view src/share/vm/ci/ciObject.cpp @ 6972:bd7a7ce2e264

6830717: replay of compilations would help with debugging Summary: When java process crashed in compiler thread, repeat the compilation process will help finding root cause. This is done with using SA dump application class data and replay data from core dump, then use debug version of jvm to recompile the problematic java method. Reviewed-by: kvn, twisti, sspitsyn Contributed-by: yumin.qi@oracle.com
author minqi
date Mon, 12 Nov 2012 14:03:53 -0800
parents da91efe96a93
children e522a00b91aa 78bbf4d43a14
line wrap: on
line source

/*
 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "ci/ciObject.hpp"
#include "ci/ciUtilities.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "oops/oop.inline2.hpp"

// ciObject
//
// This class represents an oop in the HotSpot virtual machine.
// Its subclasses are structured in a hierarchy which mirrors
// an aggregate of the VM's oop and klass hierarchies (see
// oopHierarchy.hpp).  Each instance of ciObject holds a handle
// to a corresponding oop on the VM side and provides routines
// for accessing the information in its oop.  By using the ciObject
// hierarchy for accessing oops in the VM, the compiler ensures
// that it is safe with respect to garbage collection; that is,
// GC and compilation can proceed independently without
// interference.
//
// Within the VM, the oop and klass hierarchies are separate.
// The compiler interface does not preserve this separation --
// the distinction between `Klass*' and `Klass' are not
// reflected in the interface and instead the Klass hierarchy
// is directly modeled as the subclasses of ciKlass.

// ------------------------------------------------------------------
// ciObject::ciObject
ciObject::ciObject(oop o) {
  ASSERT_IN_VM;
  if (ciObjectFactory::is_initialized()) {
    _handle = JNIHandles::make_local(o);
  } else {
    _handle = JNIHandles::make_global(o);
  }
  _klass = NULL;
  init_flags_from(o);
}

// ------------------------------------------------------------------
// ciObject::ciObject
//
ciObject::ciObject(Handle h) {
  ASSERT_IN_VM;
  if (ciObjectFactory::is_initialized()) {
    _handle = JNIHandles::make_local(h());
  } else {
    _handle = JNIHandles::make_global(h);
  }
  _klass = NULL;
  init_flags_from(h());
}

// ------------------------------------------------------------------
// ciObject::ciObject
//
// Unloaded klass/method variant.  `klass' is the klass of the unloaded
// klass/method, if that makes sense.
ciObject::ciObject(ciKlass* klass) {
  ASSERT_IN_VM;
  assert(klass != NULL, "must supply klass");
  _handle = NULL;
  _klass = klass;
}

// ------------------------------------------------------------------
// ciObject::ciObject
//
// NULL variant.  Used only by ciNullObject.
ciObject::ciObject() {
  ASSERT_IN_VM;
  _handle = NULL;
  _klass = NULL;
}

// ------------------------------------------------------------------
// ciObject::klass
//
// Get the ciKlass of this ciObject.
ciKlass* ciObject::klass() {
  if (_klass == NULL) {
    if (_handle == NULL) {
      // When both _klass and _handle are NULL, we are dealing
      // with the distinguished instance of ciNullObject.
      // No one should ask it for its klass.
      assert(is_null_object(), "must be null object");
      ShouldNotReachHere();
      return NULL;
    }

    GUARDED_VM_ENTRY(
      oop o = get_oop();
      _klass = CURRENT_ENV->get_klass(o->klass());
    );
  }
  return _klass;
}

// ------------------------------------------------------------------
// ciObject::equals
//
// Are two ciObjects equal?
bool ciObject::equals(ciObject* obj) {
  return (this == obj);
}

// ------------------------------------------------------------------
// ciObject::hash
//
// A hash value for the convenience of compilers.
//
// Implementation note: we use the address of the ciObject as the
// basis for the hash.  Use the _ident field, which is well-behaved.
int ciObject::hash() {
  return ident() * 31;
}

// ------------------------------------------------------------------
// ciObject::constant_encoding
//
// The address which the compiler should embed into the
// generated code to represent this oop.  This address
// is not the true address of the oop -- it will get patched
// during nmethod creation.
//
//
//
// Implementation note: we use the handle as the encoding.  The
// nmethod constructor resolves the handle and patches in the oop.
//
// This method should be changed to return an generified address
// to discourage use of the JNI handle.
jobject ciObject::constant_encoding() {
  assert(is_null_object() || handle() != NULL, "cannot embed null pointer");
  assert(can_be_constant(), "oop must be NULL or perm");
  return handle();
}

// ------------------------------------------------------------------
// ciObject::can_be_constant
bool ciObject::can_be_constant() {
  if (ScavengeRootsInCode >= 1)  return true;  // now everybody can encode as a constant
  return handle() == NULL;
}

// ------------------------------------------------------------------
// ciObject::should_be_constant()
bool ciObject::should_be_constant() {
  if (ScavengeRootsInCode >= 2)  return true;  // force everybody to be a constant
  if (is_null_object()) return true;

  ciEnv* env = CURRENT_ENV;

    // We want Strings and Classes to be embeddable by default since
    // they used to be in the perm world.  Not all Strings used to be
    // embeddable but there's no easy way to distinguish the interned
    // from the regulars ones so just treat them all that way.
    if (klass() == env->String_klass() || klass() == env->Class_klass()) {
      return true;
    }
  if (EnableInvokeDynamic &&
      (klass()->is_subclass_of(env->MethodHandle_klass()) ||
       klass()->is_subclass_of(env->CallSite_klass()))) {
    assert(ScavengeRootsInCode >= 1, "must be");
    // We want to treat these aggressively.
    return true;
  }

  return handle() == NULL;
}

// ------------------------------------------------------------------
// ciObject::should_be_constant()
void ciObject::init_flags_from(oop x) {
  int flags = 0;
  if (x != NULL) {
    assert(Universe::heap()->is_in_reserved(x), "must be");
    if (x->is_scavengable())
      flags |= SCAVENGABLE_FLAG;
  }
  _ident |= flags;
}

// ------------------------------------------------------------------
// ciObject::print
//
// Print debugging output about this ciObject.
//
// Implementation note: dispatch to the virtual print_impl behavior
// for this ciObject.
void ciObject::print(outputStream* st) {
  st->print("<%s", type_string());
  GUARDED_VM_ENTRY(print_impl(st);)
  st->print(" ident=%d %s address=0x%x>", ident(),
        is_scavengable() ? "SCAVENGABLE" : "",
        (address)this);
}

// ------------------------------------------------------------------
// ciObject::print_oop
//
// Print debugging output about the oop this ciObject represents.
void ciObject::print_oop(outputStream* st) {
  if (is_null_object()) {
    st->print_cr("NULL");
  } else if (!is_loaded()) {
    st->print_cr("UNLOADED");
  } else {
    GUARDED_VM_ENTRY(get_oop()->print_on(st);)
  }
}