view src/cpu/sparc/vm/copy_sparc.hpp @ 20304:a22acf6d7598

8048112: G1 Full GC needs to support the case when the very first region is not available Summary: Refactor preparation for compaction during Full GC so that it lazily initializes the first compaction point. This also avoids problems later when the first region may not be committed. Also reviewed by K. Barrett. Reviewed-by: brutisso
author tschatzl
date Mon, 21 Jul 2014 10:00:31 +0200
parents 7f1743e1a14e
children
line wrap: on
line source

/*
 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_SPARC_VM_COPY_SPARC_HPP
#define CPU_SPARC_VM_COPY_SPARC_HPP

// Inline functions for memory copy and fill.

static void pd_conjoint_words(HeapWord* from, HeapWord* to, size_t count) {
  (void)memmove(to, from, count * HeapWordSize);
}

static void pd_disjoint_words(HeapWord* from, HeapWord* to, size_t count) {
  switch (count) {
  case 8:  to[7] = from[7];
  case 7:  to[6] = from[6];
  case 6:  to[5] = from[5];
  case 5:  to[4] = from[4];
  case 4:  to[3] = from[3];
  case 3:  to[2] = from[2];
  case 2:  to[1] = from[1];
  case 1:  to[0] = from[0];
  case 0:  break;
  default: (void)memcpy(to, from, count * HeapWordSize);
           break;
  }
}

static void pd_disjoint_words_atomic(HeapWord* from, HeapWord* to, size_t count) {
  switch (count) {
  case 8:  to[7] = from[7];
  case 7:  to[6] = from[6];
  case 6:  to[5] = from[5];
  case 5:  to[4] = from[4];
  case 4:  to[3] = from[3];
  case 3:  to[2] = from[2];
  case 2:  to[1] = from[1];
  case 1:  to[0] = from[0];
  case 0:  break;
  default: while (count-- > 0) {
             *to++ = *from++;
           }
           break;
  }
}

static void pd_aligned_conjoint_words(HeapWord* from, HeapWord* to, size_t count) {
  (void)memmove(to, from, count * HeapWordSize);
}

static void pd_aligned_disjoint_words(HeapWord* from, HeapWord* to, size_t count) {
  pd_disjoint_words(from, to, count);
}

static void pd_conjoint_bytes(void* from, void* to, size_t count) {
  (void)memmove(to, from, count);
}

static void pd_conjoint_bytes_atomic(void* from, void* to, size_t count) {
  (void)memmove(to, from, count);
}

static void pd_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
  if (from > to) {
    while (count-- > 0) {
      // Copy forwards
      *to++ = *from++;
    }
  } else {
    from += count - 1;
    to   += count - 1;
    while (count-- > 0) {
      // Copy backwards
      *to-- = *from--;
    }
  }
}

static void pd_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
  if (from > to) {
    while (count-- > 0) {
      // Copy forwards
      *to++ = *from++;
    }
  } else {
    from += count - 1;
    to   += count - 1;
    while (count-- > 0) {
      // Copy backwards
      *to-- = *from--;
    }
  }
}

static void pd_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
#ifdef _LP64
  assert(BytesPerLong == BytesPerOop, "jlongs and oops must be the same size");
  pd_conjoint_oops_atomic((oop*)from, (oop*)to, count);
#else
  // Guarantee use of ldd/std via some asm code, because compiler won't.
  // See solaris_sparc.il.
  _Copy_conjoint_jlongs_atomic(from, to, count);
#endif
}

static void pd_conjoint_oops_atomic(oop* from, oop* to, size_t count) {
  // Do better than this: inline memmove body  NEEDS CLEANUP
  if (from > to) {
    while (count-- > 0) {
      // Copy forwards
      *to++ = *from++;
    }
  } else {
    from += count - 1;
    to   += count - 1;
    while (count-- > 0) {
      // Copy backwards
      *to-- = *from--;
    }
  }
}

static void pd_arrayof_conjoint_bytes(HeapWord* from, HeapWord* to, size_t count) {
  pd_conjoint_bytes_atomic(from, to, count);
}

static void pd_arrayof_conjoint_jshorts(HeapWord* from, HeapWord* to, size_t count) {
  pd_conjoint_jshorts_atomic((jshort*)from, (jshort*)to, count);
}

static void pd_arrayof_conjoint_jints(HeapWord* from, HeapWord* to, size_t count) {
  pd_conjoint_jints_atomic((jint*)from, (jint*)to, count);
}

static void pd_arrayof_conjoint_jlongs(HeapWord* from, HeapWord* to, size_t count) {
  pd_conjoint_jlongs_atomic((jlong*)from, (jlong*)to, count);
}

static void pd_arrayof_conjoint_oops(HeapWord* from, HeapWord* to, size_t count) {
  pd_conjoint_oops_atomic((oop*)from, (oop*)to, count);
}

static void pd_fill_to_words(HeapWord* tohw, size_t count, juint value) {
#ifdef _LP64
  guarantee(mask_bits((uintptr_t)tohw, right_n_bits(LogBytesPerLong)) == 0,
         "unaligned fill words");
  julong* to = (julong*)tohw;
  julong  v  = ((julong)value << 32) | value;
  while (count-- > 0) {
    *to++ = v;
  }
#else // _LP64
  juint* to = (juint*)tohw;
  while (count-- > 0) {
    *to++ = value;
  }
#endif // _LP64
}

typedef void (*_zero_Fn)(HeapWord* to, size_t count);

static void pd_fill_to_aligned_words(HeapWord* tohw, size_t count, juint value) {
  assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");

  if (value == 0 && UseBlockZeroing &&
      (count > (size_t)(BlockZeroingLowLimit >> LogHeapWordSize))) {
   // Call it only when block zeroing is used
   ((_zero_Fn)StubRoutines::zero_aligned_words())(tohw, count);
  } else {
   julong* to = (julong*)tohw;
   julong  v  = ((julong)value << 32) | value;
   // If count is odd, odd will be equal to 1 on 32-bit platform
   // and be equal to 0 on 64-bit platform.
   size_t odd = count % (BytesPerLong / HeapWordSize) ;

   size_t aligned_count = align_object_offset(count - odd) / HeapWordsPerLong;
   julong* end = ((julong*)tohw) + aligned_count - 1;
   while (to <= end) {
     DEBUG_ONLY(count -= BytesPerLong / HeapWordSize ;)
     *to++ = v;
   }
   assert(count == odd, "bad bounds on loop filling to aligned words");
   if (odd) {
     *((juint*)to) = value;

   }
  }
}

static void pd_fill_to_bytes(void* to, size_t count, jubyte value) {
  (void)memset(to, value, count);
}

static void pd_zero_to_words(HeapWord* tohw, size_t count) {
  pd_fill_to_words(tohw, count, 0);
}

static void pd_zero_to_bytes(void* to, size_t count) {
  (void)memset(to, 0, count);
}

#endif // CPU_SPARC_VM_COPY_SPARC_HPP