view graal/com.oracle.graal.lir.sparc/src/com/oracle/graal/lir/sparc/SPARCControlFlow.java @ 19526:8fc336a04d77

Create TYPE fields for LIRInstruction and CompositeValue. Renaming NodeClass#get to NodeClass#create.
author Thomas Wuerthinger <thomas.wuerthinger@oracle.com>
date Fri, 20 Feb 2015 22:22:55 +0100
parents 5e80dd2f1783
children 96ab2078eeaf
line wrap: on
line source

/*
 * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package com.oracle.graal.lir.sparc;

import static com.oracle.graal.api.code.ValueUtil.*;
import static com.oracle.graal.lir.LIRInstruction.OperandFlag.*;
import static com.oracle.graal.sparc.SPARC.*;
import static com.oracle.graal.asm.sparc.SPARCAssembler.*;

import com.oracle.graal.api.code.*;
import com.oracle.graal.api.meta.*;
import com.oracle.graal.asm.*;
import com.oracle.graal.asm.sparc.*;
import com.oracle.graal.asm.sparc.SPARCMacroAssembler.*;
import com.oracle.graal.compiler.common.*;
import com.oracle.graal.compiler.common.calc.*;
import com.oracle.graal.lir.*;
import com.oracle.graal.lir.StandardOp.*;
import com.oracle.graal.lir.SwitchStrategy.BaseSwitchClosure;
import com.oracle.graal.lir.asm.*;
import com.oracle.graal.sparc.*;

public class SPARCControlFlow {

    public static final class ReturnOp extends SPARCLIRInstruction implements BlockEndOp {
        public static final LIRInstructionClass<ReturnOp> TYPE = LIRInstructionClass.create(ReturnOp.class);

        @Use({REG, ILLEGAL}) protected Value x;

        public ReturnOp(Value x) {
            super(TYPE);
            this.x = x;
        }

        @Override
        public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            emitCodeHelper(crb, masm);
        }

        public static void emitCodeHelper(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            new Ret().emit(masm);
            // On SPARC we always leave the frame (in the delay slot).
            crb.frameContext.leave(crb);
        }
    }

    public static final class CompareBranchOp extends SPARCLIRInstruction implements BlockEndOp, SPARCDelayedControlTransfer {
        public static final LIRInstructionClass<CompareBranchOp> TYPE = LIRInstructionClass.create(CompareBranchOp.class);

        private final SPARCCompare opcode;
        @Use({REG}) protected Value x;
        @Use({REG, CONST}) protected Value y;
        protected final Condition condition;
        protected final LabelRef trueDestination;
        protected LabelHint trueDestinationHint;
        protected final LabelRef falseDestination;
        protected LabelHint falseDestinationHint;
        protected final Kind kind;
        protected final boolean unorderedIsTrue;
        private boolean emitted = false;
        private int delaySlotPosition = -1;
        private double trueDestinationProbability;
        // This describes the maximum offset between the first emitted (load constant in to scratch,
        // if does not fit into simm5 of cbcond) instruction and the final branch instruction
        private static int maximumSelfOffsetInstructions = 4;

        public CompareBranchOp(SPARCCompare opcode, Value x, Value y, Condition condition, LabelRef trueDestination, LabelRef falseDestination, Kind kind, boolean unorderedIsTrue,
                        double trueDestinationProbability) {
            super(TYPE);
            this.opcode = opcode;
            this.x = x;
            this.y = y;
            this.condition = condition;
            this.trueDestination = trueDestination;
            this.falseDestination = falseDestination;
            this.kind = kind;
            this.unorderedIsTrue = unorderedIsTrue;
            this.trueDestinationProbability = trueDestinationProbability;
        }

        @Override
        public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            if (emitted) { // Only if delayed control transfer is used we must check this
                assert masm.position() - delaySlotPosition == 4 : "Only one instruction can be stuffed into the delay slot";
            }
            if (!emitted) {
                requestHints(masm);
                if (canUseShortBranch(crb, masm, masm.position() + maximumSelfOffsetInstructions * masm.target.wordSize)) {
                    emitted = emitShortCompareBranch(crb, masm);
                }
                if (!emitted) {
                    SPARCCompare.emit(crb, masm, opcode, x, y);
                    emitted = emitBranch(crb, masm, true);
                }
            }

            assert emitted;
        }

        public void emitControlTransfer(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            requestHints(masm);
            // When we use short branches, no delay slot is available
            if (!canUseShortBranch(crb, masm, masm.position() + maximumSelfOffsetInstructions * masm.target.wordSize)) {
                SPARCCompare.emit(crb, masm, opcode, x, y);
                emitted = emitBranch(crb, masm, false);
            }
        }

        private void requestHints(SPARCMacroAssembler masm) {
            if (trueDestinationHint == null) {
                this.trueDestinationHint = masm.requestLabelHint(trueDestination.label());
            }
            if (falseDestinationHint == null) {
                this.falseDestinationHint = masm.requestLabelHint(falseDestination.label());
            }

        }

        /**
         * Tries to use the emit the compare/branch instruction.
         * <p>
         * CBcond has follwing limitations
         * <ul>
         * <li>Immediate field is only 5 bit and is on the right
         * <li>Jump offset is maximum of -+512 instruction
         *
         * <p>
         * We get from outside
         * <ul>
         * <li>at least one of trueDestination falseDestination is within reach of +-512
         * instructions
         * <li>two registers OR one register and a constant which fits simm13
         *
         * <p>
         * We do:
         * <ul>
         * <li>find out which target needs to be branched conditionally
         * <li>find out if fall-through is possible, if not, a unconditional branch is needed after
         * cbcond (needJump=true)
         * <li>if no fall through: we need to put the closer jump into the cbcond branch and the
         * farther into the jmp (unconditional branch)
         * <li>if constant on the left side, mirror to be on the right
         * <li>if constant on right does not fit into simm5, put it into a scratch register
         *
         * @param crb
         * @param masm
         * @return true if the branch could be emitted
         */
        private boolean emitShortCompareBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            Value tmpValue;
            Value actualX = x;
            Value actualY = y;
            Condition actualCondition = condition;
            Label actualTrueTarget = trueDestination.label();
            Label actualFalseTarget = falseDestination.label();
            Label tmpTarget;
            boolean needJump;
            if (crb.isSuccessorEdge(trueDestination)) {
                actualCondition = actualCondition.negate();
                tmpTarget = actualTrueTarget;
                actualTrueTarget = actualFalseTarget;
                actualFalseTarget = tmpTarget;
                needJump = false;
            } else {
                needJump = !crb.isSuccessorEdge(falseDestination);
                if (needJump && !isShortBranch(masm, masm.position() + maximumSelfOffsetInstructions * masm.target.wordSize, trueDestinationHint, actualTrueTarget)) {
                    // we have to jump in either way, so we must put the shorter
                    // branch into the actualTarget as only one of the two jump targets
                    // is guaranteed to be simm10
                    actualCondition = actualCondition.negate();
                    tmpTarget = actualTrueTarget;
                    actualTrueTarget = actualFalseTarget;
                    actualFalseTarget = tmpTarget;
                }
            }
            // Keep the constant on the right
            if (isConstant(actualX)) {
                tmpValue = actualX;
                actualX = actualY;
                actualY = tmpValue;
                actualCondition = actualCondition.mirror();
            }
            ConditionFlag conditionFlag = ConditionFlag.fromCondtition(CC.Icc, actualCondition, false);
            boolean isValidConstant = isConstant(actualY) && isSimm5(asConstant(actualY));
            SPARCScratchRegister scratch = null;
            try {
                if (isConstant(actualY) && !isValidConstant) { // Make sure, the y value is loaded
                    scratch = SPARCScratchRegister.get();
                    Value scratchValue = scratch.getRegister().asValue(actualY.getLIRKind());
                    SPARCMove.move(crb, masm, scratchValue, actualY, SPARCDelayedControlTransfer.DUMMY);
                    actualY = scratchValue;
                }
                emitCBCond(masm, actualX, actualY, actualTrueTarget, conditionFlag);
                new Nop().emit(masm);
            } finally {
                if (scratch != null) {
                    // release the scratch if used
                    scratch.close();
                }
            }
            if (needJump) {
                masm.jmp(actualFalseTarget);
                new Nop().emit(masm);
            }
            return true;
        }

        private static void emitCBCond(SPARCMacroAssembler masm, Value actualX, Value actualY, Label actualTrueTarget, ConditionFlag conditionFlag) {
            switch ((Kind) actualX.getLIRKind().getPlatformKind()) {
                case Byte:
                case Char:
                case Short:
                case Int:
                    if (isConstant(actualY)) {
                        int constantY = asConstant(actualY).asInt();
                        new CBcondw(conditionFlag, asIntReg(actualX), constantY, actualTrueTarget).emit(masm);
                    } else {
                        new CBcondw(conditionFlag, asIntReg(actualX), asIntReg(actualY), actualTrueTarget).emit(masm);
                    }
                    break;
                case Long:
                    if (isConstant(actualY)) {
                        int constantY = (int) asConstant(actualY).asLong();
                        new CBcondx(conditionFlag, asLongReg(actualX), constantY, actualTrueTarget).emit(masm);
                    } else {
                        new CBcondx(conditionFlag, asLongReg(actualX), asLongReg(actualY), actualTrueTarget).emit(masm);
                    }
                    break;
                case Object:
                    if (isConstant(actualY)) {
                        // Object constant valid can only be null
                        assert asConstant(actualY).isNull();
                        new CBcondx(conditionFlag, asObjectReg(actualX), 0, actualTrueTarget).emit(masm);
                    } else { // this is already loaded
                        new CBcondx(conditionFlag, asObjectReg(actualX), asObjectReg(actualY), actualTrueTarget).emit(masm);
                    }
                    break;
                default:
                    GraalInternalError.shouldNotReachHere();
            }
        }

        public boolean emitBranch(CompilationResultBuilder crb, SPARCMacroAssembler masm, boolean withDelayedNop) {
            Label actualTarget;
            Condition actualCondition;
            boolean branchOnUnordered;
            boolean needJump;
            boolean predictBranchTaken;
            if (crb.isSuccessorEdge(trueDestination)) {
                actualCondition = condition != null ? condition.negate() : null;
                actualTarget = falseDestination.label();
                predictBranchTaken = trueDestinationProbability < .5; // false branch needs jump
                needJump = false;
                branchOnUnordered = !unorderedIsTrue;
            } else {
                actualCondition = condition;
                actualTarget = trueDestination.label();
                needJump = !crb.isSuccessorEdge(falseDestination);
                predictBranchTaken = trueDestinationProbability >= .5;
                branchOnUnordered = unorderedIsTrue;
            }
            if (!withDelayedNop && needJump) {
                // We cannot make use of the delay slot when we jump in true-case and false-case
                return false;
            }
            if (kind == Kind.Double || kind == Kind.Float) {
                emitFloatBranch(masm, actualTarget, actualCondition, branchOnUnordered);
            } else {
                CC cc = kind == Kind.Int ? CC.Icc : CC.Xcc;
                assert actualCondition != null;
                SPARCControlFlow.emitBranch(masm, actualTarget, actualCondition, cc, predictBranchTaken);
            }
            delaySlotPosition = masm.position();
            if (withDelayedNop) {
                new Nop().emit(masm);  // delay slot
            }
            if (needJump) {
                masm.jmp(falseDestination.label());
            }
            return true; // emitted
        }

        private boolean canUseShortBranch(CompilationResultBuilder crb, SPARCAssembler asm, int position) {
            if (!asm.hasFeature(CPUFeature.CBCOND)) {
                return false;
            }
            switch ((Kind) x.getPlatformKind()) {
                case Byte:
                case Char:
                case Short:
                case Int:
                case Long:
                case Object:
                    break;
                default:
                    return false;
            }
            boolean hasShortJumpTarget = false;
            if (!crb.isSuccessorEdge(trueDestination)) {
                hasShortJumpTarget |= isShortBranch(asm, position, trueDestinationHint, trueDestination.label());
            }
            if (!crb.isSuccessorEdge(falseDestination)) {
                hasShortJumpTarget |= isShortBranch(asm, position, falseDestinationHint, falseDestination.label());
            }
            return hasShortJumpTarget;
        }

        private static boolean isShortBranch(SPARCAssembler asm, int position, LabelHint hint, Label label) {
            int disp = 0;
            if (label.isBound()) {
                disp = label.position() - position;

            } else if (hint != null && hint.isValid()) {
                disp = hint.getTarget() - hint.getPosition();
            }
            if (disp != 0) {
                if (disp < 0) {
                    disp -= maximumSelfOffsetInstructions * asm.target.wordSize;
                } else {
                    disp += maximumSelfOffsetInstructions * asm.target.wordSize;
                }
                return isSimm10(disp >> 2);
            } else if (hint == null) {
                asm.requestLabelHint(label);
            }
            return false;
        }

        public void resetState() {
            emitted = false;
            delaySlotPosition = -1;
        }
    }

    public static final class BranchOp extends SPARCLIRInstruction implements StandardOp.BranchOp {
        public static final LIRInstructionClass<BranchOp> TYPE = LIRInstructionClass.create(BranchOp.class);
        // TODO: Condition code/flag handling needs to be improved;
        protected final Condition condition;
        protected final ConditionFlag conditionFlag;
        protected final LabelRef trueDestination;
        protected final LabelRef falseDestination;
        protected final Kind kind;
        protected final boolean unorderedIsTrue;

        public BranchOp(ConditionFlag condition, LabelRef trueDestination, LabelRef falseDestination, Kind kind) {
            super(TYPE);
            this.conditionFlag = condition;
            this.trueDestination = trueDestination;
            this.falseDestination = falseDestination;
            this.kind = kind;
            this.condition = null;
            this.unorderedIsTrue = true;
        }

        public BranchOp(Condition condition, LabelRef trueDestination, LabelRef falseDestination, Kind kind) {
            super(TYPE);
            this.condition = condition;
            this.trueDestination = trueDestination;
            this.falseDestination = falseDestination;
            this.kind = kind;
            this.conditionFlag = null;
            this.unorderedIsTrue = true;
        }

        public BranchOp(Condition finalCondition, LabelRef trueDestination, LabelRef falseDestination, Kind kind, boolean unorderedIsTrue) {
            super(TYPE);
            this.trueDestination = trueDestination;
            this.falseDestination = falseDestination;
            this.kind = kind;
            this.conditionFlag = null;
            this.unorderedIsTrue = unorderedIsTrue;
            this.condition = finalCondition;
        }

        @Override
        public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            assert condition == null && conditionFlag != null || condition != null && conditionFlag == null;
            Label actualTarget;
            Condition actualCondition;
            ConditionFlag actualConditionFlag;
            boolean branchOnUnordered;
            boolean needJump;
            if (crb.isSuccessorEdge(trueDestination)) {
                actualCondition = condition != null ? condition.negate() : null;
                actualConditionFlag = conditionFlag != null ? conditionFlag.negate() : null;
                actualTarget = falseDestination.label();
                needJump = false;
                branchOnUnordered = !unorderedIsTrue;
            } else {
                actualCondition = condition;
                actualConditionFlag = conditionFlag;
                actualTarget = trueDestination.label();
                needJump = !crb.isSuccessorEdge(falseDestination);
                branchOnUnordered = unorderedIsTrue;
            }
            assert kind == Kind.Int || kind == Kind.Long || kind == Kind.Object || kind == Kind.Double || kind == Kind.Float : kind;
            if (kind == Kind.Double || kind == Kind.Float) {
                emitFloatBranch(masm, actualTarget, actualCondition, branchOnUnordered);
            } else {
                CC cc = kind == Kind.Int ? CC.Icc : CC.Xcc;
                if (actualCondition != null) {
                    emitBranch(masm, actualTarget, actualCondition, cc, false);
                } else if (actualConditionFlag != null) {
                    emitBranch(masm, actualTarget, actualConditionFlag, cc);
                } else {
                    GraalInternalError.shouldNotReachHere();
                }
            }
            new Nop().emit(masm);  // delay slot
            if (needJump) {
                masm.jmp(falseDestination.label());
            }
        }
    }

    private static void emitFloatBranch(SPARCMacroAssembler masm, Label target, Condition actualCondition, boolean branchOnUnordered) {
        switch (actualCondition) {
            case EQ:
                if (branchOnUnordered) {
                    new Fbue(false, target).emit(masm);
                } else {
                    new Fbe(false, target).emit(masm);
                }
                break;
            case NE:
                new Fbne(false, target).emit(masm); // Is also unordered
                break;
            case LT:
                if (branchOnUnordered) {
                    new Fbul(false, target).emit(masm);
                } else {
                    new Fbl(false, target).emit(masm);
                }
                break;
            case LE:
                if (branchOnUnordered) {
                    new Fbule(false, target).emit(masm);
                } else {
                    new Fble(false, target).emit(masm);
                }
                break;
            case GT:
                if (branchOnUnordered) {
                    new Fbug(false, target).emit(masm);
                } else {
                    new Fbg(false, target).emit(masm);
                }
                break;
            case GE:
                if (branchOnUnordered) {
                    new Fbuge(false, target).emit(masm);
                } else {
                    new Fbge(false, target).emit(masm);
                }
                break;
            case AE:
            case AT:
            case BT:
            case BE:
                throw GraalInternalError.unimplemented("Should not be required for float/dobule");
            default:
                throw GraalInternalError.shouldNotReachHere();
        }
    }

    private static void emitBranch(SPARCMacroAssembler masm, Label target, ConditionFlag actualCondition, CC cc) {
        new Fmt00c(0, actualCondition, Op2s.Bp, cc, 0, target).emit(masm);
    }

    private static void emitBranch(SPARCMacroAssembler masm, Label target, Condition actualCondition, CC cc, boolean predictTaken) {

        switch (actualCondition) {
            case EQ:
                new Bpe(cc, false, predictTaken, target).emit(masm);
                break;
            case NE:
                new Bpne(cc, false, predictTaken, target).emit(masm);
                break;
            case BT:
                new Bplu(cc, false, predictTaken, target).emit(masm);
                break;
            case LT:
                new Bpl(cc, false, predictTaken, target).emit(masm);
                break;
            case BE:
                new Bpleu(cc, false, predictTaken, target).emit(masm);
                break;
            case LE:
                new Bple(cc, false, predictTaken, target).emit(masm);
                break;
            case GE:
                new Bpge(cc, false, predictTaken, target).emit(masm);
                break;
            case AE:
                new Bpgeu(cc, false, predictTaken, target).emit(masm);
                break;
            case GT:
                new Bpg(cc, false, predictTaken, target).emit(masm);
                break;
            case AT:
                new Bpgu(cc, false, predictTaken, target).emit(masm);
                break;
            default:
                throw GraalInternalError.shouldNotReachHere();
        }
    }

    public static final class StrategySwitchOp extends SPARCLIRInstruction implements BlockEndOp {
        public static final LIRInstructionClass<StrategySwitchOp> TYPE = LIRInstructionClass.create(StrategySwitchOp.class);
        @Use({CONST}) protected JavaConstant[] keyConstants;
        private final LabelRef[] keyTargets;
        private LabelRef defaultTarget;
        @Alive({REG}) protected Value key;
        @Temp({REG}) protected Value scratch;
        private final SwitchStrategy strategy;

        public StrategySwitchOp(SwitchStrategy strategy, LabelRef[] keyTargets, LabelRef defaultTarget, Value key, Value scratch) {
            super(TYPE);
            this.strategy = strategy;
            this.keyConstants = strategy.keyConstants;
            this.keyTargets = keyTargets;
            this.defaultTarget = defaultTarget;
            this.key = key;
            this.scratch = scratch;
            assert keyConstants.length == keyTargets.length;
            assert keyConstants.length == strategy.keyProbabilities.length;
        }

        @Override
        public void emitCode(final CompilationResultBuilder crb, final SPARCMacroAssembler masm) {
            final Register keyRegister = asRegister(key);

            BaseSwitchClosure closure = new BaseSwitchClosure(crb, masm, keyTargets, defaultTarget) {
                @Override
                protected void conditionalJump(int index, Condition condition, Label target) {
                    switch (key.getKind()) {
                        case Char:
                        case Byte:
                        case Short:
                        case Int:
                            if (crb.codeCache.needsDataPatch(keyConstants[index])) {
                                crb.recordInlineDataInCode(keyConstants[index]);
                            }
                            long lc = keyConstants[index].asLong();
                            if (SPARCAssembler.isSimm13(lc)) {
                                assert NumUtil.isInt(lc);
                                new Cmp(keyRegister, (int) lc).emit(masm);
                            } else {
                                new Setx(lc, asIntReg(scratch)).emit(masm);
                                new Cmp(keyRegister, asIntReg(scratch)).emit(masm);
                            }
                            emitBranch(masm, target, condition, CC.Icc, false);
                            break;
                        case Long: {
                            SPARCMove.move(crb, masm, scratch, keyConstants[index], SPARCDelayedControlTransfer.DUMMY);
                            new Cmp(keyRegister, asLongReg(scratch)).emit(masm);
                            emitBranch(masm, target, condition, CC.Xcc, false);
                            break;
                        }
                        case Object: {
                            SPARCMove.move(crb, masm, scratch, keyConstants[index], SPARCDelayedControlTransfer.DUMMY);
                            new Cmp(keyRegister, asObjectReg(scratch)).emit(masm);
                            emitBranch(masm, target, condition, CC.Ptrcc, false);
                            break;
                        }
                        default:
                            throw new GraalInternalError("switch only supported for int, long and object");
                    }
                    new Nop().emit(masm);  // delay slot
                }
            };
            strategy.run(closure);
        }
    }

    public static final class TableSwitchOp extends SPARCLIRInstruction implements BlockEndOp {
        public static final LIRInstructionClass<TableSwitchOp> TYPE = LIRInstructionClass.create(TableSwitchOp.class);

        private final int lowKey;
        private final LabelRef defaultTarget;
        private final LabelRef[] targets;
        @Alive protected Value index;
        @Temp protected Value scratch;

        public TableSwitchOp(final int lowKey, final LabelRef defaultTarget, final LabelRef[] targets, Variable index, Variable scratch) {
            super(TYPE);
            this.lowKey = lowKey;
            this.defaultTarget = defaultTarget;
            this.targets = targets;
            this.index = index;
            this.scratch = scratch;
        }

        @Override
        public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            Register value = asIntReg(index);
            Register scratchReg = asLongReg(scratch);

            // Compare index against jump table bounds
            int highKey = lowKey + targets.length - 1;

            // subtract the low value from the switch value
            if (isSimm13(lowKey)) {
                new Sub(value, lowKey, scratchReg).emit(masm);
            } else {
                try (SPARCScratchRegister sc = SPARCScratchRegister.get()) {
                    Register scratch2 = sc.getRegister();
                    new Setx(lowKey, scratch2).emit(masm);
                    new Sub(value, scratch2, scratchReg).emit(masm);
                }
            }
            int upperLimit = highKey - lowKey;
            try (SPARCScratchRegister sc = SPARCScratchRegister.get()) {
                Register scratch2 = sc.getRegister();
                if (isSimm13(upperLimit)) {
                    new Cmp(scratchReg, upperLimit).emit(masm);
                } else {
                    new Setx(upperLimit, scratch2).emit(masm);
                    new Cmp(scratchReg, upperLimit).emit(masm);
                }

                // Jump to default target if index is not within the jump table
                if (defaultTarget != null) {
                    new Bpgu(CC.Icc, defaultTarget.label()).emit(masm);
                    new Nop().emit(masm);  // delay slot
                }

                // Load jump table entry into scratch and jump to it
                new Sll(scratchReg, 3, scratchReg).emit(masm); // Multiply by 8
                // Zero the left bits sll with shcnt>0 does not mask upper 32 bits
                new Srl(scratchReg, 0, scratchReg).emit(masm);
                new Rdpc(scratch2).emit(masm);

                // The jump table follows four instructions after rdpc
                new Add(scratchReg, 4 * 4, scratchReg).emit(masm);
                new Jmpl(scratch2, scratchReg, g0).emit(masm);
            }
            new Nop().emit(masm);
            // new Sra(value, 3, value).emit(masm); // delay slot, correct the value (division by 8)

            // Emit jump table entries
            for (LabelRef target : targets) {
                new Bpa(target.label()).emit(masm);
                new Nop().emit(masm); // delay slot
            }
        }
    }

    @Opcode("CMOVE")
    public static final class CondMoveOp extends SPARCLIRInstruction {
        public static final LIRInstructionClass<CondMoveOp> TYPE = LIRInstructionClass.create(CondMoveOp.class);

        private final Kind kind;

        @Def({REG, HINT}) protected Value result;
        @Use({REG, CONST}) protected Value trueValue;
        @Use({REG, CONST}) protected Value falseValue;

        private final ConditionFlag condition;
        private final CC cc;

        public CondMoveOp(Kind kind, Variable result, CC cc, ConditionFlag condition, Value trueValue, Value falseValue) {
            super(TYPE);
            this.kind = kind;
            this.result = result;
            this.condition = condition;
            this.trueValue = trueValue;
            this.falseValue = falseValue;
            this.cc = cc;
        }

        @Override
        public void emitCode(CompilationResultBuilder crb, SPARCMacroAssembler masm) {
            // check that we don't overwrite an input operand before it is used.
            // assert !result.equals(trueValue);
            if (result.equals(trueValue)) { // We have the true value in place, do he opposite
                cmove(masm, cc, kind, result, condition.negate(), falseValue);
            } else if (result.equals(falseValue)) {
                cmove(masm, cc, kind, result, condition, trueValue);
            } else { // We have to move one of the input values to the result
                ConditionFlag actualCondition = condition;
                Value actualTrueValue = trueValue;
                Value actualFalseValue = falseValue;
                if (isConstant(falseValue) && isSimm11(asConstant(falseValue))) {
                    actualCondition = condition.negate();
                    actualTrueValue = falseValue;
                    actualFalseValue = trueValue;
                }
                SPARCMove.move(crb, masm, result, actualFalseValue, SPARCDelayedControlTransfer.DUMMY);
                cmove(masm, cc, kind, result, actualCondition, actualTrueValue);
            }
        }
    }

    private static void cmove(SPARCMacroAssembler masm, CC cc, Kind kind, Value result, ConditionFlag cond, Value other) {
        switch (kind) {
            case Int:
                if (isConstant(other)) {
                    int constant;
                    if (asConstant(other).isNull()) {
                        constant = 0;
                    } else {
                        constant = asConstant(other).asInt();
                    }
                    new Movcc(cond, cc, constant, asRegister(result)).emit(masm);
                } else {
                    new Movcc(cond, cc, asRegister(other), asRegister(result)).emit(masm);
                }
                break;
            case Long:
            case Object:
                if (isConstant(other)) {
                    long constant;
                    if (asConstant(other).isNull()) {
                        constant = 0;
                    } else {
                        constant = asConstant(other).asLong();
                    }
                    assert isSimm11(constant);
                    new Movcc(cond, cc, (int) constant, asRegister(result)).emit(masm);
                } else {
                    new Movcc(cond, cc, asRegister(other), asRegister(result)).emit(masm);
                }
                break;
            case Float:
                new Fmovscc(cond, cc, asFloatReg(other), asFloatReg(result)).emit(masm);
                break;
            case Double:
                new Fmovdcc(cond, cc, asDoubleReg(other), asDoubleReg(result)).emit(masm);
                break;
            default:
                throw GraalInternalError.shouldNotReachHere();
        }
    }
}