view src/share/vm/classfile/defaultMethods.cpp @ 6972:bd7a7ce2e264

6830717: replay of compilations would help with debugging Summary: When java process crashed in compiler thread, repeat the compilation process will help finding root cause. This is done with using SA dump application class data and replay data from core dump, then use debug version of jvm to recompile the problematic java method. Reviewed-by: kvn, twisti, sspitsyn Contributed-by: yumin.qi@oracle.com
author minqi
date Mon, 12 Nov 2012 14:03:53 -0800
parents 4735d2c84362
children b2dbd323c668
line wrap: on
line source

/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/bytecodeAssembler.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/genericSignatures.hpp"
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/signature.hpp"
#include "runtime/thread.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.hpp"
#include "oops/method.hpp"
#include "utilities/accessFlags.hpp"
#include "utilities/exceptions.hpp"
#include "utilities/ostream.hpp"
#include "utilities/pair.hpp"
#include "utilities/resourceHash.hpp"

typedef enum { QUALIFIED, DISQUALIFIED } QualifiedState;

// Because we use an iterative algorithm when iterating over the type
// hierarchy, we can't use traditional scoped objects which automatically do
// cleanup in the destructor when the scope is exited.  PseudoScope (and
// PseudoScopeMark) provides a similar functionality, but for when you want a
// scoped object in non-stack memory (such as in resource memory, as we do
// here).  You've just got to remember to call 'destroy()' on the scope when
// leaving it (and marks have to be explicitly added).
class PseudoScopeMark : public ResourceObj {
 public:
  virtual void destroy() = 0;
};

class PseudoScope : public ResourceObj {
 private:
  GrowableArray<PseudoScopeMark*> _marks;
 public:

  static PseudoScope* cast(void* data) {
    return static_cast<PseudoScope*>(data);
  }

  void add_mark(PseudoScopeMark* psm) {
   _marks.append(psm);
  }

  void destroy() {
    for (int i = 0; i < _marks.length(); ++i) {
      _marks.at(i)->destroy();
    }
  }
};

class ContextMark : public PseudoScopeMark {
 private:
  generic::Context::Mark _mark;
 public:
  ContextMark(const generic::Context::Mark& cm) : _mark(cm) {}
  virtual void destroy() { _mark.destroy(); }
};

#ifndef PRODUCT
static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
  ResourceMark rm;
  str->print("%s%s", name->as_C_string(), signature->as_C_string());
}

static void print_method(outputStream* str, Method* mo, bool with_class=true) {
  ResourceMark rm;
  if (with_class) {
    str->print("%s.", mo->klass_name()->as_C_string());
  }
  print_slot(str, mo->name(), mo->signature());
}
#endif // ndef PRODUCT

/**
 * Perform a depth-first iteration over the class hierarchy, applying
 * algorithmic logic as it goes.
 *
 * This class is one half of the inheritance hierarchy analysis mechanism.
 * It is meant to be used in conjunction with another class, the algorithm,
 * which is indicated by the ALGO template parameter.  This class can be
 * paired with any algorithm class that provides the required methods.
 *
 * This class contains all the mechanics for iterating over the class hierarchy
 * starting at a particular root, without recursing (thus limiting stack growth
 * from this point).  It visits each superclass (if present) and superinterface
 * in a depth-first manner, with callbacks to the ALGO class as each class is
 * encountered (visit()), The algorithm can cut-off further exploration of a
 * particular branch by returning 'false' from a visit() call.
 *
 * The ALGO class, must provide a visit() method, which each of which will be
 * called once for each node in the inheritance tree during the iteration.  In
 * addition, it can provide a memory block via new_node_data(InstanceKlass*),
 * which it can use for node-specific storage (and access via the
 * current_data() and data_at_depth(int) methods).
 *
 * Bare minimum needed to be an ALGO class:
 * class Algo : public HierarchyVisitor<Algo> {
 *   void* new_node_data(InstanceKlass* cls) { return NULL; }
 *   void free_node_data(void* data) { return; }
 *   bool visit() { return true; }
 * };
 */
template <class ALGO>
class HierarchyVisitor : StackObj {
 private:

  class Node : public ResourceObj {
   public:
    InstanceKlass* _class;
    bool _super_was_visited;
    int _interface_index;
    void* _algorithm_data;

    Node(InstanceKlass* cls, void* data, bool visit_super)
        : _class(cls), _super_was_visited(!visit_super),
          _interface_index(0), _algorithm_data(data) {}

    int number_of_interfaces() { return _class->local_interfaces()->length(); }
    int interface_index() { return _interface_index; }
    void set_super_visited() { _super_was_visited = true; }
    void increment_visited_interface() { ++_interface_index; }
    void set_all_interfaces_visited() {
      _interface_index = number_of_interfaces();
    }
    bool has_visited_super() { return _super_was_visited; }
    bool has_visited_all_interfaces() {
      return interface_index() >= number_of_interfaces();
    }
    InstanceKlass* interface_at(int index) {
      return InstanceKlass::cast(_class->local_interfaces()->at(index));
    }
    InstanceKlass* next_super() { return _class->java_super(); }
    InstanceKlass* next_interface() {
      return interface_at(interface_index());
    }
  };

  bool _cancelled;
  GrowableArray<Node*> _path;

  Node* current_top() const { return _path.top(); }
  bool has_more_nodes() const { return !_path.is_empty(); }
  void push(InstanceKlass* cls, void* data) {
    assert(cls != NULL, "Requires a valid instance class");
    Node* node = new Node(cls, data, has_super(cls));
    _path.push(node);
  }
  void pop() { _path.pop(); }

  void reset_iteration() {
    _cancelled = false;
    _path.clear();
  }
  bool is_cancelled() const { return _cancelled; }

  static bool has_super(InstanceKlass* cls) {
    return cls->super() != NULL && !cls->is_interface();
  }

  Node* node_at_depth(int i) const {
    return (i >= _path.length()) ? NULL : _path.at(_path.length() - i - 1);
  }

 protected:

  // Accessors available to the algorithm
  int current_depth() const { return _path.length() - 1; }

  InstanceKlass* class_at_depth(int i) {
    Node* n = node_at_depth(i);
    return n == NULL ? NULL : n->_class;
  }
  InstanceKlass* current_class() { return class_at_depth(0); }

  void* data_at_depth(int i) {
    Node* n = node_at_depth(i);
    return n == NULL ? NULL : n->_algorithm_data;
  }
  void* current_data() { return data_at_depth(0); }

  void cancel_iteration() { _cancelled = true; }

 public:

  void run(InstanceKlass* root) {
    ALGO* algo = static_cast<ALGO*>(this);

    reset_iteration();

    void* algo_data = algo->new_node_data(root);
    push(root, algo_data);
    bool top_needs_visit = true;

    do {
      Node* top = current_top();
      if (top_needs_visit) {
        if (algo->visit() == false) {
          // algorithm does not want to continue along this path.  Arrange
          // it so that this state is immediately popped off the stack
          top->set_super_visited();
          top->set_all_interfaces_visited();
        }
        top_needs_visit = false;
      }

      if (top->has_visited_super() && top->has_visited_all_interfaces()) {
        algo->free_node_data(top->_algorithm_data);
        pop();
      } else {
        InstanceKlass* next = NULL;
        if (top->has_visited_super() == false) {
          next = top->next_super();
          top->set_super_visited();
        } else {
          next = top->next_interface();
          top->increment_visited_interface();
        }
        assert(next != NULL, "Otherwise we shouldn't be here");
        algo_data = algo->new_node_data(next);
        push(next, algo_data);
        top_needs_visit = true;
      }
    } while (!is_cancelled() && has_more_nodes());
  }
};

#ifndef PRODUCT
class PrintHierarchy : public HierarchyVisitor<PrintHierarchy> {
 public:

  bool visit() {
    InstanceKlass* cls = current_class();
    streamIndentor si(tty, current_depth() * 2);
    tty->indent().print_cr("%s", cls->name()->as_C_string());
    return true;
  }

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }
};
#endif // ndef PRODUCT

// Used to register InstanceKlass objects and all related metadata structures
// (Methods, ConstantPools) as "in-use" by the current thread so that they can't
// be deallocated by class redefinition while we're using them.  The classes are
// de-registered when this goes out of scope.
//
// Once a class is registered, we need not bother with methodHandles or
// constantPoolHandles for it's associated metadata.
class KeepAliveRegistrar : public StackObj {
 private:
  Thread* _thread;
  GrowableArray<ConstantPool*> _keep_alive;

 public:
  KeepAliveRegistrar(Thread* thread) : _thread(thread), _keep_alive(20) {
    assert(thread == Thread::current(), "Must be current thread");
  }

  ~KeepAliveRegistrar() {
    for (int i = _keep_alive.length() - 1; i >= 0; --i) {
      ConstantPool* cp = _keep_alive.at(i);
      int idx = _thread->metadata_handles()->find_from_end(cp);
      assert(idx > 0, "Must be in the list");
      _thread->metadata_handles()->remove_at(idx);
    }
  }

  // Register a class as 'in-use' by the thread.  It's fine to register a class
  // multiple times (though perhaps inefficient)
  void register_class(InstanceKlass* ik) {
    ConstantPool* cp = ik->constants();
    _keep_alive.push(cp);
    _thread->metadata_handles()->push(cp);
  }
};

class KeepAliveVisitor : public HierarchyVisitor<KeepAliveVisitor> {
 private:
  KeepAliveRegistrar* _registrar;

 public:
  KeepAliveVisitor(KeepAliveRegistrar* registrar) : _registrar(registrar) {}

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }

  bool visit() {
    _registrar->register_class(current_class());
    return true;
  }
};

// A method family contains a set of all methods that implement a single
// language-level method.  Because of erasure, these methods may have different
// signatures.  As members of the set are collected while walking over the
// hierarchy, they are tagged with a qualification state.  The qualification
// state for an erased method is set to disqualified if there exists a path
// from the root of hierarchy to the method that contains an interleaving
// language-equivalent method defined in an interface.
class MethodFamily : public ResourceObj {
 private:

  generic::MethodDescriptor* _descriptor; // language-level description
  GrowableArray<Pair<Method*,QualifiedState> > _members;
  ResourceHashtable<Method*, int> _member_index;

  Method* _selected_target;  // Filled in later, if a unique target exists
  Symbol* _exception_message; // If no unique target is found

  bool contains_method(Method* method) {
    int* lookup = _member_index.get(method);
    return lookup != NULL;
  }

  void add_method(Method* method, QualifiedState state) {
    Pair<Method*,QualifiedState> entry(method, state);
    _member_index.put(method, _members.length());
    _members.append(entry);
  }

  void disqualify_method(Method* method) {
    int* index = _member_index.get(method);
    assert(index != NULL && *index >= 0 && *index < _members.length(), "bad index");
    _members.at(*index).second = DISQUALIFIED;
  }

  Symbol* generate_no_defaults_message(TRAPS) const;
  Symbol* generate_abstract_method_message(Method* method, TRAPS) const;
  Symbol* generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const;

 public:

  MethodFamily(generic::MethodDescriptor* canonical_desc)
      : _descriptor(canonical_desc), _selected_target(NULL),
        _exception_message(NULL) {}

  generic::MethodDescriptor* descriptor() const { return _descriptor; }

  bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
    return descriptor()->covariant_match(md, ctx);
  }

  void set_target_if_empty(Method* m) {
    if (_selected_target == NULL && !m->is_overpass()) {
      _selected_target = m;
    }
  }

  void record_qualified_method(Method* m) {
    // If the method already exists in the set as qualified, this operation is
    // redundant.  If it already exists as disqualified, then we leave it as
    // disqualfied.  Thus we only add to the set if it's not already in the
    // set.
    if (!contains_method(m)) {
      add_method(m, QUALIFIED);
    }
  }

  void record_disqualified_method(Method* m) {
    // If not in the set, add it as disqualified.  If it's already in the set,
    // then set the state to disqualified no matter what the previous state was.
    if (!contains_method(m)) {
      add_method(m, DISQUALIFIED);
    } else {
      disqualify_method(m);
    }
  }

  bool has_target() const { return _selected_target != NULL; }
  bool throws_exception() { return _exception_message != NULL; }

  Method* get_selected_target() { return _selected_target; }
  Symbol* get_exception_message() { return _exception_message; }

  // Either sets the target or the exception error message
  void determine_target(InstanceKlass* root, TRAPS) {
    if (has_target() || throws_exception()) {
      return;
    }

    GrowableArray<Method*> qualified_methods;
    for (int i = 0; i < _members.length(); ++i) {
      Pair<Method*,QualifiedState> entry = _members.at(i);
      if (entry.second == QUALIFIED) {
        qualified_methods.append(entry.first);
      }
    }

    if (qualified_methods.length() == 0) {
      _exception_message = generate_no_defaults_message(CHECK);
    } else if (qualified_methods.length() == 1) {
      Method* method = qualified_methods.at(0);
      if (method->is_abstract()) {
        _exception_message = generate_abstract_method_message(method, CHECK);
      } else {
        _selected_target = qualified_methods.at(0);
      }
    } else {
      _exception_message = generate_conflicts_message(&qualified_methods,CHECK);
    }

    assert((has_target() ^ throws_exception()) == 1,
           "One and only one must be true");
  }

  bool contains_signature(Symbol* query) {
    for (int i = 0; i < _members.length(); ++i) {
      if (query == _members.at(i).first->signature()) {
        return true;
      }
    }
    return false;
  }

#ifndef PRODUCT
  void print_on(outputStream* str) const {
    print_on(str, 0);
  }

  void print_on(outputStream* str, int indent) const {
    streamIndentor si(str, indent * 2);

    generic::Context ctx(NULL); // empty, as _descriptor already canonicalized
    TempNewSymbol family = descriptor()->reify_signature(&ctx, Thread::current());
    str->indent().print_cr("Logical Method %s:", family->as_C_string());

    streamIndentor si2(str);
    for (int i = 0; i < _members.length(); ++i) {
      str->indent();
      print_method(str, _members.at(i).first);
      if (_members.at(i).second == DISQUALIFIED) {
        str->print(" (disqualified)");
      }
      str->print_cr("");
    }

    if (_selected_target != NULL) {
      print_selected(str, 1);
    }
  }

  void print_selected(outputStream* str, int indent) const {
    assert(has_target(), "Should be called otherwise");
    streamIndentor si(str, indent * 2);
    str->indent().print("Selected method: ");
    print_method(str, _selected_target);
    str->print_cr("");
  }

  void print_exception(outputStream* str, int indent) {
    assert(throws_exception(), "Should be called otherwise");
    streamIndentor si(str, indent * 2);
    str->indent().print_cr("%s", _exception_message->as_C_string());
  }
#endif // ndef PRODUCT
};

Symbol* MethodFamily::generate_no_defaults_message(TRAPS) const {
  return SymbolTable::new_symbol("No qualifying defaults found", CHECK_NULL);
}

Symbol* MethodFamily::generate_abstract_method_message(Method* method, TRAPS) const {
  Symbol* klass = method->klass_name();
  Symbol* name = method->name();
  Symbol* sig = method->signature();
  stringStream ss;
  ss.print("Method ");
  ss.write((const char*)klass->bytes(), klass->utf8_length());
  ss.print(".");
  ss.write((const char*)name->bytes(), name->utf8_length());
  ss.write((const char*)sig->bytes(), sig->utf8_length());
  ss.print(" is abstract");
  return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}

Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const {
  stringStream ss;
  ss.print("Conflicting default methods:");
  for (int i = 0; i < methods->length(); ++i) {
    Method* method = methods->at(i);
    Symbol* klass = method->klass_name();
    Symbol* name = method->name();
    ss.print(" ");
    ss.write((const char*)klass->bytes(), klass->utf8_length());
    ss.print(".");
    ss.write((const char*)name->bytes(), name->utf8_length());
  }
  return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}

class StateRestorer;

// StatefulMethodFamily is a wrapper around MethodFamily that maintains the
// qualification state during hierarchy visitation, and applies that state
// when adding members to the MethodFamily.
class StatefulMethodFamily : public ResourceObj {
  friend class StateRestorer;
 private:
  MethodFamily* _method;
  QualifiedState _qualification_state;

  void set_qualification_state(QualifiedState state) {
    _qualification_state = state;
  }

 public:
  StatefulMethodFamily(generic::MethodDescriptor* md, generic::Context* ctx) {
    _method = new MethodFamily(md->canonicalize(ctx));
    _qualification_state = QUALIFIED;
  }

  void set_target_if_empty(Method* m) { _method->set_target_if_empty(m); }

  MethodFamily* get_method_family() { return _method; }

  bool descriptor_matches(generic::MethodDescriptor* md, generic::Context* ctx) {
    return _method->descriptor_matches(md, ctx);
  }

  StateRestorer* record_method_and_dq_further(Method* mo);
};

class StateRestorer : public PseudoScopeMark {
 private:
  StatefulMethodFamily* _method;
  QualifiedState _state_to_restore;
 public:
  StateRestorer(StatefulMethodFamily* dm, QualifiedState state)
      : _method(dm), _state_to_restore(state) {}
  ~StateRestorer() { destroy(); }
  void restore_state() { _method->set_qualification_state(_state_to_restore); }
  virtual void destroy() { restore_state(); }
};

StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
  StateRestorer* mark = new StateRestorer(this, _qualification_state);
  if (_qualification_state == QUALIFIED) {
    _method->record_qualified_method(mo);
  } else {
    _method->record_disqualified_method(mo);
  }
  // Everything found "above"??? this method in the hierarchy walk is set to
  // disqualified
  set_qualification_state(DISQUALIFIED);
  return mark;
}

class StatefulMethodFamilies : public ResourceObj {
 private:
  GrowableArray<StatefulMethodFamily*> _methods;

 public:
  StatefulMethodFamily* find_matching(
      generic::MethodDescriptor* md, generic::Context* ctx) {
    for (int i = 0; i < _methods.length(); ++i) {
      StatefulMethodFamily* existing = _methods.at(i);
      if (existing->descriptor_matches(md, ctx)) {
        return existing;
      }
    }
    return NULL;
  }

  StatefulMethodFamily* find_matching_or_create(
      generic::MethodDescriptor* md, generic::Context* ctx) {
    StatefulMethodFamily* method = find_matching(md, ctx);
    if (method == NULL) {
      method = new StatefulMethodFamily(md, ctx);
      _methods.append(method);
    }
    return method;
  }

  void extract_families_into(GrowableArray<MethodFamily*>* array) {
    for (int i = 0; i < _methods.length(); ++i) {
      array->append(_methods.at(i)->get_method_family());
    }
  }
};

// Represents a location corresponding to a vtable slot for methods that
// neither the class nor any of it's ancestors provide an implementaion.
// Default methods may be present to fill this slot.
class EmptyVtableSlot : public ResourceObj {
 private:
  Symbol* _name;
  Symbol* _signature;
  int _size_of_parameters;
  MethodFamily* _binding;

 public:
  EmptyVtableSlot(Method* method)
      : _name(method->name()), _signature(method->signature()),
        _size_of_parameters(method->size_of_parameters()), _binding(NULL) {}

  Symbol* name() const { return _name; }
  Symbol* signature() const { return _signature; }
  int size_of_parameters() const { return _size_of_parameters; }

  void bind_family(MethodFamily* lm) { _binding = lm; }
  bool is_bound() { return _binding != NULL; }
  MethodFamily* get_binding() { return _binding; }

#ifndef PRODUCT
  void print_on(outputStream* str) const {
    print_slot(str, name(), signature());
  }
#endif // ndef PRODUCT
};

static GrowableArray<EmptyVtableSlot*>* find_empty_vtable_slots(
    InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {

  assert(klass != NULL, "Must be valid class");

  GrowableArray<EmptyVtableSlot*>* slots = new GrowableArray<EmptyVtableSlot*>();

  // All miranda methods are obvious candidates
  for (int i = 0; i < mirandas->length(); ++i) {
    EmptyVtableSlot* slot = new EmptyVtableSlot(mirandas->at(i));
    slots->append(slot);
  }

  // Also any overpasses in our superclasses, that we haven't implemented.
  // (can't use the vtable because it is not guaranteed to be initialized yet)
  InstanceKlass* super = klass->java_super();
  while (super != NULL) {
    for (int i = 0; i < super->methods()->length(); ++i) {
      Method* m = super->methods()->at(i);
      if (m->is_overpass()) {
        // m is a method that would have been a miranda if not for the
        // default method processing that occurred on behalf of our superclass,
        // so it's a method we want to re-examine in this new context.  That is,
        // unless we have a real implementation of it in the current class.
        Method* impl = klass->lookup_method(m->name(), m->signature());
        if (impl == NULL || impl->is_overpass()) {
          slots->append(new EmptyVtableSlot(m));
        }
      }
    }
    super = super->java_super();
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Slots that need filling:");
    streamIndentor si(tty);
    for (int i = 0; i < slots->length(); ++i) {
      tty->indent();
      slots->at(i)->print_on(tty);
      tty->print_cr("");
    }
  }
#endif // ndef PRODUCT
  return slots;
}

// Iterates over the type hierarchy looking for all methods with a specific
// method name.  The result of this is a set of method families each of
// which is populated with a set of methods that implement the same
// language-level signature.
class FindMethodsByName : public HierarchyVisitor<FindMethodsByName> {
 private:
  // Context data
  Thread* THREAD;
  generic::DescriptorCache* _cache;
  Symbol* _method_name;
  generic::Context* _ctx;
  StatefulMethodFamilies _families;

 public:

  FindMethodsByName(generic::DescriptorCache* cache, Symbol* name,
      generic::Context* ctx, Thread* thread) :
    _cache(cache), _method_name(name), _ctx(ctx), THREAD(thread) {}

  void get_discovered_families(GrowableArray<MethodFamily*>* methods) {
    _families.extract_families_into(methods);
  }

  void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
  void free_node_data(void* node_data) {
    PseudoScope::cast(node_data)->destroy();
  }

  bool visit() {
    PseudoScope* scope = PseudoScope::cast(current_data());
    InstanceKlass* klass = current_class();
    InstanceKlass* sub = current_depth() > 0 ? class_at_depth(1) : NULL;

    ContextMark* cm = new ContextMark(_ctx->mark());
    scope->add_mark(cm); // will restore context when scope is freed

    _ctx->apply_type_arguments(sub, klass, THREAD);

    int start, end = 0;
    start = klass->find_method_by_name(_method_name, &end);
    if (start != -1) {
      for (int i = start; i < end; ++i) {
        Method* m = klass->methods()->at(i);
        // This gets the method's parameter list with its generic type
        // parameters resolved
        generic::MethodDescriptor* md = _cache->descriptor_for(m, THREAD);

        // Find all methods on this hierarchy that match this method
        // (name, signature).   This class collects other families of this
        // method name.
        StatefulMethodFamily* family =
            _families.find_matching_or_create(md, _ctx);

        if (klass->is_interface()) {
          // ???
          StateRestorer* restorer = family->record_method_and_dq_further(m);
          scope->add_mark(restorer);
        } else {
          // This is the rule that methods in classes "win" (bad word) over
          // methods in interfaces.  This works because of single inheritance
          family->set_target_if_empty(m);
        }
      }
    }
    return true;
  }
};

#ifndef PRODUCT
static void print_families(
    GrowableArray<MethodFamily*>* methods, Symbol* match) {
  streamIndentor si(tty, 4);
  if (methods->length() == 0) {
    tty->indent();
    tty->print_cr("No Logical Method found");
  }
  for (int i = 0; i < methods->length(); ++i) {
    tty->indent();
    MethodFamily* lm = methods->at(i);
    if (lm->contains_signature(match)) {
      tty->print_cr("<Matching>");
    } else {
      tty->print_cr("<Non-Matching>");
    }
    lm->print_on(tty, 1);
  }
}
#endif // ndef PRODUCT

static void merge_in_new_methods(InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS);
static void create_overpasses(
    GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);

// This is the guts of the default methods implementation.  This is called just
// after the classfile has been parsed if some ancestor has default methods.
//
// First if finds any name/signature slots that need any implementation (either
// because they are miranda or a superclass's implementation is an overpass
// itself).  For each slot, iterate over the hierarchy, using generic signature
// information to partition any methods that match the name into method families
// where each family contains methods whose signatures are equivalent at the
// language level (i.e., their reified parameters match and return values are
// covariant). Check those sets to see if they contain a signature that matches
// the slot we're looking at (if we're lucky, there might be other empty slots
// that we can fill using the same analysis).
//
// For each slot filled, we generate an overpass method that either calls the
// unique default method candidate using invokespecial, or throws an exception
// (in the case of no default method candidates, or more than one valid
// candidate).  These methods are then added to the class's method list.  If
// the method set we're using contains methods (qualified or not) with a
// different runtime signature than the method we're creating, then we have to
// create bridges with those signatures too.
void DefaultMethods::generate_default_methods(
    InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {

  // This resource mark is the bound for all memory allocation that takes
  // place during default method processing.  After this goes out of scope,
  // all (Resource) objects' memory will be reclaimed.  Be careful if adding an
  // embedded resource mark under here as that memory can't be used outside
  // whatever scope it's in.
  ResourceMark rm(THREAD);

  generic::DescriptorCache cache;

  // Keep entire hierarchy alive for the duration of the computation
  KeepAliveRegistrar keepAlive(THREAD);
  KeepAliveVisitor loadKeepAlive(&keepAlive);
  loadKeepAlive.run(klass);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    ResourceMark rm;  // be careful with these!
    tty->print_cr("Class %s requires default method processing",
        klass->name()->as_klass_external_name());
    PrintHierarchy printer;
    printer.run(klass);
  }
#endif // ndef PRODUCT

  GrowableArray<EmptyVtableSlot*>* empty_slots =
      find_empty_vtable_slots(klass, mirandas, CHECK);

  for (int i = 0; i < empty_slots->length(); ++i) {
    EmptyVtableSlot* slot = empty_slots->at(i);
#ifndef PRODUCT
    if (TraceDefaultMethods) {
      streamIndentor si(tty, 2);
      tty->indent().print("Looking for default methods for slot ");
      slot->print_on(tty);
      tty->print_cr("");
    }
#endif // ndef PRODUCT
    if (slot->is_bound()) {
#ifndef PRODUCT
      if (TraceDefaultMethods) {
        streamIndentor si(tty, 4);
        tty->indent().print_cr("Already bound to logical method:");
        slot->get_binding()->print_on(tty, 1);
      }
#endif // ndef PRODUCT
      continue; // covered by previous processing
    }

    generic::Context ctx(&cache);
    FindMethodsByName visitor(&cache, slot->name(), &ctx, CHECK);
    visitor.run(klass);

    GrowableArray<MethodFamily*> discovered_families;
    visitor.get_discovered_families(&discovered_families);

#ifndef PRODUCT
    if (TraceDefaultMethods) {
      print_families(&discovered_families, slot->signature());
    }
#endif // ndef PRODUCT

    // Find and populate any other slots that match the discovered families
    for (int j = i; j < empty_slots->length(); ++j) {
      EmptyVtableSlot* open_slot = empty_slots->at(j);

      if (slot->name() == open_slot->name()) {
        for (int k = 0; k < discovered_families.length(); ++k) {
          MethodFamily* lm = discovered_families.at(k);

          if (lm->contains_signature(open_slot->signature())) {
            lm->determine_target(klass, CHECK);
            open_slot->bind_family(lm);
          }
        }
      }
    }
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Creating overpasses...");
  }
#endif // ndef PRODUCT

  create_overpasses(empty_slots, klass, CHECK);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Default method processing complete");
  }
#endif // ndef PRODUCT
}


/**
 * Generic analysis was used upon interface '_target' and found a unique
 * default method candidate with generic signature '_method_desc'.  This
 * method is only viable if it would also be in the set of default method
 * candidates if we ran a full analysis on the current class.
 *
 * The only reason that the method would not be in the set of candidates for
 * the current class is if that there's another covariantly matching method
 * which is "more specific" than the found method -- i.e., one could find a
 * path in the interface hierarchy in which the matching method appears
 * before we get to '_target'.
 *
 * In order to determine this, we examine all of the implemented
 * interfaces.  If we find path that leads to the '_target' interface, then
 * we examine that path to see if there are any methods that would shadow
 * the selected method along that path.
 */
class ShadowChecker : public HierarchyVisitor<ShadowChecker> {
 private:
  generic::DescriptorCache* _cache;
  Thread* THREAD;

  InstanceKlass* _target;

  Symbol* _method_name;
  InstanceKlass* _method_holder;
  generic::MethodDescriptor* _method_desc;
  bool _found_shadow;

  bool path_has_shadow() {
    generic::Context ctx(_cache);

    for (int i = current_depth() - 1; i > 0; --i) {
      InstanceKlass* ik = class_at_depth(i);
      InstanceKlass* sub = class_at_depth(i + 1);
      ctx.apply_type_arguments(sub, ik, THREAD);

      if (ik->is_interface()) {
        int end;
        int start = ik->find_method_by_name(_method_name, &end);
        if (start != -1) {
          for (int j = start; j < end; ++j) {
            Method* mo = ik->methods()->at(j);
            generic::MethodDescriptor* md = _cache->descriptor_for(mo, THREAD);
            if (_method_desc->covariant_match(md, &ctx)) {
              return true;
            }
          }
        }
      }
    }
    return false;
  }

 public:

  ShadowChecker(generic::DescriptorCache* cache, Thread* thread,
      Symbol* name, InstanceKlass* holder, generic::MethodDescriptor* desc,
      InstanceKlass* target)
    : _cache(cache), THREAD(thread), _method_name(name), _method_holder(holder),
      _method_desc(desc), _target(target), _found_shadow(false) {}

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }

  bool visit() {
    InstanceKlass* ik = current_class();
    if (ik == _target && current_depth() == 1) {
      return false; // This was the specified super -- no need to search it
    }
    if (ik == _method_holder || ik == _target) {
      // We found a path that should be examined to see if it shadows _method
      if (path_has_shadow()) {
        _found_shadow = true;
        cancel_iteration();
      }
      return false; // no need to continue up hierarchy
    }
    return true;
  }

  bool found_shadow() { return _found_shadow; }
};

// This is called during linktime when we find an invokespecial call that
// refers to a direct superinterface.  It indicates that we should find the
// default method in the hierarchy of that superinterface, and if that method
// would have been a candidate from the point of view of 'this' class, then we
// return that method.
Method* DefaultMethods::find_super_default(
    Klass* cls, Klass* super, Symbol* method_name, Symbol* sig, TRAPS) {

  ResourceMark rm(THREAD);

  assert(cls != NULL && super != NULL, "Need real classes");

  InstanceKlass* current_class = InstanceKlass::cast(cls);
  InstanceKlass* direction = InstanceKlass::cast(super);

  // Keep entire hierarchy alive for the duration of the computation
  KeepAliveRegistrar keepAlive(THREAD);
  KeepAliveVisitor loadKeepAlive(&keepAlive);
  loadKeepAlive.run(current_class);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Finding super default method %s.%s%s from %s",
      direction->name()->as_C_string(),
      method_name->as_C_string(), sig->as_C_string(),
      current_class->name()->as_C_string());
  }
#endif // ndef PRODUCT

  if (!direction->is_interface()) {
    // We should not be here
    return NULL;
  }

  generic::DescriptorCache cache;
  generic::Context ctx(&cache);

  // Prime the initial generic context for current -> direction
  ctx.apply_type_arguments(current_class, direction, CHECK_NULL);

  FindMethodsByName visitor(&cache, method_name, &ctx, CHECK_NULL);
  visitor.run(direction);

  GrowableArray<MethodFamily*> families;
  visitor.get_discovered_families(&families);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    print_families(&families, sig);
  }
#endif // ndef PRODUCT

  MethodFamily* selected_family = NULL;

  for (int i = 0; i < families.length(); ++i) {
    MethodFamily* lm = families.at(i);
    if (lm->contains_signature(sig)) {
      lm->determine_target(current_class, CHECK_NULL);
      selected_family = lm;
    }
  }

  if (selected_family->has_target()) {
    Method* target = selected_family->get_selected_target();
    InstanceKlass* holder = InstanceKlass::cast(target->method_holder());

    // Verify that the identified method is valid from the context of
    // the current class
    ShadowChecker checker(&cache, THREAD, target->name(),
        holder, selected_family->descriptor(), direction);
    checker.run(current_class);

    if (checker.found_shadow()) {
#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print_cr("    Only candidate found was shadowed.");
      }
#endif // ndef PRODUCT
      THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
                 "Accessible default method not found", NULL);
    } else {
#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print("    Returning ");
        print_method(tty, target, true);
        tty->print_cr("");
      }
#endif // ndef PRODUCT
      return target;
    }
  } else {
    assert(selected_family->throws_exception(), "must have target or throw");
    THROW_MSG_(vmSymbols::java_lang_AbstractMethodError(),
               selected_family->get_exception_message()->as_C_string(), NULL);
  }
}


static int assemble_redirect(
    BytecodeConstantPool* cp, BytecodeBuffer* buffer,
    Symbol* incoming, Method* target, TRAPS) {

  BytecodeAssembler assem(buffer, cp);

  SignatureStream in(incoming, true);
  SignatureStream out(target->signature(), true);
  u2 parameter_count = 0;

  assem.aload(parameter_count++); // load 'this'

  while (!in.at_return_type()) {
    assert(!out.at_return_type(), "Parameter counts do not match");
    BasicType bt = in.type();
    assert(out.type() == bt, "Parameter types are not compatible");
    assem.load(bt, parameter_count);
    if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
      assem.checkcast(out.as_symbol(THREAD));
    } else if (bt == T_LONG || bt == T_DOUBLE) {
      ++parameter_count; // longs and doubles use two slots
    }
    ++parameter_count;
    in.next();
    out.next();
  }
  assert(out.at_return_type(), "Parameter counts do not match");
  assert(in.type() == out.type(), "Return types are not compatible");

  if (parameter_count == 1 && (in.type() == T_LONG || in.type() == T_DOUBLE)) {
    ++parameter_count; // need room for return value
  }
  if (target->method_holder()->is_interface()) {
    assem.invokespecial(target);
  } else {
    assem.invokevirtual(target);
  }

  if (in.is_object() && in.as_symbol(THREAD) != out.as_symbol(THREAD)) {
    assem.checkcast(in.as_symbol(THREAD));
  }
  assem._return(in.type());
  return parameter_count;
}

static int assemble_abstract_method_error(
    BytecodeConstantPool* cp, BytecodeBuffer* buffer, Symbol* message, TRAPS) {

  Symbol* errorName = vmSymbols::java_lang_AbstractMethodError();
  Symbol* init = vmSymbols::object_initializer_name();
  Symbol* sig = vmSymbols::string_void_signature();

  BytecodeAssembler assem(buffer, cp);

  assem._new(errorName);
  assem.dup();
  assem.load_string(message);
  assem.invokespecial(errorName, init, sig);
  assem.athrow();

  return 3; // max stack size: [ exception, exception, string ]
}

static Method* new_method(
    BytecodeConstantPool* cp, BytecodeBuffer* bytecodes, Symbol* name,
    Symbol* sig, AccessFlags flags, int max_stack, int params,
    ConstMethod::MethodType mt, TRAPS) {

  address code_start = static_cast<address>(bytecodes->adr_at(0));
  int code_length = bytecodes->length();

  Method* m = Method::allocate(cp->pool_holder()->class_loader_data(),
      code_length, flags, 0, 0, 0, 0, mt, CHECK_NULL);

  m->set_constants(NULL); // This will get filled in later
  m->set_name_index(cp->utf8(name));
  m->set_signature_index(cp->utf8(sig));
  m->set_generic_signature_index(0);
#ifdef CC_INTERP
  ResultTypeFinder rtf(sig);
  m->set_result_index(rtf.type());
#endif
  m->set_size_of_parameters(params);
  m->set_max_stack(max_stack);
  m->set_max_locals(params);
  m->constMethod()->set_stackmap_data(NULL);
  m->set_code(code_start);
  m->set_force_inline(true);

  return m;
}

static void switchover_constant_pool(BytecodeConstantPool* bpool,
    InstanceKlass* klass, GrowableArray<Method*>* new_methods, TRAPS) {

  if (new_methods->length() > 0) {
    ConstantPool* cp = bpool->create_constant_pool(CHECK);
    if (cp != klass->constants()) {
      klass->class_loader_data()->add_to_deallocate_list(klass->constants());
      klass->set_constants(cp);
      cp->set_pool_holder(klass);

      for (int i = 0; i < new_methods->length(); ++i) {
        new_methods->at(i)->set_constants(cp);
      }
      for (int i = 0; i < klass->methods()->length(); ++i) {
        Method* mo = klass->methods()->at(i);
        mo->set_constants(cp);
      }
    }
  }
}

// A "bridge" is a method created by javac to bridge the gap between
// an implementation and a generically-compatible, but different, signature.
// Bridges have actual bytecode implementation in classfiles.
// An "overpass", on the other hand, performs the same function as a bridge
// but does not occur in a classfile; the VM creates overpass itself,
// when it needs a path to get from a call site to an default method, and
// a bridge doesn't exist.
static void create_overpasses(
    GrowableArray<EmptyVtableSlot*>* slots,
    InstanceKlass* klass, TRAPS) {

  GrowableArray<Method*> overpasses;
  BytecodeConstantPool bpool(klass->constants());

  for (int i = 0; i < slots->length(); ++i) {
    EmptyVtableSlot* slot = slots->at(i);

    if (slot->is_bound()) {
      MethodFamily* method = slot->get_binding();
      int max_stack = 0;
      BytecodeBuffer buffer;

#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print("for slot: ");
        slot->print_on(tty);
        tty->print_cr("");
        if (method->has_target()) {
          method->print_selected(tty, 1);
        } else {
          method->print_exception(tty, 1);
        }
      }
#endif // ndef PRODUCT
      if (method->has_target()) {
        Method* selected = method->get_selected_target();
        max_stack = assemble_redirect(
            &bpool, &buffer, slot->signature(), selected, CHECK);
      } else if (method->throws_exception()) {
        max_stack = assemble_abstract_method_error(
            &bpool, &buffer, method->get_exception_message(), CHECK);
      }
      AccessFlags flags = accessFlags_from(
          JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
      Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
          flags, max_stack, slot->size_of_parameters(),
          ConstMethod::OVERPASS, CHECK);
      if (m != NULL) {
        overpasses.push(m);
      }
    }
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Created %d overpass methods", overpasses.length());
  }
#endif // ndef PRODUCT

  switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
  merge_in_new_methods(klass, &overpasses, CHECK);
}

static void sort_methods(GrowableArray<Method*>* methods) {
  // Note that this must sort using the same key as is used for sorting
  // methods in InstanceKlass.
  bool sorted = true;
  for (int i = methods->length() - 1; i > 0; --i) {
    for (int j = 0; j < i; ++j) {
      Method* m1 = methods->at(j);
      Method* m2 = methods->at(j + 1);
      if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
        methods->at_put(j, m2);
        methods->at_put(j + 1, m1);
        sorted = false;
      }
    }
    if (sorted) break;
    sorted = true;
  }
#ifdef ASSERT
  uintptr_t prev = 0;
  for (int i = 0; i < methods->length(); ++i) {
    Method* mh = methods->at(i);
    uintptr_t nv = (uintptr_t)mh->name();
    assert(nv >= prev, "Incorrect overpass method ordering");
    prev = nv;
  }
#endif
}

static void merge_in_new_methods(InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS) {

  enum { ANNOTATIONS, PARAMETERS, DEFAULTS, NUM_ARRAYS };

  Array<AnnotationArray*>* original_annots[NUM_ARRAYS];

  Array<Method*>* original_methods = klass->methods();
  Annotations* annots = klass->annotations();
  original_annots[ANNOTATIONS] = annots->methods_annotations();
  original_annots[PARAMETERS]  = annots->methods_parameter_annotations();
  original_annots[DEFAULTS]    = annots->methods_default_annotations();

  Array<int>* original_ordering = klass->method_ordering();
  Array<int>* merged_ordering = Universe::the_empty_int_array();

  int new_size = klass->methods()->length() + new_methods->length();

  Array<AnnotationArray*>* merged_annots[NUM_ARRAYS];

  Array<Method*>* merged_methods = MetadataFactory::new_array<Method*>(
      klass->class_loader_data(), new_size, NULL, CHECK);
  for (int i = 0; i < NUM_ARRAYS; ++i) {
    if (original_annots[i] != NULL) {
      merged_annots[i] = MetadataFactory::new_array<AnnotationArray*>(
          klass->class_loader_data(), new_size, CHECK);
    } else {
      merged_annots[i] = NULL;
    }
  }
  if (original_ordering != NULL && original_ordering->length() > 0) {
    merged_ordering = MetadataFactory::new_array<int>(
        klass->class_loader_data(), new_size, CHECK);
  }
  int method_order_index = klass->methods()->length();

  sort_methods(new_methods);

  // Perform grand merge of existing methods and new methods
  int orig_idx = 0;
  int new_idx = 0;

  for (int i = 0; i < new_size; ++i) {
    Method* orig_method = NULL;
    Method* new_method = NULL;
    if (orig_idx < original_methods->length()) {
      orig_method = original_methods->at(orig_idx);
    }
    if (new_idx < new_methods->length()) {
      new_method = new_methods->at(new_idx);
    }

    if (orig_method != NULL &&
        (new_method == NULL || orig_method->name() < new_method->name())) {
      merged_methods->at_put(i, orig_method);
      original_methods->at_put(orig_idx, NULL);
      for (int j = 0; j < NUM_ARRAYS; ++j) {
        if (merged_annots[j] != NULL) {
          merged_annots[j]->at_put(i, original_annots[j]->at(orig_idx));
          original_annots[j]->at_put(orig_idx, NULL);
        }
      }
      if (merged_ordering->length() > 0) {
        merged_ordering->at_put(i, original_ordering->at(orig_idx));
      }
      ++orig_idx;
    } else {
      merged_methods->at_put(i, new_method);
      if (merged_ordering->length() > 0) {
        merged_ordering->at_put(i, method_order_index++);
      }
      ++new_idx;
    }
    // update idnum for new location
    merged_methods->at(i)->set_method_idnum(i);
  }

  // Verify correct order
#ifdef ASSERT
  uintptr_t prev = 0;
  for (int i = 0; i < merged_methods->length(); ++i) {
    Method* mo = merged_methods->at(i);
    uintptr_t nv = (uintptr_t)mo->name();
    assert(nv >= prev, "Incorrect method ordering");
    prev = nv;
  }
#endif

  // Replace klass methods with new merged lists
  klass->set_methods(merged_methods);
  annots->set_methods_annotations(merged_annots[ANNOTATIONS]);
  annots->set_methods_parameter_annotations(merged_annots[PARAMETERS]);
  annots->set_methods_default_annotations(merged_annots[DEFAULTS]);

  ClassLoaderData* cld = klass->class_loader_data();
  MetadataFactory::free_array(cld, original_methods);
  for (int i = 0; i < NUM_ARRAYS; ++i) {
    MetadataFactory::free_array(cld, original_annots[i]);
  }
  if (original_ordering->length() > 0) {
    klass->set_method_ordering(merged_ordering);
    MetadataFactory::free_array(cld, original_ordering);
  }
}