view src/share/vm/memory/resourceArea.hpp @ 20304:a22acf6d7598

8048112: G1 Full GC needs to support the case when the very first region is not available Summary: Refactor preparation for compaction during Full GC so that it lazily initializes the first compaction point. This also avoids problems later when the first region may not be committed. Also reviewed by K. Barrett. Reviewed-by: brutisso
author tschatzl
date Mon, 21 Jul 2014 10:00:31 +0200
parents dbc0b5dc08f5
children 63a4eb8bcd23 833b0f92429a
line wrap: on
line source

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_MEMORY_RESOURCEAREA_HPP
#define SHARE_VM_MEMORY_RESOURCEAREA_HPP

#include "memory/allocation.hpp"
#include "runtime/thread.inline.hpp"

// The resource area holds temporary data structures in the VM.
// The actual allocation areas are thread local. Typical usage:
//
//   ...
//   {
//     ResourceMark rm;
//     int foo[] = NEW_RESOURCE_ARRAY(int, 64);
//     ...
//   }
//   ...

//------------------------------ResourceArea-----------------------------------
// A ResourceArea is an Arena that supports safe usage of ResourceMark.
class ResourceArea: public Arena {
  friend class ResourceMark;
  friend class DeoptResourceMark;
  friend class VMStructs;
  debug_only(int _nesting;)             // current # of nested ResourceMarks
  debug_only(static int _warned;)       // to suppress multiple warnings

public:
  ResourceArea() {
    debug_only(_nesting = 0;)
  }

  ResourceArea(size_t init_size) : Arena(init_size) {
    debug_only(_nesting = 0;);
  }

  char* allocate_bytes(size_t size, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
#ifdef ASSERT
    if (_nesting < 1 && !_warned++)
      fatal("memory leak: allocating without ResourceMark");
    if (UseMallocOnly) {
      // use malloc, but save pointer in res. area for later freeing
      char** save = (char**)internal_malloc_4(sizeof(char*));
      return (*save = (char*)os::malloc(size, mtThread));
    }
#endif
    return (char*)Amalloc(size, alloc_failmode);
  }

  debug_only(int nesting() const { return _nesting; });
};


//------------------------------ResourceMark-----------------------------------
// A resource mark releases all resources allocated after it was constructed
// when the destructor is called.  Typically used as a local variable.
class ResourceMark: public StackObj {
protected:
  ResourceArea *_area;          // Resource area to stack allocate
  Chunk *_chunk;                // saved arena chunk
  char *_hwm, *_max;
  size_t _size_in_bytes;
#ifdef ASSERT
  Thread* _thread;
  ResourceMark* _previous_resource_mark;
#endif //ASSERT

  void initialize(Thread *thread) {
    _area = thread->resource_area();
    _chunk = _area->_chunk;
    _hwm = _area->_hwm;
    _max= _area->_max;
    _size_in_bytes = _area->size_in_bytes();
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
#ifdef ASSERT
    _thread = thread;
    _previous_resource_mark = thread->current_resource_mark();
    thread->set_current_resource_mark(this);
#endif // ASSERT
  }
 public:

#ifndef ASSERT
  ResourceMark(Thread *thread) {
    assert(thread == Thread::current(), "not the current thread");
    initialize(thread);
  }
#else
  ResourceMark(Thread *thread);
#endif // ASSERT

  ResourceMark()               { initialize(Thread::current()); }

  ResourceMark( ResourceArea *r ) :
    _area(r), _chunk(r->_chunk), _hwm(r->_hwm), _max(r->_max) {
    _size_in_bytes = r->_size_in_bytes;
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
#ifdef ASSERT
    Thread* thread = ThreadLocalStorage::thread();
    if (thread != NULL) {
      _thread = thread;
      _previous_resource_mark = thread->current_resource_mark();
      thread->set_current_resource_mark(this);
    } else {
      _thread = NULL;
      _previous_resource_mark = NULL;
    }
#endif // ASSERT
  }

  void reset_to_mark() {
    if (UseMallocOnly) free_malloced_objects();

    if( _chunk->next() ) {       // Delete later chunks
      // reset arena size before delete chunks. Otherwise, the total
      // arena size could exceed total chunk size
      assert(_area->size_in_bytes() > size_in_bytes(), "Sanity check");
      _area->set_size_in_bytes(size_in_bytes());
      _chunk->next_chop();
    } else {
      assert(_area->size_in_bytes() == size_in_bytes(), "Sanity check");
    }
    _area->_chunk = _chunk;     // Roll back arena to saved chunk
    _area->_hwm = _hwm;
    _area->_max = _max;

    // clear out this chunk (to detect allocation bugs)
    if (ZapResourceArea) memset(_hwm, badResourceValue, _max - _hwm);
  }

  ~ResourceMark() {
    assert( _area->_nesting > 0, "must stack allocate RMs" );
    debug_only(_area->_nesting--;)
    reset_to_mark();
#ifdef ASSERT
    if (_thread != NULL) {
      _thread->set_current_resource_mark(_previous_resource_mark);
    }
#endif // ASSERT
  }


 private:
  void free_malloced_objects()                                         PRODUCT_RETURN;
  size_t size_in_bytes() { return _size_in_bytes; }
};

//------------------------------DeoptResourceMark-----------------------------------
// A deopt resource mark releases all resources allocated after it was constructed
// when the destructor is called.  Typically used as a local variable. It differs
// from a typical resource more in that it is C-Heap allocated so that deoptimization
// can use data structures that are arena based but are not amenable to vanilla
// ResourceMarks because deoptimization can not use a stack allocated mark. During
// deoptimization we go thru the following steps:
//
// 0: start in assembly stub and call either uncommon_trap/fetch_unroll_info
// 1: create the vframeArray (contains pointers to Resource allocated structures)
//   This allocates the DeoptResourceMark.
// 2: return to assembly stub and remove stub frame and deoptee frame and create
//    the new skeletal frames.
// 3: push new stub frame and call unpack_frames
// 4: retrieve information from the vframeArray to populate the skeletal frames
// 5: release the DeoptResourceMark
// 6: return to stub and eventually to interpreter
//
// With old style eager deoptimization the vframeArray was created by the vmThread there
// was no way for the vframeArray to contain resource allocated objects and so
// a complex set of data structures to simulate an array of vframes in CHeap memory
// was used. With new style lazy deoptimization the vframeArray is created in the
// the thread that will use it and we can use a much simpler scheme for the vframeArray
// leveraging existing data structures if we simply create a way to manage this one
// special need for a ResourceMark. If ResourceMark simply inherited from CHeapObj
// then existing ResourceMarks would work fine since no one use new to allocate them
// and they would be stack allocated. This leaves open the possibilty of accidental
// misuse so we simple duplicate the ResourceMark functionality here.

class DeoptResourceMark: public CHeapObj<mtInternal> {
protected:
  ResourceArea *_area;          // Resource area to stack allocate
  Chunk *_chunk;                // saved arena chunk
  char *_hwm, *_max;
  size_t _size_in_bytes;

  void initialize(Thread *thread) {
    _area = thread->resource_area();
    _chunk = _area->_chunk;
    _hwm = _area->_hwm;
    _max= _area->_max;
    _size_in_bytes = _area->size_in_bytes();
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
  }

 public:

#ifndef ASSERT
  DeoptResourceMark(Thread *thread) {
    assert(thread == Thread::current(), "not the current thread");
    initialize(thread);
  }
#else
  DeoptResourceMark(Thread *thread);
#endif // ASSERT

  DeoptResourceMark()               { initialize(Thread::current()); }

  DeoptResourceMark( ResourceArea *r ) :
    _area(r), _chunk(r->_chunk), _hwm(r->_hwm), _max(r->_max) {
    _size_in_bytes = _area->size_in_bytes();
    debug_only(_area->_nesting++;)
    assert( _area->_nesting > 0, "must stack allocate RMs" );
  }

  void reset_to_mark() {
    if (UseMallocOnly) free_malloced_objects();

    if( _chunk->next() ) {        // Delete later chunks
      // reset arena size before delete chunks. Otherwise, the total
      // arena size could exceed total chunk size
      assert(_area->size_in_bytes() > size_in_bytes(), "Sanity check");
      _area->set_size_in_bytes(size_in_bytes());
      _chunk->next_chop();
    } else {
      assert(_area->size_in_bytes() == size_in_bytes(), "Sanity check");
    }
    _area->_chunk = _chunk;     // Roll back arena to saved chunk
    _area->_hwm = _hwm;
    _area->_max = _max;

    // clear out this chunk (to detect allocation bugs)
    if (ZapResourceArea) memset(_hwm, badResourceValue, _max - _hwm);
  }

  ~DeoptResourceMark() {
    assert( _area->_nesting > 0, "must stack allocate RMs" );
    debug_only(_area->_nesting--;)
    reset_to_mark();
  }


 private:
  void free_malloced_objects()                                         PRODUCT_RETURN;
  size_t size_in_bytes() { return _size_in_bytes; };
};

#endif // SHARE_VM_MEMORY_RESOURCEAREA_HPP