view agent/src/os/bsd/symtab.c @ 4582:b24386206122

Made all vm builds go into subdirectories, even product builds to simplify building the various types of VMs (server, client and graal). Made HotSpot build jobs use the number of CPUs on the host machine.
author Doug Simon <doug.simon@oracle.com>
date Mon, 13 Feb 2012 23:13:37 +0100
parents 436b4a3231bf
children 39432a1cefdd
line wrap: on
line source

/*
 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include <unistd.h>
#include <search.h>
#include <stdlib.h>
#include <string.h>
#include <db.h>
#include <fcntl.h>
#include "symtab.h"
#include "salibelf.h"


// ----------------------------------------------------
// functions for symbol lookups
// ----------------------------------------------------

struct elf_section {
  ELF_SHDR   *c_shdr;
  void       *c_data;
};

struct elf_symbol {
  char *name;
  uintptr_t offset;
  uintptr_t size;
};

typedef struct symtab {
  char *strs;
  size_t num_symbols;
  struct elf_symbol *symbols;
  DB* hash_table;
} symtab_t;

// read symbol table from given fd.
struct symtab* build_symtab(int fd) {
  ELF_EHDR ehdr;
  struct symtab* symtab = NULL;

  // Reading of elf header
  struct elf_section *scn_cache = NULL;
  int cnt = 0;
  ELF_SHDR* shbuf = NULL;
  ELF_SHDR* cursct = NULL;
  ELF_PHDR* phbuf = NULL;
  int symtab_found = 0;
  int dynsym_found = 0;
  uint32_t symsection = SHT_SYMTAB;

  uintptr_t baseaddr = (uintptr_t)-1;

  lseek(fd, (off_t)0L, SEEK_SET);
  if (! read_elf_header(fd, &ehdr)) {
    // not an elf
    return NULL;
  }

  // read ELF header
  if ((shbuf = read_section_header_table(fd, &ehdr)) == NULL) {
    goto quit;
  }

  baseaddr = find_base_address(fd, &ehdr);

  scn_cache = calloc(ehdr.e_shnum, sizeof(*scn_cache));
  if (scn_cache == NULL) {
    goto quit;
  }

  for (cursct = shbuf, cnt = 0; cnt < ehdr.e_shnum; cnt++) {
    scn_cache[cnt].c_shdr = cursct;
    if (cursct->sh_type == SHT_SYMTAB ||
        cursct->sh_type == SHT_STRTAB ||
        cursct->sh_type == SHT_DYNSYM) {
      if ( (scn_cache[cnt].c_data = read_section_data(fd, &ehdr, cursct)) == NULL) {
         goto quit;
      }
    }

    if (cursct->sh_type == SHT_SYMTAB)
       symtab_found++;

    if (cursct->sh_type == SHT_DYNSYM)
       dynsym_found++;

    cursct++;
  }

  if (!symtab_found && dynsym_found)
     symsection = SHT_DYNSYM;

  for (cnt = 1; cnt < ehdr.e_shnum; cnt++) {
    ELF_SHDR *shdr = scn_cache[cnt].c_shdr;

    if (shdr->sh_type == symsection) {
      ELF_SYM  *syms;
      int j, n;
      size_t size;

      // FIXME: there could be multiple data buffers associated with the
      // same ELF section. Here we can handle only one buffer. See man page
      // for elf_getdata on Solaris.

      // guarantee(symtab == NULL, "multiple symtab");
      symtab = calloc(1, sizeof(*symtab));
      if (symtab == NULL) {
         goto quit;
      }
      // the symbol table
      syms = (ELF_SYM *)scn_cache[cnt].c_data;

      // number of symbols
      n = shdr->sh_size / shdr->sh_entsize;

      // create hash table, we use berkeley db to
      // manipulate the hash table.
      symtab->hash_table = dbopen(NULL, O_CREAT | O_RDWR, 0600, DB_HASH, NULL);
      // guarantee(symtab->hash_table, "unexpected failure: dbopen");
      if (symtab->hash_table == NULL)
        goto bad;

      // shdr->sh_link points to the section that contains the actual strings
      // for symbol names. the st_name field in ELF_SYM is just the
      // string table index. we make a copy of the string table so the
      // strings will not be destroyed by elf_end.
      size = scn_cache[shdr->sh_link].c_shdr->sh_size;
      symtab->strs = malloc(size);
      if (symtab->strs == NULL)
        goto bad;
      memcpy(symtab->strs, scn_cache[shdr->sh_link].c_data, size);

      // allocate memory for storing symbol offset and size;
      symtab->num_symbols = n;
      symtab->symbols = calloc(n , sizeof(*symtab->symbols));
      if (symtab->symbols == NULL)
        goto bad;

      // copy symbols info our symtab and enter them info the hash table
      for (j = 0; j < n; j++, syms++) {
        DBT key, value;
        char *sym_name = symtab->strs + syms->st_name;

        // skip non-object and non-function symbols
        int st_type = ELF_ST_TYPE(syms->st_info);
        if ( st_type != STT_FUNC && st_type != STT_OBJECT)
           continue;
        // skip empty strings and undefined symbols
        if (*sym_name == '\0' || syms->st_shndx == SHN_UNDEF) continue;

        symtab->symbols[j].name   = sym_name;
        symtab->symbols[j].offset = syms->st_value - baseaddr;
        symtab->symbols[j].size   = syms->st_size;

        key.data = sym_name;
        key.size = strlen(sym_name) + 1;
        value.data = &(symtab->symbols[j]);
        value.size = sizeof(void *);
        (*symtab->hash_table->put)(symtab->hash_table, &key, &value, 0);
      }
    }
  }
  goto quit;

bad:
  destroy_symtab(symtab);
  symtab = NULL;

quit:
  if (shbuf) free(shbuf);
  if (phbuf) free(phbuf);
  if (scn_cache) {
    for (cnt = 0; cnt < ehdr.e_shnum; cnt++) {
      if (scn_cache[cnt].c_data != NULL) {
        free(scn_cache[cnt].c_data);
      }
    }
    free(scn_cache);
  }
  return symtab;
}

void destroy_symtab(struct symtab* symtab) {
  if (!symtab) return;
  if (symtab->strs) free(symtab->strs);
  if (symtab->symbols) free(symtab->symbols);
  if (symtab->hash_table) {
    (*symtab->hash_table->close)(symtab->hash_table);
  }
  free(symtab);
}

uintptr_t search_symbol(struct symtab* symtab, uintptr_t base,
                      const char *sym_name, int *sym_size) {
  DBT key, value;
  int ret;

  // library does not have symbol table
  if (!symtab || !symtab->hash_table)
     return 0;

  key.data = (char*)(uintptr_t)sym_name;
  key.size = strlen(sym_name) + 1;
  ret = (*symtab->hash_table->get)(symtab->hash_table, &key, &value, 0);
  if (ret == 0) {
    struct elf_symbol *sym = value.data;
    uintptr_t rslt = (uintptr_t) ((char*)base + sym->offset);
    if (sym_size) *sym_size = sym->size;
    return rslt;
  }

  return 0;
}

const char* nearest_symbol(struct symtab* symtab, uintptr_t offset,
                           uintptr_t* poffset) {
  int n = 0;
  if (!symtab) return NULL;
  for (; n < symtab->num_symbols; n++) {
    struct elf_symbol* sym = &(symtab->symbols[n]);
    if (sym->name != NULL &&
      offset >= sym->offset && offset < sym->offset + sym->size) {
      if (poffset) *poffset = (offset - sym->offset);
      return sym->name;
    }
  }
  return NULL;
}