
                                           CHECK);
      return;
    }

    // Even if it is not a bound receiver, we still might be able
    // to bind another argument and still invoke the methodOop directly.
    if (!(decode_flags & _dmf_does_dispatch)) {
      direct_to_method = true;
      java_lang_invoke_BoundMethodHandle::set_vmtarget(mh(), m());
    }
  }
  if (!direct_to_method)
    java_lang_invoke_BoundMethodHandle::set_vmtarget(mh(), target());

  if (VerifyMethodHandles) {
    verify_BoundMethodHandle(mh, target, argnum, direct_to_method, CHECK);
  }

  // Next question:  Is this a ref, int, or long bound value?
  MethodHandleEntry* me = NULL;
  if (ptype == T_OBJECT) {
    if (direct_to_method)  me = MethodHandles::entry(_bound_ref_direct_mh);
    else                   me = MethodHandles::entry(_bound_ref_mh);
  } else if (slots_pushed == 2) {
    if (direct_to_method)  me = MethodHandles::entry(_bound_long_direct_mh);
    else                   me = MethodHandles::entry(_bound_long_mh);
  } else if (slots_pushed == 1) {
    if (direct_to_method)  me = MethodHandles::entry(_bound_int_direct_mh);
    else                   me = MethodHandles::entry(_bound_int_mh);
  } else {
    assert(false, "");
  }

  // Done!
  java_lang_invoke_MethodHandle::set_vmentry(mh(), me);
}

static void throw_InternalError_for_bad_conversion(int conversion, const char* err, TRAPS) {
  char msg[200];
  jio_snprintf(msg, sizeof(msg), "bad adapter (conversion=0x%08x): %s", conversion, err);
  THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), msg);
}

void MethodHandles::verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS) {
  jint conversion = java_lang_invoke_AdapterMethodHandle::conversion(mh());
  int  argslot    = java_lang_invoke_AdapterMethodHandle::vmargslot(mh());

  verify_vmargslot(mh, argnum, argslot, CHECK);
  verify_vmslots(mh, CHECK);

  jint conv_op    = adapter_conversion_op(conversion);
  if (!conv_op_valid(conv_op)) {
    throw_InternalError_for_bad_conversion(conversion, "unknown conversion op", THREAD);
    return;
  }
  EntryKind ek = adapter_entry_kind(conv_op);

  int stack_move = adapter_conversion_stack_move(conversion);
  BasicType src  = adapter_conversion_src_type(conversion);
  BasicType dest = adapter_conversion_dest_type(conversion);
  int vminfo     = adapter_conversion_vminfo(conversion); // should be zero

  Handle argument(THREAD,  java_lang_invoke_AdapterMethodHandle::argument(mh()));
  Handle target(THREAD,    java_lang_invoke_AdapterMethodHandle::vmtarget(mh()));
  Handle src_mtype(THREAD, java_lang_invoke_MethodHandle::type(mh()));
  Handle dst_mtype(THREAD, java_lang_invoke_MethodHandle::type(target()));
  Handle arg_mtype;

  const char* err = NULL;

  if (err == NULL) {
    // Check that the correct argument is supplied, but only if it is required.
    switch (ek) {
    case _adapter_check_cast:     // target type of cast
    case _adapter_ref_to_prim:    // wrapper type from which to unbox
    case _adapter_spread_args:    // array type to spread from
      if (!java_lang_Class::is_instance(argument())
          || java_lang_Class::is_primitive(argument()))
        { err = "adapter requires argument of type java.lang.Class"; break; }
      if (ek == _adapter_spread_args) {
        // Make sure it is a suitable collection type.  (Array, for now.)
        Klass* ak = Klass::cast(java_lang_Class::as_klassOop(argument()));
        if (!ak->oop_is_array())
          { err = "spread adapter requires argument representing an array class"; break; }
        BasicType et = arrayKlass::cast(ak->as_klassOop())->element_type();
        if (et != dest && stack_move <= 0)
          { err = "spread adapter requires array class argument of correct type"; break; }
      }
      break;
    case _adapter_prim_to_ref:    // boxer MH to use
    case _adapter_collect_args:   // method handle which collects the args
    case _adapter_fold_args:      // method handle which collects the args
      if (!UseRicochetFrames) {
        { err = "box/collect/fold operators are not supported"; break; }
      }
      if (!java_lang_invoke_MethodHandle::is_instance(argument()))
        { err = "MethodHandle adapter argument required"; break; }
      arg_mtype = Handle(THREAD, java_lang_invoke_MethodHandle::type(argument()));
      break;
    default:
      if (argument.not_null())
        { err = "adapter has spurious argument"; break; }
      break;
    }
  }

  if (err == NULL) {
    // Check that the src/dest types are supplied if needed.
    // Also check relevant parameter or return types.
    switch (ek) {
    case _adapter_check_cast:
      if (src != T_OBJECT || dest != T_OBJECT) {
        err = "adapter requires object src/dest conversion subfields";
      }
      break;
    case _adapter_prim_to_prim:
      if (!is_java_primitive(src) || !is_java_primitive(dest) || src == dest) {
        err = "adapter requires primitive src/dest conversion subfields"; break;
      }
      if ( (src == T_FLOAT || src == T_DOUBLE) && !(dest == T_FLOAT || dest == T_DOUBLE) ||
          !(src == T_FLOAT || src == T_DOUBLE) &&  (dest == T_FLOAT || dest == T_DOUBLE)) {
        err = "adapter cannot convert beween floating and fixed-point"; break;
      }
      break;
    case _adapter_ref_to_prim:
      if (src != T_OBJECT || !is_java_primitive(dest)
          || argument() != Klass::cast(SystemDictionary::box_klass(dest))->java_mirror()) {
        err = "adapter requires primitive dest conversion subfield"; break;
      }
      break;
    case _adapter_prim_to_ref:
      if (!is_java_primitive(src) || dest != T_OBJECT) {
        err = "adapter requires primitive src conversion subfield"; break;
      }
      break;
    case _adapter_swap_args:
    case _adapter_rot_args:
      {
        if (!src || src != dest) {
          err = "adapter requires src/dest conversion subfields for swap"; break;
        }
        int swap_size = type2size[src];
        int slot_limit = java_lang_invoke_MethodHandle::vmslots(target());
        int src_slot   = argslot;
        int dest_slot  = vminfo;
        bool rotate_up = (src_slot > dest_slot); // upward rotation
        int src_arg    = argnum;
        int dest_arg   = argument_slot_to_argnum(dst_mtype(), dest_slot);
        verify_vmargslot(mh, dest_arg, dest_slot, CHECK);
        if (!(dest_slot >= src_slot + swap_size) &&
            !(src_slot >= dest_slot + swap_size)) {
          err = "source, destination slots must be distinct";
        } else if (ek == _adapter_swap_args && !(src_slot > dest_slot)) {
          err = "source of swap must be deeper in stack";
        } else if (ek == _adapter_swap_args) {
          err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype(), dest_arg),
                                           java_lang_invoke_MethodType::ptype(dst_mtype(), src_arg),
                                           dest_arg);
        } else if (ek == _adapter_rot_args) {
          if (rotate_up) {
            assert((src_slot > dest_slot) && (src_arg < dest_arg), "");
            // rotate up: [dest_slot..src_slot-ss] --> [dest_slot+ss..src_slot]
            // that is:   [src_arg+1..dest_arg] --> [src_arg..dest_arg-1]
            for (int i = src_arg+1; i <= dest_arg && err == NULL; i++) {
              err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype(), i),
                                               java_lang_invoke_MethodType::ptype(dst_mtype(), i-1),
                                               i);
            }
          } else { // rotate down
            assert((src_slot < dest_slot) && (src_arg > dest_arg), "");
            // rotate down: [src_slot+ss..dest_slot] --> [src_slot..dest_slot-ss]
            // that is:     [dest_arg..src_arg-1] --> [dst_arg+1..src_arg]
            for (int i = dest_arg; i <= src_arg-1 && err == NULL; i++) {
              err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype(), i),
                                               java_lang_invoke_MethodType::ptype(dst_mtype(), i+1),
                                               i);
            }
          }
        }
        if (err == NULL)
          err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype(), src_arg),
                                           java_lang_invoke_MethodType::ptype(dst_mtype(), dest_arg),
                                           src_arg);
      }
      break;
    case _adapter_spread_args:
    case _adapter_collect_args:
    case _adapter_fold_args:
      {
        bool is_spread = (ek == _adapter_spread_args);
        bool is_fold   = (ek == _adapter_fold_args);
        BasicType coll_type = is_spread ? src : dest;
        BasicType elem_type = is_spread ? dest : src;
        // coll_type is type of args in collected form (or T_VOID if none)
        // elem_type is common type of args in spread form (or T_VOID if missing or heterogeneous)
        if (coll_type == 0 || elem_type == 0) {
          err = "adapter requires src/dest subfields for spread or collect"; break;
        }
        if (is_spread && coll_type != T_OBJECT) {
          err = "spread adapter requires object type for argument bundle"; break;
        }
        Handle spread_mtype = (is_spread ? dst_mtype : src_mtype);
        int spread_slot = argslot;
        int spread_arg  = argnum;
        int slots_pushed = stack_move / stack_move_unit();
        int coll_slot_count = type2size[coll_type];
        int spread_slot_count = (is_spread ? slots_pushed : -slots_pushed) + coll_slot_count;
        if (is_fold)  spread_slot_count = argument_slot_count(arg_mtype());
        if (!is_spread) {
          int init_slots = argument_slot_count(src_mtype());
          int coll_slots = argument_slot_count(arg_mtype());
          if (spread_slot_count > init_slots ||
              spread_slot_count != coll_slots) {
            err = "collect adapter has inconsistent arg counts"; break;
          }
          int next_slots = argument_slot_count(dst_mtype());
          int unchanged_slots_in  = (init_slots - spread_slot_count);
          int unchanged_slots_out = (next_slots - coll_slot_count - (is_fold ? spread_slot_count : 0));
          if (unchanged_slots_in != unchanged_slots_out) {
            err = "collect adapter continuation has inconsistent arg counts"; break;
          }
        }
      }
      break;
    default:
      if (src != 0 || dest != 0) {
        err = "adapter has spurious src/dest conversion subfields"; break;
      }
      break;
    }
  }

  if (err == NULL) {
    // Check the stack_move subfield.
    // It must always report the net change in stack size, positive or negative.
    int slots_pushed = stack_move / stack_move_unit();
    switch (ek) {
    case _adapter_prim_to_prim:
    case _adapter_ref_to_prim:
    case _adapter_prim_to_ref:
      if (slots_pushed != type2size[dest] - type2size[src]) {
        err = "wrong stack motion for primitive conversion";
      }
      break;
    case _adapter_dup_args:
      if (slots_pushed <= 0) {
        err = "adapter requires conversion subfield slots_pushed > 0";
      }
      break;
    case _adapter_drop_args:
      if (slots_pushed >= 0) {
        err = "adapter requires conversion subfield slots_pushed < 0";
      }
      break;
    case _adapter_collect_args:
    case _adapter_fold_args:
      if (slots_pushed > 2) {
        err = "adapter requires conversion subfield slots_pushed <= 2";
      }
      break;
    case _adapter_spread_args:
      if (slots_pushed < -1) {
        err = "adapter requires conversion subfield slots_pushed >= -1";
      }
      break;
    default:
      if (stack_move != 0) {
        err = "adapter has spurious stack_move conversion subfield";
      }
      break;
    }
    if (err == NULL && stack_move != slots_pushed * stack_move_unit()) {
      err = "stack_move conversion subfield must be multiple of stack_move_unit";
    }
  }

  if (err == NULL) {
    // Make sure this adapter's stack pushing is accurately recorded.
    int slots_pushed = stack_move / stack_move_unit();
    int this_vmslots = java_lang_invoke_MethodHandle::vmslots(mh());
    int target_vmslots = java_lang_invoke_MethodHandle::vmslots(target());
    int target_pushes = decode_MethodHandle_stack_pushes(target());
    if (slots_pushed != (target_vmslots - this_vmslots)) {
      err = "stack_move inconsistent with previous and current MethodType vmslots";
    } else {
      int this_pushes = decode_MethodHandle_stack_pushes(mh());
      if (slots_pushed + target_pushes != this_pushes) {
        if (this_pushes == 0)
          err = "adapter push count not initialized";
        else
          err = "adapter push count is wrong";
      }
    }

    // While we're at it, check that the stack motion decoder works:
    DEBUG_ONLY(int this_pushes = decode_MethodHandle_stack_pushes(mh()));
    assert(this_pushes == slots_pushed + target_pushes, "AMH stack motion must be correct");
  }

  if (err == NULL && vminfo != 0) {
    switch (ek) {
    case _adapter_swap_args:
    case _adapter_rot_args:
    case _adapter_prim_to_ref:
    case _adapter_collect_args:
    case _adapter_fold_args:
      break;                // OK
    default:
      err = "vminfo subfield is reserved to the JVM";
    }
  }

  // Do additional ad hoc checks.
  if (err == NULL) {
    switch (ek) {
    case _adapter_retype_only:
      err = check_method_type_passthrough(src_mtype(), dst_mtype(), false);
      break;

    case _adapter_retype_raw:
      err = check_method_type_passthrough(src_mtype(), dst_mtype(), true);
      break;

    case _adapter_check_cast:
      {
        // The actual value being checked must be a reference:
        err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype(), argnum),
                                         object_java_mirror(), argnum);
        if (err != NULL)  break;

        // The output of the cast must fit with the destination argument:
        Handle cast_class = argument;
        err = check_method_type_conversion(src_mtype(),
                                           argnum, cast_class(),
                                           dst_mtype());
      }
      break;

      // %%% TO DO: continue in remaining cases to verify src/dst_mtype if VerifyMethodHandles
    }
  }

  if (err != NULL) {
    throw_InternalError_for_bad_conversion(conversion, err, THREAD);
    return;
  }

}

void MethodHandles::init_AdapterMethodHandle(Handle mh, Handle target, int argnum, TRAPS) {
  Handle argument   = java_lang_invoke_AdapterMethodHandle::argument(mh());
  int    argslot    = java_lang_invoke_AdapterMethodHandle::vmargslot(mh());
  jint   conversion = java_lang_invoke_AdapterMethodHandle::conversion(mh());
  jint   conv_op    = adapter_conversion_op(conversion);

  // adjust the adapter code to the internal EntryKind enumeration:
  EntryKind ek_orig = adapter_entry_kind(conv_op);
  EntryKind ek_opt  = ek_orig;  // may be optimized
  EntryKind ek_try;             // temp

  // Finalize the vmtarget field (Java initialized it to null).
  if (!java_lang_invoke_MethodHandle::is_instance(target())) {
    throw_InternalError_for_bad_conversion(conversion, "bad target", THREAD);
    return;
  }
  java_lang_invoke_AdapterMethodHandle::set_vmtarget(mh(), target());

  int stack_move = adapter_conversion_stack_move(conversion);
  BasicType src  = adapter_conversion_src_type(conversion);
  BasicType dest = adapter_conversion_dest_type(conversion);
  int vminfo     = adapter_conversion_vminfo(conversion); // should be zero

  int slots_pushed = stack_move / stack_move_unit();

  if (VerifyMethodHandles) {
    verify_AdapterMethodHandle(mh, argnum, CHECK);
  }

  const char* err = NULL;

  if (!conv_op_supported(conv_op)) {
    err = "adapter not yet implemented in the JVM";
  }

  // Now it's time to finish the case analysis and pick a MethodHandleEntry.
  switch (ek_orig) {
  case _adapter_retype_only:
  case _adapter_retype_raw:
  case _adapter_check_cast:
  case _adapter_dup_args:
  case _adapter_drop_args:
    // these work fine via general case code
    break;

  case _adapter_prim_to_prim:
    {
      // Non-subword cases are {int,float,long,double} -> {int,float,long,double}.
      // And, the {float,double} -> {int,long} cases must be handled by Java.
      switch (type2size[src] *4+ type2size[dest]) {
      case 1 *4+ 1:
        assert(src == T_INT || is_subword_type(src), "source is not float");
        // Subword-related cases are int -> {boolean,byte,char,short}.
        ek_opt = _adapter_opt_i2i;
        vminfo = adapter_prim_to_prim_subword_vminfo(dest);
        break;
      case 2 *4+ 1:
        if (src == T_LONG && (dest == T_INT || is_subword_type(dest))) {
          ek_opt = _adapter_opt_l2i;
          vminfo = adapter_prim_to_prim_subword_vminfo(dest);
        } else if (src == T_DOUBLE && dest == T_FLOAT) {
          ek_opt = _adapter_opt_d2f;
        } else {
          goto throw_not_impl;        // runs user code, hence could block
        }
        break;
      case 1 *4+ 2:
        if ((src == T_INT || is_subword_type(src)) && dest == T_LONG) {
          ek_opt = _adapter_opt_i2l;
        } else if (src == T_FLOAT && dest == T_DOUBLE) {
          ek_opt = _adapter_opt_f2d;
        } else {
          goto throw_not_impl;        // runs user code, hence could block
        }
        break;
      default:
        goto throw_not_impl;        // runs user code, hence could block
        break;
      }
    }
    break;

  case _adapter_ref_to_prim:
    {
      switch (type2size[dest]) {
      case 1:
        ek_opt = _adapter_opt_unboxi;
        vminfo = adapter_unbox_subword_vminfo(dest);
        break;
      case 2:
        ek_opt = _adapter_opt_unboxl;
        break;
      default:
        goto throw_not_impl;
        break;
      }
    }
    break;

  case _adapter_prim_to_ref:
    {
      assert(UseRicochetFrames, "else don't come here");
      // vminfo will be the location to insert the return value
      vminfo = argslot;
      ek_opt = _adapter_opt_collect_ref;
      ensure_vmlayout_field(target, CHECK);
      // for MethodHandleWalk:
      if (java_lang_invoke_AdapterMethodHandle::is_instance(argument()))
        ensure_vmlayout_field(argument, CHECK);
      if (!OptimizeMethodHandles)  break;
      switch (type2size[src]) {
      case 1:
        ek_try = EntryKind(_adapter_opt_filter_S0_ref + argslot);
        if (ek_try < _adapter_opt_collect_LAST &&
            ek_adapter_opt_collect_slot(ek_try) == argslot) {
          assert(ek_adapter_opt_collect_count(ek_try) == 1 &&
                 ek_adapter_opt_collect_type(ek_try) == T_OBJECT, "");
          ek_opt = ek_try;
          break;
        }
        // else downgrade to variable slot:
        ek_opt = _adapter_opt_collect_1_ref;
        break;
      case 2:
        ek_try = EntryKind(_adapter_opt_collect_2_S0_ref + argslot);
        if (ek_try < _adapter_opt_collect_LAST &&
            ek_adapter_opt_collect_slot(ek_try) == argslot) {
          assert(ek_adapter_opt_collect_count(ek_try) == 2 &&
                 ek_adapter_opt_collect_type(ek_try) == T_OBJECT, "");
          ek_opt = ek_try;
          break;
        }
        // else downgrade to variable slot:
        ek_opt = _adapter_opt_collect_2_ref;
        break;
      default:
        goto throw_not_impl;
        break;
      }
    }
    break;

  case _adapter_swap_args:
  case _adapter_rot_args:
    {
      int swap_slots = type2size[src];
      int slot_limit = java_lang_invoke_AdapterMethodHandle::vmslots(mh());
      int src_slot   = argslot;
      int dest_slot  = vminfo;
      int rotate     = (ek_orig == _adapter_swap_args) ? 0 : (src_slot > dest_slot) ? 1 : -1;
      switch (swap_slots) {
      case 1:
        ek_opt = (!rotate    ? _adapter_opt_swap_1 :
                  rotate > 0 ? _adapter_opt_rot_1_up : _adapter_opt_rot_1_down);
        break;
      case 2:
        ek_opt = (!rotate    ? _adapter_opt_swap_2 :
                  rotate > 0 ? _adapter_opt_rot_2_up : _adapter_opt_rot_2_down);
        break;
      default:
        goto throw_not_impl;
        break;
      }
    }
    break;

  case _adapter_spread_args:
    {
#ifdef TARGET_ARCH_NYI_6939861
      // ports before 6939861 supported only three kinds of spread ops
      if (!UseRicochetFrames) {
        int array_size   = slots_pushed + 1;
        assert(array_size >= 0, "");
        vminfo = array_size;
        switch (array_size) {
        case 0:   ek_opt = _adapter_opt_spread_0;       break;
        case 1:   ek_opt = _adapter_opt_spread_1;       break;
        default:  ek_opt = _adapter_opt_spread_more;    break;
        }
        break;
      }
#endif //TARGET_ARCH_NYI_6939861
      // vminfo will be the required length of the array
      int array_size = (slots_pushed + 1) / (type2size[dest] == 2 ? 2 : 1);
      vminfo = array_size;
      // general case
      switch (dest) {
      case T_BOOLEAN : // fall through to T_BYTE:
      case T_BYTE    : ek_opt = _adapter_opt_spread_byte;    break;
      case T_CHAR    : ek_opt = _adapter_opt_spread_char;    break;
      case T_SHORT   : ek_opt = _adapter_opt_spread_short;   break;
      case T_INT     : ek_opt = _adapter_opt_spread_int;     break;
      case T_LONG    : ek_opt = _adapter_opt_spread_long;    break;
      case T_FLOAT   : ek_opt = _adapter_opt_spread_float;   break;
      case T_DOUBLE  : ek_opt = _adapter_opt_spread_double;  break;
      case T_OBJECT  : ek_opt = _adapter_opt_spread_ref;     break;
      case T_VOID    : if (array_size != 0)  goto throw_not_impl;
                       ek_opt = _adapter_opt_spread_ref;     break;
      default        : goto throw_not_impl;
      }
      assert(array_size == 0 ||  // it doesn't matter what the spreader is
             (ek_adapter_opt_spread_count(ek_opt) == -1 &&
              (ek_adapter_opt_spread_type(ek_opt) == dest ||
               (ek_adapter_opt_spread_type(ek_opt) == T_BYTE && dest == T_BOOLEAN))),
             err_msg("dest=%d ek_opt=%d", dest, ek_opt));

      if (array_size <= 0) {
        // since the general case does not handle length 0, this case is required:
        ek_opt = _adapter_opt_spread_0;
        break;
      }
      if (dest == T_OBJECT) {
        ek_try = EntryKind(_adapter_opt_spread_1_ref - 1 + array_size);
        if (ek_try < _adapter_opt_spread_LAST &&
            ek_adapter_opt_spread_count(ek_try) == array_size) {
          assert(ek_adapter_opt_spread_type(ek_try) == dest, "");
          ek_opt = ek_try;
          break;
        }
      }
      break;
    }
    break;

  case _adapter_collect_args:
    {
      assert(UseRicochetFrames, "else don't come here");
      int elem_slots = argument_slot_count(java_lang_invoke_MethodHandle::type(argument()));
      // vminfo will be the location to insert the return value
      vminfo = argslot;
      ensure_vmlayout_field(target, CHECK);
      ensure_vmlayout_field(argument, CHECK);

      // general case:
      switch (dest) {
      default       : if (!is_subword_type(dest))  goto throw_not_impl;
                    // else fall through:
      case T_INT    : ek_opt = _adapter_opt_collect_int;     break;
      case T_LONG   : ek_opt = _adapter_opt_collect_long;    break;
      case T_FLOAT  : ek_opt = _adapter_opt_collect_float;   break;
      case T_DOUBLE : ek_opt = _adapter_opt_collect_double;  break;
      case T_OBJECT : ek_opt = _adapter_opt_collect_ref;     break;
      case T_VOID   : ek_opt = _adapter_opt_collect_void;    break;
      }
      assert(ek_adapter_opt_collect_slot(ek_opt) == -1 &&
             ek_adapter_opt_collect_count(ek_opt) == -1 &&
             (ek_adapter_opt_collect_type(ek_opt) == dest ||
              ek_adapter_opt_collect_type(ek_opt) == T_INT && is_subword_type(dest)),
             "");

      if (dest == T_OBJECT && elem_slots == 1 && OptimizeMethodHandles) {
        // filter operation on a ref
        ek_try = EntryKind(_adapter_opt_filter_S0_ref + argslot);
        if (ek_try < _adapter_opt_collect_LAST &&
            ek_adapter_opt_collect_slot(ek_try) == argslot) {
          assert(ek_adapter_opt_collect_count(ek_try) == elem_slots &&
                 ek_adapter_opt_collect_type(ek_try) == dest, "");
          ek_opt = ek_try;
          break;
        }
        ek_opt = _adapter_opt_collect_1_ref;
        break;
      }

      if (dest == T_OBJECT && elem_slots == 2 && OptimizeMethodHandles) {
        // filter of two arguments
        ek_try = EntryKind(_adapter_opt_collect_2_S0_ref + argslot);
        if (ek_try < _adapter_opt_collect_LAST &&
            ek_adapter_opt_collect_slot(ek_try) == argslot) {
          assert(ek_adapter_opt_collect_count(ek_try) == elem_slots &&
                 ek_adapter_opt_collect_type(ek_try) == dest, "");
          ek_opt = ek_try;
          break;
        }
        ek_opt = _adapter_opt_collect_2_ref;
        break;
      }

      if (dest == T_OBJECT && OptimizeMethodHandles) {
        // try to use a fixed length adapter
        ek_try = EntryKind(_adapter_opt_collect_0_ref + elem_slots);
        if (ek_try < _adapter_opt_collect_LAST &&
            ek_adapter_opt_collect_count(ek_try) == elem_slots) {
          assert(ek_adapter_opt_collect_slot(ek_try) == -1 &&
                 ek_adapter_opt_collect_type(ek_try) == dest, "");
          ek_opt = ek_try;
          break;
        }
      }

      break;
    }

  case _adapter_fold_args:
    {
      assert(UseRicochetFrames, "else don't come here");
      int elem_slots = argument_slot_count(java_lang_invoke_MethodHandle::type(argument()));
      // vminfo will be the location to insert the return value
      vminfo = argslot + elem_slots;
      ensure_vmlayout_field(target, CHECK);
      ensure_vmlayout_field(argument, CHECK);

      switch (dest) {
      default       : if (!is_subword_type(dest))  goto throw_not_impl;
                    // else fall through:
      case T_INT    : ek_opt = _adapter_opt_fold_int;     break;
      case T_LONG   : ek_opt = _adapter_opt_fold_long;    break;
      case T_FLOAT  : ek_opt = _adapter_opt_fold_float;   break;
      case T_DOUBLE : ek_opt = _adapter_opt_fold_double;  break;
      case T_OBJECT : ek_opt = _adapter_opt_fold_ref;     break;
      case T_VOID   : ek_opt = _adapter_opt_fold_void;    break;
      }
      assert(ek_adapter_opt_collect_slot(ek_opt) == -1 &&
             ek_adapter_opt_collect_count(ek_opt) == -1 &&
             (ek_adapter_opt_collect_type(ek_opt) == dest ||
              ek_adapter_opt_collect_type(ek_opt) == T_INT && is_subword_type(dest)),
             "");

      if (dest == T_OBJECT && elem_slots == 0 && OptimizeMethodHandles) {
        // if there are no args, just pretend it's a collect
        ek_opt = _adapter_opt_collect_0_ref;
        break;
      }

      if (dest == T_OBJECT && OptimizeMethodHandles) {
        // try to use a fixed length adapter
        ek_try = EntryKind(_adapter_opt_fold_1_ref - 1 + elem_slots);
        if (ek_try < _adapter_opt_fold_LAST &&
            ek_adapter_opt_collect_count(ek_try) == elem_slots) {
          assert(ek_adapter_opt_collect_slot(ek_try) == -1 &&
                 ek_adapter_opt_collect_type(ek_try) == dest, "");
          ek_opt = ek_try;
          break;
        }
      }

      break;
    }

  default:
    // should have failed much earlier; must be a missing case here
    assert(false, "incomplete switch");
    // and fall through:

  throw_not_impl:
    if (err == NULL)
      err = "unknown adapter type";
    break;
  }

  if (err == NULL && (vminfo & CONV_VMINFO_MASK) != vminfo) {
    // should not happen, since vminfo is used to encode arg/slot indexes < 255
    err = "vminfo overflow";
  }

  if (err == NULL && !have_entry(ek_opt)) {
    err = "adapter stub for this kind of method handle is missing";
  }

  if (err == NULL && ek_opt == ek_orig) {
    switch (ek_opt) {
    case _adapter_prim_to_prim:
    case _adapter_ref_to_prim:
    case _adapter_prim_to_ref:
    case _adapter_swap_args:
    case _adapter_rot_args:
    case _adapter_collect_args:
    case _adapter_fold_args:
    case _adapter_spread_args:
      // should be handled completely by optimized cases; see above
      err = "init_AdapterMethodHandle should not issue this";
      break;
    }
  }

  if (err != NULL) {
    throw_InternalError_for_bad_conversion(conversion, err, THREAD);
    return;
  }

  // Rebuild the conversion value; maybe parts of it were changed.
  jint new_conversion = adapter_conversion(conv_op, src, dest, stack_move, vminfo);

  // Finalize the conversion field.  (Note that it is final to Java code.)
  java_lang_invoke_AdapterMethodHandle::set_conversion(mh(), new_conversion);

  // Done!
  java_lang_invoke_MethodHandle::set_vmentry(mh(), entry(ek_opt));

  // There should be enough memory barriers on exit from native methods
  // to ensure that the MH is fully initialized to all threads before
  // Java code can publish it in global data structures.
}

void MethodHandles::ensure_vmlayout_field(Handle target, TRAPS) {
  Handle mtype(THREAD, java_lang_invoke_MethodHandle::type(target()));
  Handle mtform(THREAD, java_lang_invoke_MethodType::form(mtype()));
  if (mtform.is_null()) { THROW(vmSymbols::java_lang_InternalError()); }
  if (java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() > 0) {
    if (java_lang_invoke_MethodTypeForm::vmlayout(mtform()) == NULL) {
      // fill it in
      Handle erased_mtype(THREAD, java_lang_invoke_MethodTypeForm::erasedType(mtform()));
      TempNewSymbol erased_signature
        = java_lang_invoke_MethodType::as_signature(erased_mtype(), /*intern:*/true, CHECK);
      methodOop cookie
        = SystemDictionary::find_method_handle_invoke(vmSymbols::invokeExact_name(),
                                                      erased_signature,
                                                      SystemDictionaryHandles::Object_klass(),
                                                      THREAD);
      java_lang_invoke_MethodTypeForm::init_vmlayout(mtform(), cookie);
    }
  }
}

#ifdef ASSERT

extern "C"
void print_method_handle(oop mh);

static void stress_method_handle_walk_impl(Handle mh, TRAPS) {
  if (StressMethodHandleWalk) {
    // Exercise the MethodHandleWalk code in various ways and validate
    // the resulting method oop.  Some of these produce output so they
    // are guarded under Verbose.
    ResourceMark rm;
    HandleMark hm;
    if (Verbose) {
      print_method_handle(mh());
    }
    TempNewSymbol name = SymbolTable::new_symbol("invoke", CHECK);
    Handle mt = java_lang_invoke_MethodHandle::type(mh());
    TempNewSymbol signature = java_lang_invoke_MethodType::as_signature(mt(), true, CHECK);
    MethodHandleCompiler mhc(mh, name, signature, 10000, false, CHECK);
    methodHandle m = mhc.compile(CHECK);
    if (Verbose) {
      m->print_codes();
    }
    InterpreterOopMap mask;
    OopMapCache::compute_one_oop_map(m, m->code_size() - 1, &mask);
  }
}

static void stress_method_handle_walk(Handle mh, TRAPS) {
  stress_method_handle_walk_impl(mh, THREAD);
  if (HAS_PENDING_EXCEPTION) {
    oop ex = PENDING_EXCEPTION;
    CLEAR_PENDING_EXCEPTION;
    tty->print("StressMethodHandleWalk: ");
    java_lang_Throwable::print(ex, tty);
    tty->cr();
  }
}
#else

static void stress_method_handle_walk(Handle mh, TRAPS) {}

#endif

//
// Here are the native methods on sun.invoke.MethodHandleImpl.
// They are the private interface between this JVM and the HotSpot-specific
// Java code that implements JSR 292 method handles.
//
// Note:  We use a JVM_ENTRY macro to define each of these, for this is the way
// that intrinsic (non-JNI) native methods are defined in HotSpot.
//

// direct method handles for invokestatic or invokespecial
// void init(DirectMethodHandle self, MemberName ref, boolean doDispatch, Class<?> caller);
JVM_ENTRY(void, MHN_init_DMH(JNIEnv *env, jobject igcls, jobject mh_jh,
                             jobject target_jh, jboolean do_dispatch, jobject caller_jh)) {
  ResourceMark rm;              // for error messages

  // This is the guy we are initializing:
  if (mh_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
  Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh));

  // Early returns out of this method leave the DMH in an unfinished state.
  assert(java_lang_invoke_MethodHandle::vmentry(mh()) == NULL, "must be safely null");

  // which method are we really talking about?
  if (target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
  Handle target(THREAD, JNIHandles::resolve_non_null(target_jh));
  if (java_lang_invoke_MemberName::is_instance(target()) &&
      java_lang_invoke_MemberName::vmindex(target()) == VM_INDEX_UNINITIALIZED) {
    MethodHandles::resolve_MemberName(target, CHECK);
  }

  KlassHandle receiver_limit; int decode_flags = 0;
  methodHandle m = MethodHandles::decode_method(target(), receiver_limit, decode_flags);
  if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "no such method"); }

  // The trusted Java code that calls this method should already have performed
  // access checks on behalf of the given caller.  But, we can verify this.
  if (VerifyMethodHandles && caller_jh != NULL) {
    KlassHandle caller(THREAD, java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(caller_jh)));
    // If this were a bytecode, the first access check would be against
    // the "reference class" mentioned in the CONSTANT_Methodref.
    // We don't know at this point which class that was, and if we
    // check against m.method_holder we might get the wrong answer.
    // So we just make sure to handle this check when the resolution
    // happens, when we call resolve_MemberName.
    //
    // (A public class can inherit public members from private supers,
    // and it would be wrong to check access against the private super
    // if the original symbolic reference was against the public class.)
    //
    // If there were a bytecode, the next step would be to lookup the method
    // in the reference class, then then check the method's access bits.
    // Emulate LinkResolver::check_method_accessability.
    klassOop resolved_klass = m->method_holder();
    if (!Reflection::verify_field_access(caller->as_klassOop(),
                                         resolved_klass, resolved_klass,
                                         m->access_flags(),
                                         true)) {
      // %%% following cutout belongs in Reflection::verify_field_access?
      bool same_pm = Reflection::is_same_package_member(caller->as_klassOop(),
                                                        resolved_klass, THREAD);
      if (!same_pm) {
        THROW_MSG(vmSymbols::java_lang_InternalError(), m->name_and_sig_as_C_string());
      }
    }
  }

  MethodHandles::init_DirectMethodHandle(mh, m, (do_dispatch != JNI_FALSE), CHECK);
  stress_method_handle_walk(mh, CHECK);
}
JVM_END

// bound method handles
JVM_ENTRY(void, MHN_init_BMH(JNIEnv *env, jobject igcls, jobject mh_jh,
                             jobject target_jh, int argnum)) {
  ResourceMark rm;              // for error messages

  // This is the guy we are initializing:
  if (mh_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
  Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh));

  // Early returns out of this method leave the BMH in an unfinished state.
  assert(java_lang_invoke_MethodHandle::vmentry(mh()) == NULL, "must be safely null");

  if (target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
  Handle target(THREAD, JNIHandles::resolve_non_null(target_jh));

  if (!java_lang_invoke_MethodHandle::is_instance(target())) {
    // Target object is a reflective method.  (%%% Do we need this alternate path?)
    Untested("init_BMH of non-MH");
    if (argnum != 0) { THROW(vmSymbols::java_lang_InternalError()); }
    KlassHandle receiver_limit; int decode_flags = 0;
    methodHandle m = MethodHandles::decode_method(target(), receiver_limit, decode_flags);
    MethodHandles::init_BoundMethodHandle_with_receiver(mh, m,
                                                       receiver_limit,
                                                       decode_flags,
                                                       CHECK);
  } else {
    // Build a BMH on top of a DMH or another BMH:
    MethodHandles::init_BoundMethodHandle(mh, target, argnum, CHECK);
  }
  stress_method_handle_walk(mh, CHECK);
}
JVM_END

// adapter method handles
JVM_ENTRY(void, MHN_init_AMH(JNIEnv *env, jobject igcls, jobject mh_jh,
                             jobject target_jh, int argnum)) {
  // This is the guy we are initializing:
  if (mh_jh == NULL || target_jh == NULL) {
    THROW(vmSymbols::java_lang_InternalError());
  }
  Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh));
  Handle target(THREAD, JNIHandles::resolve_non_null(target_jh));

  // Early returns out of this method leave the AMH in an unfinished state.
  assert(java_lang_invoke_MethodHandle::vmentry(mh()) == NULL, "must be safely null");

  MethodHandles::init_AdapterMethodHandle(mh, target, argnum, CHECK);
  stress_method_handle_walk(mh, CHECK);
}
JVM_END

// method type forms
JVM_ENTRY(void, MHN_init_MT(JNIEnv *env, jobject igcls, jobject erased_jh)) {
  if (erased_jh == NULL)  return;
  if (TraceMethodHandles) {
    tty->print("creating MethodType form ");
    if (WizardMode || Verbose) {   // Warning: this calls Java code on the MH!
      // call Object.toString()
      Symbol* name = vmSymbols::toString_name();
      Symbol* sig = vmSymbols::void_string_signature();
      JavaCallArguments args(Handle(THREAD, JNIHandles::resolve_non_null(erased_jh)));
      JavaValue result(T_OBJECT);
      JavaCalls::call_virtual(&result, SystemDictionary::Object_klass(), name, sig,
                              &args, CHECK);
      Handle str(THREAD, (oop)result.get_jobject());
      java_lang_String::print(str, tty);
    }
    tty->cr();
  }
}
JVM_END

// debugging and reflection
JVM_ENTRY(jobject, MHN_getTarget(JNIEnv *env, jobject igcls, jobject mh_jh, jint format)) {
  Handle mh(THREAD, JNIHandles::resolve(mh_jh));
  if (!java_lang_invoke_MethodHandle::is_instance(mh())) {
    THROW_NULL(vmSymbols::java_lang_IllegalArgumentException());
  }
  oop target = MethodHandles::encode_target(mh, format, CHECK_NULL);
  return JNIHandles::make_local(THREAD, target);
}
JVM_END

JVM_ENTRY(jint, MHN_getConstant(JNIEnv *env, jobject igcls, jint which)) {
  switch (which) {
  case MethodHandles::GC_JVM_PUSH_LIMIT:
    guarantee(MethodHandlePushLimit >= 2 && MethodHandlePushLimit <= 0xFF,
              "MethodHandlePushLimit parameter must be in valid range");
    return MethodHandlePushLimit;
  case MethodHandles::GC_JVM_STACK_MOVE_UNIT:
    // return number of words per slot, signed according to stack direction
    return MethodHandles::stack_move_unit();
  case MethodHandles::GC_CONV_OP_IMPLEMENTED_MASK:
    return MethodHandles::adapter_conversion_ops_supported_mask();
  }
  return 0;
}
JVM_END

#ifndef PRODUCT
#define EACH_NAMED_CON(template) \
  /* hold back this one until JDK stabilizes */ \
  /* template(MethodHandles,GC_JVM_PUSH_LIMIT) */  \
  /* hold back this one until JDK stabilizes */ \
  /* template(MethodHandles,GC_JVM_STACK_MOVE_UNIT) */ \
    template(MethodHandles,ETF_HANDLE_OR_METHOD_NAME) \
    template(MethodHandles,ETF_DIRECT_HANDLE) \
    template(MethodHandles,ETF_METHOD_NAME) \
    template(MethodHandles,ETF_REFLECT_METHOD) \
    template(java_lang_invoke_MemberName,MN_IS_METHOD) \
    template(java_lang_invoke_MemberName,MN_IS_CONSTRUCTOR) \
    template(java_lang_invoke_MemberName,MN_IS_FIELD) \
    template(java_lang_invoke_MemberName,MN_IS_TYPE) \
    template(java_lang_invoke_MemberName,MN_SEARCH_SUPERCLASSES) \
    template(java_lang_invoke_MemberName,MN_SEARCH_INTERFACES) \
    template(java_lang_invoke_MemberName,VM_INDEX_UNINITIALIZED) \
    template(java_lang_invoke_AdapterMethodHandle,OP_RETYPE_ONLY) \
    template(java_lang_invoke_AdapterMethodHandle,OP_RETYPE_RAW) \
    template(java_lang_invoke_AdapterMethodHandle,OP_CHECK_CAST) \
    template(java_lang_invoke_AdapterMethodHandle,OP_PRIM_TO_PRIM) \
    template(java_lang_invoke_AdapterMethodHandle,OP_REF_TO_PRIM) \
    template(java_lang_invoke_AdapterMethodHandle,OP_PRIM_TO_REF) \
    template(java_lang_invoke_AdapterMethodHandle,OP_SWAP_ARGS) \
    template(java_lang_invoke_AdapterMethodHandle,OP_ROT_ARGS) \
    template(java_lang_invoke_AdapterMethodHandle,OP_DUP_ARGS) \
    template(java_lang_invoke_AdapterMethodHandle,OP_DROP_ARGS) \
    template(java_lang_invoke_AdapterMethodHandle,OP_COLLECT_ARGS) \
    template(java_lang_invoke_AdapterMethodHandle,OP_SPREAD_ARGS) \
      /* hold back this one until JDK stabilizes */ \
      /*template(java_lang_invoke_AdapterMethodHandle,CONV_OP_LIMIT)*/  \
    template(java_lang_invoke_AdapterMethodHandle,CONV_OP_MASK) \
    template(java_lang_invoke_AdapterMethodHandle,CONV_VMINFO_MASK) \
    template(java_lang_invoke_AdapterMethodHandle,CONV_VMINFO_SHIFT) \
    template(java_lang_invoke_AdapterMethodHandle,CONV_OP_SHIFT) \
    template(java_lang_invoke_AdapterMethodHandle,CONV_DEST_TYPE_SHIFT) \
    template(java_lang_invoke_AdapterMethodHandle,CONV_SRC_TYPE_SHIFT) \
    template(java_lang_invoke_AdapterMethodHandle,CONV_STACK_MOVE_SHIFT) \
    template(java_lang_invoke_AdapterMethodHandle,CONV_STACK_MOVE_MASK) \
    /*end*/

#define ONE_PLUS(scope,value) 1+
static const int con_value_count = EACH_NAMED_CON(ONE_PLUS) 0;
#define VALUE_COMMA(scope,value) scope::value,
static const int con_values[con_value_count+1] = { EACH_NAMED_CON(VALUE_COMMA) 0 };
#define STRING_NULL(scope,value) #value "\0"
static const char con_names[] = { EACH_NAMED_CON(STRING_NULL) };

#undef ONE_PLUS
#undef VALUE_COMMA
#undef STRING_NULL
#undef EACH_NAMED_CON
#endif

JVM_ENTRY(jint, MHN_getNamedCon(JNIEnv *env, jobject igcls, jint which, jobjectArray box_jh)) {
#ifndef PRODUCT
  if (which >= 0 && which < con_value_count) {
    int con = con_values[which];
    objArrayHandle box(THREAD, (objArrayOop) JNIHandles::resolve(box_jh));
    if (box.not_null() && box->klass() == Universe::objectArrayKlassObj() && box->length() > 0) {
      const char* str = &con_names[0];
      for (int i = 0; i < which; i++)
        str += strlen(str) + 1;   // skip name and null
      oop name = java_lang_String::create_oop_from_str(str, CHECK_0);  // possible safepoint
      box->obj_at_put(0, name);
    }
    return con;
  }
#endif
  return 0;
}
JVM_END

// void init(MemberName self, AccessibleObject ref)
JVM_ENTRY(void, MHN_init_Mem(JNIEnv *env, jobject igcls, jobject mname_jh, jobject target_jh)) {
  if (mname_jh == NULL || target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
  Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh));
  oop target_oop = JNIHandles::resolve_non_null(target_jh);
  MethodHandles::init_MemberName(mname(), target_oop);
}
JVM_END

// void expand(MemberName self)
JVM_ENTRY(void, MHN_expand_Mem(JNIEnv *env, jobject igcls, jobject mname_jh)) {
  if (mname_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
  Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh));
  MethodHandles::expand_MemberName(mname, 0, CHECK);
}
JVM_END

// void resolve(MemberName self, Class<?> caller)
JVM_ENTRY(void, MHN_resolve_Mem(JNIEnv *env, jobject igcls, jobject mname_jh, jclass caller_jh)) {
  if (mname_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); }
  Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh));

  // The trusted Java code that calls this method should already have performed
  // access checks on behalf of the given caller.  But, we can verify this.
  if (VerifyMethodHandles && caller_jh != NULL) {
    klassOop reference_klass = java_lang_Class::as_klassOop(java_lang_invoke_MemberName::clazz(mname()));
    if (reference_klass != NULL) {
      // Emulate LinkResolver::check_klass_accessability.
      klassOop caller = java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(caller_jh));
      if (!Reflection::verify_class_access(caller,
                                           reference_klass,
                                           true)) {
        THROW_MSG(vmSymbols::java_lang_InternalError(), Klass::cast(reference_klass)->external_name());
      }
    }
  }

  MethodHandles::resolve_MemberName(mname, CHECK);
}
JVM_END

//  static native int getMembers(Class<?> defc, String matchName, String matchSig,
//          int matchFlags, Class<?> caller, int skip, MemberName[] results);
JVM_ENTRY(jint, MHN_getMembers(JNIEnv *env, jobject igcls,
                               jclass clazz_jh, jstring name_jh, jstring sig_jh,
                               int mflags, jclass caller_jh, jint skip, jobjectArray results_jh)) {
  if (clazz_jh == NULL || results_jh == NULL)  return -1;
  KlassHandle k(THREAD, java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(clazz_jh)));

  objArrayHandle results(THREAD, (objArrayOop) JNIHandles::resolve(results_jh));
  if (results.is_null() || !results->is_objArray())  return -1;

  TempNewSymbol name = NULL;
  TempNewSymbol sig = NULL;
  if (name_jh != NULL) {
    name = java_lang_String::as_symbol_or_null(JNIHandles::resolve_non_null(name_jh));
    if (name == NULL)  return 0; // a match is not possible
  }
  if (sig_jh != NULL) {
    sig = java_lang_String::as_symbol_or_null(JNIHandles::resolve_non_null(sig_jh));
    if (sig == NULL)  return 0; // a match is not possible
  }

  KlassHandle caller;
  if (caller_jh != NULL) {
    oop caller_oop = JNIHandles::resolve_non_null(caller_jh);
    if (!java_lang_Class::is_instance(caller_oop))  return -1;
    caller = KlassHandle(THREAD, java_lang_Class::as_klassOop(caller_oop));
  }

  if (name != NULL && sig != NULL && results.not_null()) {
    // try a direct resolve
    // %%% TO DO
  }

  int res = MethodHandles::find_MemberNames(k(), name, sig, mflags,
                                            caller(), skip, results());
  // TO DO: expand at least some of the MemberNames, to avoid massive callbacks
  return res;
}
JVM_END

JVM_ENTRY(jobject, MH_invoke_UOE(JNIEnv *env, jobject igmh, jobjectArray igargs)) {
    TempNewSymbol UOE_name = SymbolTable::new_symbol("java/lang/UnsupportedOperationException", CHECK_NULL);
    THROW_MSG_NULL(UOE_name, "MethodHandle.invoke cannot be invoked reflectively");
    return NULL;
}
JVM_END

JVM_ENTRY(jobject, MH_invokeExact_UOE(JNIEnv *env, jobject igmh, jobjectArray igargs)) {
    TempNewSymbol UOE_name = SymbolTable::new_symbol("java/lang/UnsupportedOperationException", CHECK_NULL);
    THROW_MSG_NULL(UOE_name, "MethodHandle.invokeExact cannot be invoked reflectively");
    return NULL;
}
JVM_END


/// JVM_RegisterMethodHandleMethods

#define LANG "Ljava/lang/"
#define JLINV "Ljava/lang/invoke/"

#define OBJ   LANG"Object;"
#define CLS   LANG"Class;"
#define STRG  LANG"String;"
#define MT    JLINV"MethodType;"
#define MH    JLINV"MethodHandle;"
#define MEM   JLINV"MemberName;"
#define AMH   JLINV"AdapterMethodHandle;"
#define BMH   JLINV"BoundMethodHandle;"
#define DMH   JLINV"DirectMethodHandle;"

#define CC (char*)  /*cast a literal from (const char*)*/
#define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f)

// These are the native methods on sun.invoke.MethodHandleNatives.
static JNINativeMethod methods[] = {
  // void init(MemberName self, AccessibleObject ref)
  {CC"init",                    CC"("AMH""MH"I)V",              FN_PTR(MHN_init_AMH)},
  {CC"init",                    CC"("BMH""OBJ"I)V",             FN_PTR(MHN_init_BMH)},
  {CC"init",                    CC"("DMH""OBJ"Z"CLS")V",        FN_PTR(MHN_init_DMH)},
  {CC"init",                    CC"("MT")V",                    FN_PTR(MHN_init_MT)},
  {CC"init",                    CC"("MEM""OBJ")V",              FN_PTR(MHN_init_Mem)},
  {CC"expand",                  CC"("MEM")V",                   FN_PTR(MHN_expand_Mem)},
  {CC"resolve",                 CC"("MEM""CLS")V",              FN_PTR(MHN_resolve_Mem)},
  {CC"getTarget",               CC"("MH"I)"OBJ,                 FN_PTR(MHN_getTarget)},
  {CC"getConstant",             CC"(I)I",                       FN_PTR(MHN_getConstant)},
  //  static native int getNamedCon(int which, Object[] name)
  {CC"getNamedCon",             CC"(I["OBJ")I",                 FN_PTR(MHN_getNamedCon)},
  //  static native int getMembers(Class<?> defc, String matchName, String matchSig,
  //          int matchFlags, Class<?> caller, int skip, MemberName[] results);
  {CC"getMembers",              CC"("CLS""STRG""STRG"I"CLS"I["MEM")I",  FN_PTR(MHN_getMembers)}
};

static JNINativeMethod invoke_methods[] = {
  // void init(MemberName self, AccessibleObject ref)
  {CC"invoke",                  CC"(["OBJ")"OBJ,                FN_PTR(MH_invoke_UOE)},
  {CC"invokeExact",             CC"(["OBJ")"OBJ,                FN_PTR(MH_invokeExact_UOE)}
};

// This one function is exported, used by NativeLookup.

JVM_ENTRY(void, JVM_RegisterMethodHandleMethods(JNIEnv *env, jclass MHN_class)) {
  assert(MethodHandles::spot_check_entry_names(), "entry enum is OK");

  if (!EnableInvokeDynamic) {
    warning("JSR 292 is disabled in this JVM.  Use -XX:+UnlockDiagnosticVMOptions -XX:+EnableInvokeDynamic to enable.");
    return;  // bind nothing
  }

  bool enable_MH = true;

  {
    ThreadToNativeFromVM ttnfv(thread);

    int status = env->RegisterNatives(MHN_class, methods, sizeof(methods)/sizeof(JNINativeMethod));
    if (!env->ExceptionOccurred()) {
      const char* L_MH_name = (JLINV "MethodHandle");
      const char* MH_name = L_MH_name+1;
      jclass MH_class = env->FindClass(MH_name);
      status = env->RegisterNatives(MH_class, invoke_methods, sizeof(invoke_methods)/sizeof(JNINativeMethod));
    }
    if (env->ExceptionOccurred()) {
      MethodHandles::set_enabled(false);
      warning("JSR 292 method handle code is mismatched to this JVM.  Disabling support.");
      enable_MH = false;
      env->ExceptionClear();
    }
  }

  if (enable_MH) {
    KlassHandle MHN_klass = SystemDictionaryHandles::MethodHandleNatives_klass();
    if (MHN_klass.not_null()) {
      TempNewSymbol raiseException_name = SymbolTable::new_symbol("raiseException", CHECK);
      TempNewSymbol raiseException_sig = SymbolTable::new_symbol("(ILjava/lang/Object;Ljava/lang/Object;)V", CHECK);
      methodOop raiseException_method  = instanceKlass::cast(MHN_klass->as_klassOop())
                    ->find_method(raiseException_name, raiseException_sig);
      if (raiseException_method != NULL && raiseException_method->is_static()) {
        MethodHandles::set_raise_exception_method(raiseException_method);
      } else {
        warning("JSR 292 method handle code is mismatched to this JVM.  Disabling support.");
        enable_MH = false;
      }
    } else {
      enable_MH = false;
    }
  }

  if (enable_MH) {
    MethodHandles::generate_adapters();
    MethodHandles::set_enabled(true);
  }
}
JVM_END