view src/cpu/sparc/vm/c1_LinearScan_sparc.hpp @ 453:c96030fff130

6684579: SoftReference processing can be made more efficient Summary: For current soft-ref clearing policies, we can decide at marking time if a soft-reference will definitely not be cleared, postponing the decision of whether it will definitely be cleared to the final reference processing phase. This can be especially beneficial in the case of concurrent collectors where the marking is usually concurrent but reference processing is usually not. Reviewed-by: jmasa
author ysr
date Thu, 20 Nov 2008 16:56:09 -0800
parents a61af66fc99e
children c18cbe5936b8
line wrap: on
line source

/*
 * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

inline bool LinearScan::is_processed_reg_num(int reg_num) {
  return reg_num < 26 || reg_num > 31;
}

inline int LinearScan::num_physical_regs(BasicType type) {
  // Sparc requires two cpu registers for long
  // and two cpu registers for double
#ifdef _LP64
  if (type == T_DOUBLE) {
#else
  if (type == T_DOUBLE || type == T_LONG) {
#endif
    return 2;
  }
  return 1;
}


inline bool LinearScan::requires_adjacent_regs(BasicType type) {
#ifdef _LP64
  return type == T_DOUBLE;
#else
  return type == T_DOUBLE || type == T_LONG;
#endif
}

inline bool LinearScan::is_caller_save(int assigned_reg) {
  return assigned_reg > pd_last_callee_saved_reg && assigned_reg <= pd_last_fpu_reg;
}


inline void LinearScan::pd_add_temps(LIR_Op* op) {
  // No special case behaviours yet
}


inline bool LinearScanWalker::pd_init_regs_for_alloc(Interval* cur) {
  if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::callee_saved)) {
    assert(cur->type() != T_FLOAT && cur->type() != T_DOUBLE, "cpu regs only");
    _first_reg = pd_first_callee_saved_reg;
    _last_reg = pd_last_callee_saved_reg;
    return true;
  } else if (cur->type() == T_INT || cur->type() == T_LONG || cur->type() == T_OBJECT) {
    _first_reg = pd_first_cpu_reg;
    _last_reg = pd_last_allocatable_cpu_reg;
    return true;
  }
  return false;
}