view src/cpu/ppc/vm/bytes_ppc.hpp @ 20304:a22acf6d7598

8048112: G1 Full GC needs to support the case when the very first region is not available Summary: Refactor preparation for compaction during Full GC so that it lazily initializes the first compaction point. This also avoids problems later when the first region may not be committed. Also reviewed by K. Barrett. Reviewed-by: brutisso
author tschatzl
date Mon, 21 Jul 2014 10:00:31 +0200
parents 56e7f5560e60
children
line wrap: on
line source

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2012, 2013 SAP AG. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_PPC_VM_BYTES_PPC_HPP
#define CPU_PPC_VM_BYTES_PPC_HPP

#include "memory/allocation.hpp"

class Bytes: AllStatic {
 public:
  // Efficient reading and writing of unaligned unsigned data in platform-specific byte ordering
  // PowerPC needs to check for alignment.

  // Can I count on address always being a pointer to an unsigned char? Yes.

#if defined(VM_LITTLE_ENDIAN)

  // Returns true, if the byte ordering used by Java is different from the native byte ordering
  // of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc.
  static inline bool is_Java_byte_ordering_different() { return true; }

  // Forward declarations of the compiler-dependent implementation
  static inline u2 swap_u2(u2 x);
  static inline u4 swap_u4(u4 x);
  static inline u8 swap_u8(u8 x);

  static inline u2   get_native_u2(address p) {
    return (intptr_t(p) & 1) == 0
             ?   *(u2*)p
             :   ( u2(p[1]) << 8 )
               | ( u2(p[0])      );
  }

  static inline u4   get_native_u4(address p) {
    switch (intptr_t(p) & 3) {
     case 0:  return *(u4*)p;

     case 2:  return (  u4( ((u2*)p)[1] ) << 16  )
                   | (  u4( ((u2*)p)[0] )        );

    default:  return ( u4(p[3]) << 24 )
                   | ( u4(p[2]) << 16 )
                   | ( u4(p[1]) <<  8 )
                   |   u4(p[0]);
    }
  }

  static inline u8   get_native_u8(address p) {
    switch (intptr_t(p) & 7) {
      case 0:  return *(u8*)p;

      case 4:  return (  u8( ((u4*)p)[1] ) << 32  )
                    | (  u8( ((u4*)p)[0] )        );

      case 2:  return (  u8( ((u2*)p)[3] ) << 48  )
                    | (  u8( ((u2*)p)[2] ) << 32  )
                    | (  u8( ((u2*)p)[1] ) << 16  )
                    | (  u8( ((u2*)p)[0] )        );

     default:  return ( u8(p[7]) << 56 )
                    | ( u8(p[6]) << 48 )
                    | ( u8(p[5]) << 40 )
                    | ( u8(p[4]) << 32 )
                    | ( u8(p[3]) << 24 )
                    | ( u8(p[2]) << 16 )
                    | ( u8(p[1]) <<  8 )
                    |   u8(p[0]);
    }
  }



  static inline void put_native_u2(address p, u2 x) {
    if ( (intptr_t(p) & 1) == 0 )  *(u2*)p = x;
    else {
      p[1] = x >> 8;
      p[0] = x;
    }
  }

  static inline void put_native_u4(address p, u4 x) {
    switch ( intptr_t(p) & 3 ) {
    case 0:  *(u4*)p = x;
              break;

    case 2:  ((u2*)p)[1] = x >> 16;
             ((u2*)p)[0] = x;
             break;

    default: ((u1*)p)[3] = x >> 24;
             ((u1*)p)[2] = x >> 16;
             ((u1*)p)[1] = x >>  8;
             ((u1*)p)[0] = x;
             break;
    }
  }

  static inline void put_native_u8(address p, u8 x) {
    switch ( intptr_t(p) & 7 ) {
    case 0:  *(u8*)p = x;
             break;

    case 4:  ((u4*)p)[1] = x >> 32;
             ((u4*)p)[0] = x;
             break;

    case 2:  ((u2*)p)[3] = x >> 48;
             ((u2*)p)[2] = x >> 32;
             ((u2*)p)[1] = x >> 16;
             ((u2*)p)[0] = x;
             break;

    default: ((u1*)p)[7] = x >> 56;
             ((u1*)p)[6] = x >> 48;
             ((u1*)p)[5] = x >> 40;
             ((u1*)p)[4] = x >> 32;
             ((u1*)p)[3] = x >> 24;
             ((u1*)p)[2] = x >> 16;
             ((u1*)p)[1] = x >>  8;
             ((u1*)p)[0] = x;
    }
  }

  // Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering)
  // (no byte-order reversal is needed since Power CPUs are big-endian oriented).
  static inline u2   get_Java_u2(address p) { return swap_u2(get_native_u2(p)); }
  static inline u4   get_Java_u4(address p) { return swap_u4(get_native_u4(p)); }
  static inline u8   get_Java_u8(address p) { return swap_u8(get_native_u8(p)); }

  static inline void put_Java_u2(address p, u2 x)     { put_native_u2(p, swap_u2(x)); }
  static inline void put_Java_u4(address p, u4 x)     { put_native_u4(p, swap_u4(x)); }
  static inline void put_Java_u8(address p, u8 x)     { put_native_u8(p, swap_u8(x)); }

#else // !defined(VM_LITTLE_ENDIAN)

  // Returns true, if the byte ordering used by Java is different from the nativ byte ordering
  // of the underlying machine. For example, true for Intel x86, False, for Solaris on Sparc.
  static inline bool is_Java_byte_ordering_different() { return false; }

  // Thus, a swap between native and Java ordering is always a no-op:
  static inline u2   swap_u2(u2 x)  { return x; }
  static inline u4   swap_u4(u4 x)  { return x; }
  static inline u8   swap_u8(u8 x)  { return x; }

  static inline u2   get_native_u2(address p) {
    return (intptr_t(p) & 1) == 0
             ?   *(u2*)p
             :   ( u2(p[0]) << 8 )
               | ( u2(p[1])      );
  }

  static inline u4   get_native_u4(address p) {
    switch (intptr_t(p) & 3) {
     case 0:  return *(u4*)p;

     case 2:  return (  u4( ((u2*)p)[0] ) << 16  )
                   | (  u4( ((u2*)p)[1] )        );

    default:  return ( u4(p[0]) << 24 )
                   | ( u4(p[1]) << 16 )
                   | ( u4(p[2]) <<  8 )
                   |   u4(p[3]);
    }
  }

  static inline u8   get_native_u8(address p) {
    switch (intptr_t(p) & 7) {
      case 0:  return *(u8*)p;

      case 4:  return (  u8( ((u4*)p)[0] ) << 32  )
                    | (  u8( ((u4*)p)[1] )        );

      case 2:  return (  u8( ((u2*)p)[0] ) << 48  )
                    | (  u8( ((u2*)p)[1] ) << 32  )
                    | (  u8( ((u2*)p)[2] ) << 16  )
                    | (  u8( ((u2*)p)[3] )        );

     default:  return ( u8(p[0]) << 56 )
                    | ( u8(p[1]) << 48 )
                    | ( u8(p[2]) << 40 )
                    | ( u8(p[3]) << 32 )
                    | ( u8(p[4]) << 24 )
                    | ( u8(p[5]) << 16 )
                    | ( u8(p[6]) <<  8 )
                    |   u8(p[7]);
    }
  }



  static inline void put_native_u2(address p, u2 x) {
    if ( (intptr_t(p) & 1) == 0 ) { *(u2*)p = x; }
    else {
      p[0] = x >> 8;
      p[1] = x;
    }
  }

  static inline void put_native_u4(address p, u4 x) {
    switch ( intptr_t(p) & 3 ) {
    case 0:  *(u4*)p = x;
              break;

    case 2:  ((u2*)p)[0] = x >> 16;
             ((u2*)p)[1] = x;
             break;

    default: ((u1*)p)[0] = x >> 24;
             ((u1*)p)[1] = x >> 16;
             ((u1*)p)[2] = x >>  8;
             ((u1*)p)[3] = x;
             break;
    }
  }

  static inline void put_native_u8(address p, u8 x) {
    switch ( intptr_t(p) & 7 ) {
    case 0:  *(u8*)p = x;
             break;

    case 4:  ((u4*)p)[0] = x >> 32;
             ((u4*)p)[1] = x;
             break;

    case 2:  ((u2*)p)[0] = x >> 48;
             ((u2*)p)[1] = x >> 32;
             ((u2*)p)[2] = x >> 16;
             ((u2*)p)[3] = x;
             break;

    default: ((u1*)p)[0] = x >> 56;
             ((u1*)p)[1] = x >> 48;
             ((u1*)p)[2] = x >> 40;
             ((u1*)p)[3] = x >> 32;
             ((u1*)p)[4] = x >> 24;
             ((u1*)p)[5] = x >> 16;
             ((u1*)p)[6] = x >>  8;
             ((u1*)p)[7] = x;
    }
  }

  // Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering)
  // (no byte-order reversal is needed since Power CPUs are big-endian oriented).
  static inline u2   get_Java_u2(address p) { return get_native_u2(p); }
  static inline u4   get_Java_u4(address p) { return get_native_u4(p); }
  static inline u8   get_Java_u8(address p) { return get_native_u8(p); }

  static inline void put_Java_u2(address p, u2 x)     { put_native_u2(p, x); }
  static inline void put_Java_u4(address p, u4 x)     { put_native_u4(p, x); }
  static inline void put_Java_u8(address p, u8 x)     { put_native_u8(p, x); }

#endif // VM_LITTLE_ENDIAN
};

#if defined(TARGET_OS_ARCH_linux_ppc)
#include "bytes_linux_ppc.inline.hpp"
#endif

#endif // CPU_PPC_VM_BYTES_PPC_HPP