view src/share/vm/memory/allocation.inline.hpp @ 20304:a22acf6d7598

8048112: G1 Full GC needs to support the case when the very first region is not available Summary: Refactor preparation for compaction during Full GC so that it lazily initializes the first compaction point. This also avoids problems later when the first region may not be committed. Also reviewed by K. Barrett. Reviewed-by: brutisso
author tschatzl
date Mon, 21 Jul 2014 10:00:31 +0200
parents 9758d9f36299
children 833b0f92429a
line wrap: on
line source

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
#define SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP

#include "runtime/atomic.inline.hpp"
#include "runtime/os.hpp"

// Explicit C-heap memory management

void trace_heap_malloc(size_t size, const char* name, void *p);
void trace_heap_free(void *p);

#ifndef PRODUCT
// Increments unsigned long value for statistics (not atomic on MP).
inline void inc_stat_counter(volatile julong* dest, julong add_value) {
#if defined(SPARC) || defined(X86)
  // Sparc and X86 have atomic jlong (8 bytes) instructions
  julong value = Atomic::load((volatile jlong*)dest);
  value += add_value;
  Atomic::store((jlong)value, (volatile jlong*)dest);
#else
  // possible word-tearing during load/store
  *dest += add_value;
#endif
}
#endif

// allocate using malloc; will fail if no memory available
inline char* AllocateHeap(size_t size, MEMFLAGS flags, address pc = 0,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  if (pc == 0) {
    pc = CURRENT_PC;
  }
  char* p = (char*) os::malloc(size, flags, pc);
  #ifdef ASSERT
  if (PrintMallocFree) trace_heap_malloc(size, "AllocateHeap", p);
  #endif
  if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
    vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "AllocateHeap");
  }
  return p;
}

inline char* ReallocateHeap(char *old, size_t size, MEMFLAGS flags,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  char* p = (char*) os::realloc(old, size, flags, CURRENT_PC);
  #ifdef ASSERT
  if (PrintMallocFree) trace_heap_malloc(size, "ReallocateHeap", p);
  #endif
  if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
    vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "ReallocateHeap");
  }
  return p;
}

inline void FreeHeap(void* p, MEMFLAGS memflags = mtInternal) {
  #ifdef ASSERT
  if (PrintMallocFree) trace_heap_free(p);
  #endif
  os::free(p, memflags);
}


template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size,
      address caller_pc) throw() {
    void* p = (void*)AllocateHeap(size, F, (caller_pc != 0 ? caller_pc : CALLER_PC));
#ifdef ASSERT
    if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
    return p;
  }

template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
  const std::nothrow_t&  nothrow_constant, address caller_pc) throw() {
  void* p = (void*)AllocateHeap(size, F, (caller_pc != 0 ? caller_pc : CALLER_PC),
      AllocFailStrategy::RETURN_NULL);
#ifdef ASSERT
    if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
    return p;
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
      address caller_pc) throw() {
    return CHeapObj<F>::operator new(size, caller_pc);
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
  const std::nothrow_t&  nothrow_constant, address caller_pc) throw() {
    return CHeapObj<F>::operator new(size, nothrow_constant, caller_pc);
}

template <MEMFLAGS F> void CHeapObj<F>::operator delete(void* p){
    FreeHeap(p, F);
}

template <MEMFLAGS F> void CHeapObj<F>::operator delete [](void* p){
    FreeHeap(p, F);
}

template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate(size_t length) {
  assert(_addr == NULL, "Already in use");

  _size = sizeof(E) * length;
  _use_malloc = _size < ArrayAllocatorMallocLimit;

  if (_use_malloc) {
    _addr = AllocateHeap(_size, F);
    if (_addr == NULL && _size >=  (size_t)os::vm_allocation_granularity()) {
      // malloc failed let's try with mmap instead
      _use_malloc = false;
    } else {
      return (E*)_addr;
    }
  }

  int alignment = os::vm_allocation_granularity();
  _size = align_size_up(_size, alignment);

  _addr = os::reserve_memory(_size, NULL, alignment, F);
  if (_addr == NULL) {
    vm_exit_out_of_memory(_size, OOM_MMAP_ERROR, "Allocator (reserve)");
  }

  os::commit_memory_or_exit(_addr, _size, !ExecMem, "Allocator (commit)");

  return (E*)_addr;
}

template<class E, MEMFLAGS F>
void ArrayAllocator<E, F>::free() {
  if (_addr != NULL) {
    if (_use_malloc) {
      FreeHeap(_addr, F);
    } else {
      os::release_memory(_addr, _size);
    }
    _addr = NULL;
  }
}

#endif // SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP