view src/cpu/sparc/vm/assembler_sparc.inline.hpp @ 453:c96030fff130

6684579: SoftReference processing can be made more efficient Summary: For current soft-ref clearing policies, we can decide at marking time if a soft-reference will definitely not be cleared, postponing the decision of whether it will definitely be cleared to the final reference processing phase. This can be especially beneficial in the case of concurrent collectors where the marking is usually concurrent but reference processing is usually not. Reviewed-by: jmasa
author ysr
date Thu, 20 Nov 2008 16:56:09 -0800
parents a61af66fc99e
children 56aae7be60d4
line wrap: on
line source

/*
 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
  jint& stub_inst = *(jint*) branch;
  stub_inst = patched_branch(target - branch, stub_inst, 0);
}

#ifndef PRODUCT
inline void MacroAssembler::pd_print_patched_instruction(address branch) {
  jint stub_inst = *(jint*) branch;
  print_instruction(stub_inst);
  ::tty->print("%s", " (unresolved)");
}
#endif // PRODUCT

inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }


// inlines for SPARC assembler -- dmu 5/97

inline void Assembler::check_delay() {
# ifdef CHECK_DELAY
  guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
  delay_state = no_delay;
# endif
}

inline void Assembler::emit_long(int x) {
  check_delay();
  AbstractAssembler::emit_long(x);
}

inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
  relocate(rtype);
  emit_long(x);
}

inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
  relocate(rspec);
  emit_long(x);
}


inline void Assembler::add(    Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
inline void Assembler::add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
inline void Assembler::add(    const Address& a, Register d, int offset) { add( a.base(), a.disp() + offset, d, a.rspec(offset)); }

inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }

inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }

inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }

inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }

inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }

inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }

inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }

inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }

inline void Assembler::jmpl( Address& a, Register d, int offset) { jmpl( a.base(), a.disp() + offset, d, a.rspec(offset)); }


inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }

inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

#ifdef _LP64
// Make all 32 bit loads signed so 64 bit registers maintain proper sign
inline void Assembler::ld(  Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
inline void Assembler::ld(  Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
#else
inline void Assembler::ld(  Register s1, Register s2, Register d) { lduw( s1, s2, d); }
inline void Assembler::ld(  Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
#endif


inline void Assembler::ld(   const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ld(   a.base(), a.disp() + offset, d ); }
inline void Assembler::ldsb( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsb( a.base(), a.disp() + offset, d ); }
inline void Assembler::ldsh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsh( a.base(), a.disp() + offset, d ); }
inline void Assembler::ldsw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsw( a.base(), a.disp() + offset, d ); }
inline void Assembler::ldub( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldub( a.base(), a.disp() + offset, d ); }
inline void Assembler::lduh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduh( a.base(), a.disp() + offset, d ); }
inline void Assembler::lduw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduw( a.base(), a.disp() + offset, d ); }
inline void Assembler::ldd(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldd(  a.base(), a.disp() + offset, d ); }
inline void Assembler::ldx(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldx(  a.base(), a.disp() + offset, d ); }


inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }


inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }


inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }

inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }

  // pp 222

inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }

inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

  // p 226

inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }


inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::st(  Register d, Register s1, Register s2) { stw(d, s1, s2); }
inline void Assembler::st(  Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }

inline void Assembler::stb( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stb( d, a.base(), a.disp() + offset); }
inline void Assembler::sth( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); sth( d, a.base(), a.disp() + offset); }
inline void Assembler::stw( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stw( d, a.base(), a.disp() + offset); }
inline void Assembler::st(  Register d, const Address& a, int offset) { relocate(a.rspec(offset)); st(  d, a.base(), a.disp() + offset); }
inline void Assembler::std( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); std( d, a.base(), a.disp() + offset); }
inline void Assembler::stx( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stx( d, a.base(), a.disp() + offset); }

// v8 p 99

inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }


// pp 231

inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }

inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }


// Use the right loads/stores for the platform
inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
#ifdef _LP64
  Assembler::ldx( s1, s2, d);
#else
  Assembler::ld(  s1, s2, d);
#endif
}

inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
#ifdef _LP64
  Assembler::ldx( s1, simm13a, d);
#else
  Assembler::ld(  s1, simm13a, d);
#endif
}

inline void MacroAssembler::ld_ptr( const Address& a, Register d, int offset ) {
#ifdef _LP64
  Assembler::ldx(  a, d, offset );
#else
  Assembler::ld(   a, d, offset );
#endif
}

inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
#ifdef _LP64
  Assembler::stx( d, s1, s2);
#else
  Assembler::st( d, s1, s2);
#endif
}

inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
#ifdef _LP64
  Assembler::stx( d, s1, simm13a);
#else
  Assembler::st( d, s1, simm13a);
#endif
}

inline void MacroAssembler::st_ptr(  Register d, const Address& a, int offset) {
#ifdef _LP64
  Assembler::stx(  d, a, offset);
#else
  Assembler::st(  d, a, offset);
#endif
}

// Use the right loads/stores for the platform
inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
#ifdef _LP64
  Assembler::ldx(s1, s2, d);
#else
  Assembler::ldd(s1, s2, d);
#endif
}

inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
#ifdef _LP64
  Assembler::ldx(s1, simm13a, d);
#else
  Assembler::ldd(s1, simm13a, d);
#endif
}

inline void MacroAssembler::ld_long( const Address& a, Register d, int offset ) {
#ifdef _LP64
  Assembler::ldx(a, d, offset );
#else
  Assembler::ldd(a, d, offset );
#endif
}

inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
#ifdef _LP64
  Assembler::stx(d, s1, s2);
#else
  Assembler::std(d, s1, s2);
#endif
}

inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
#ifdef _LP64
  Assembler::stx(d, s1, simm13a);
#else
  Assembler::std(d, s1, simm13a);
#endif
}

inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
#ifdef _LP64
  Assembler::stx(d, a, offset);
#else
  Assembler::std(d, a, offset);
#endif
}

// Functions for isolating 64 bit shifts for LP64

inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
#ifdef _LP64
  Assembler::sllx(s1, s2, d);
#else
  Assembler::sll(s1, s2, d);
#endif
}

inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
#ifdef _LP64
  Assembler::sllx(s1, imm6a, d);
#else
  Assembler::sll(s1, imm6a, d);
#endif
}

inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
#ifdef _LP64
  Assembler::srlx(s1, s2, d);
#else
  Assembler::srl(s1, s2, d);
#endif
}

inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
#ifdef _LP64
  Assembler::srlx(s1, imm6a, d);
#else
  Assembler::srl(s1, imm6a, d);
#endif
}

// Use the right branch for the platform

inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
  if (VM_Version::v9_instructions_work())
    Assembler::bp(c, a, icc, p, d, rt);
  else
    Assembler::br(c, a, d, rt);
}

inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
  br(c, a, p, target(L));
}


// Branch that tests either xcc or icc depending on the
// architecture compiled (LP64 or not)
inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
#ifdef _LP64
    Assembler::bp(c, a, xcc, p, d, rt);
#else
    MacroAssembler::br(c, a, p, d, rt);
#endif
}

inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
  brx(c, a, p, target(L));
}

inline void MacroAssembler::ba( bool a, Label& L ) {
  br(always, a, pt, L);
}

// Warning: V9 only functions
inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
  Assembler::bp(c, a, cc, p, d, rt);
}

inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
  Assembler::bp(c, a, cc, p, L);
}

inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
  if (VM_Version::v9_instructions_work())
    fbp(c, a, fcc0, p, d, rt);
  else
    Assembler::fb(c, a, d, rt);
}

inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
  fb(c, a, p, target(L));
}

inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
  Assembler::fbp(c, a, cc, p, d, rt);
}

inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
  Assembler::fbp(c, a, cc, p, L);
}

inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }

// Call with a check to see if we need to deal with the added
// expense of relocation and if we overflow the displacement
// of the quick call instruction./
// Check to see if we have to deal with relocations
inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
#ifdef _LP64
  intptr_t disp;
  // NULL is ok because it will be relocated later.
  // Must change NULL to a reachable address in order to
  // pass asserts here and in wdisp.
  if ( d == NULL )
    d = pc();

  // Is this address within range of the call instruction?
  // If not, use the expensive instruction sequence
  disp = (intptr_t)d - (intptr_t)pc();
  if ( disp != (intptr_t)(int32_t)disp ) {
    relocate(rt);
    Address dest(O7, (address)d);
    sethi(dest, /*ForceRelocatable=*/ true);
    jmpl(dest, O7);
  }
  else {
    Assembler::call( d, rt );
  }
#else
  Assembler::call( d, rt );
#endif
}

inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
  MacroAssembler::call( target(L), rt);
}



inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }

// prefetch instruction
inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
  if (VM_Version::v9_instructions_work())
    Assembler::bp( never, true, xcc, pt, d, rt );
}
inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }


// clobbers o7 on V8!!
// returns delta from gotten pc to addr after
inline int MacroAssembler::get_pc( Register d ) {
  int x = offset();
  if (VM_Version::v9_instructions_work())
    rdpc(d);
  else {
    Label lbl;
    Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
    if (d == O7)  delayed()->nop();
    else          delayed()->mov(O7, d);
    bind(lbl);
  }
  return offset() - x;
}


// Note:  All MacroAssembler::set_foo functions are defined out-of-line.


// Loads the current PC of the following instruction as an immediate value in
// 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
  intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
#ifdef _LP64
  Unimplemented();
#else
  Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
  Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
#endif
  return thepc;
}

inline void MacroAssembler::load_address( Address& a, int offset ) {
  assert_not_delayed();
#ifdef _LP64
  sethi(a);
  add(a, a.base(), offset);
#else
  if (a.hi() == 0 && a.rtype() == relocInfo::none) {
    set(a.disp() + offset, a.base());
  }
  else {
    sethi(a);
    add(a, a.base(), offset);
  }
#endif
}


inline void MacroAssembler::split_disp( Address& a, Register temp ) {
  assert_not_delayed();
  a = a.split_disp();
  Assembler::sethi(a.hi(), temp, a.rspec());
  add(a.base(), temp, a.base());
}


inline void MacroAssembler::load_contents( Address& a, Register d, int offset ) {
  assert_not_delayed();
  sethi(a);
  ld(a, d, offset);
}


inline void MacroAssembler::load_ptr_contents( Address& a, Register d, int offset ) {
  assert_not_delayed();
  sethi(a);
  ld_ptr(a, d, offset);
}


inline void MacroAssembler::store_contents( Register s, Address& a, int offset ) {
  assert_not_delayed();
  sethi(a);
  st(s, a, offset);
}


inline void MacroAssembler::store_ptr_contents( Register s, Address& a, int offset ) {
  assert_not_delayed();
  sethi(a);
  st_ptr(s, a, offset);
}


// This code sequence is relocatable to any address, even on LP64.
inline void MacroAssembler::jumpl_to( Address& a, Register d, int offset ) {
  assert_not_delayed();
  // Force fixed length sethi because NativeJump and NativeFarCall don't handle
  // variable length instruction streams.
  sethi(a, /*ForceRelocatable=*/ true);
  jmpl(a, d, offset);
}


inline void MacroAssembler::jump_to( Address& a, int offset ) {
  jumpl_to( a, G0, offset );
}


inline void MacroAssembler::set_oop( jobject obj, Register d ) {
  set_oop(allocate_oop_address(obj, d));
}


inline void MacroAssembler::set_oop_constant( jobject obj, Register d ) {
  set_oop(constant_oop_address(obj, d));
}


inline void MacroAssembler::set_oop( Address obj_addr ) {
  assert(obj_addr.rspec().type()==relocInfo::oop_type, "must be an oop reloc");
  load_address(obj_addr);
}


inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
  if (a.is_register())
    mov(a.as_register(), d);
  else
    ld (a.as_address(),  d);
}

inline void MacroAssembler::store_argument( Register s, Argument& a ) {
  if (a.is_register())
    mov(s, a.as_register());
  else
    st_ptr (s, a.as_address());         // ABI says everything is right justified.
}

inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
  if (a.is_register())
    mov(s, a.as_register());
  else
    st_ptr (s, a.as_address());
}


#ifdef _LP64
inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
  if (a.is_float_register())
// V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
    fmov(FloatRegisterImpl::S, s, a.as_float_register() );
  else
    // Floats are stored in the high half of the stack entry
    // The low half is undefined per the ABI.
    stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
}

inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
  if (a.is_float_register())
// V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
    fmov(FloatRegisterImpl::D, s, a.as_double_register() );
  else
    stf(FloatRegisterImpl::D, s, a.as_address());
}

inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
  if (a.is_register())
    mov(s, a.as_register());
  else
    stx(s, a.as_address());
}
#endif

inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }

inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }

// returns if membar generates anything, obviously this code should mirror
// membar below.
inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
  if( !os::is_MP() ) return false;  // Not needed on single CPU
  if( VM_Version::v9_instructions_work() ) {
    const Membar_mask_bits effective_mask =
        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
    return (effective_mask != 0);
  } else {
    return true;
  }
}

inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
  // Uniprocessors do not need memory barriers
  if (!os::is_MP()) return;
  // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
  // 8.4.4.3, a.31 and a.50.
  if( VM_Version::v9_instructions_work() ) {
    // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
    // of the mmask subfield of const7a that does anything that isn't done
    // implicitly is StoreLoad.
    const Membar_mask_bits effective_mask =
        Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
    if ( effective_mask != 0 ) {
      Assembler::membar( effective_mask );
    }
  } else {
    // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
    // do not issue the stbar because to my knowledge all v8 machines implement TSO,
    // which guarantees that all stores behave as if an stbar were issued just after
    // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
    // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
    // it can't be specified by stbar, nor have I come up with a way to simulate it.
    //
    // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
    // space.  Put one here to be on the safe side.
    Assembler::ldstub(SP, 0, G0);
  }
}