view src/cpu/sparc/vm/dump_sparc.cpp @ 453:c96030fff130

6684579: SoftReference processing can be made more efficient Summary: For current soft-ref clearing policies, we can decide at marking time if a soft-reference will definitely not be cleared, postponing the decision of whether it will definitely be cleared to the final reference processing phase. This can be especially beneficial in the case of concurrent collectors where the marking is usually concurrent but reference processing is usually not. Reviewed-by: jmasa
author ysr
date Thu, 20 Nov 2008 16:56:09 -0800
parents a61af66fc99e
children 6b2273dd6fa9
line wrap: on
line source

/*
 * Copyright 2004-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_dump_sparc.cpp.incl"



// Generate the self-patching vtable method:
//
// This method will be called (as any other Klass virtual method) with
// the Klass itself as the first argument.  Example:
//
//      oop obj;
//      int size = obj->klass()->klass_part()->oop_size(this);
//
// for which the virtual method call is Klass::oop_size();
//
// The dummy method is called with the Klass object as the first
// operand, and an object as the second argument.
//

//=====================================================================

// All of the dummy methods in the vtable are essentially identical,
// differing only by an ordinal constant, and they bear no releationship
// to the original method which the caller intended. Also, there needs
// to be 'vtbl_list_size' instances of the vtable in order to
// differentiate between the 'vtable_list_size' original Klass objects.

#define __ masm->

void CompactingPermGenGen::generate_vtable_methods(void** vtbl_list,
                                                   void** vtable,
                                                   char** md_top,
                                                   char* md_end,
                                                   char** mc_top,
                                                   char* mc_end) {

  intptr_t vtable_bytes = (num_virtuals * vtbl_list_size) * sizeof(void*);
  *(intptr_t *)(*md_top) = vtable_bytes;
  *md_top += sizeof(intptr_t);
  void** dummy_vtable = (void**)*md_top;
  *vtable = dummy_vtable;
  *md_top += vtable_bytes;

  guarantee(*md_top <= md_end, "Insufficient space for vtables.");

  // Get ready to generate dummy methods.

  CodeBuffer cb((unsigned char*)*mc_top, mc_end - *mc_top);
  MacroAssembler* masm = new MacroAssembler(&cb);

  Label common_code;
  for (int i = 0; i < vtbl_list_size; ++i) {
    for (int j = 0; j < num_virtuals; ++j) {
      dummy_vtable[num_virtuals * i + j] = (void*)masm->pc();
      __ save(SP, -256, SP);
      __ brx(Assembler::always, false, Assembler::pt, common_code);

      // Load L0 with a value indicating vtable/offset pair.
      // -- bits[ 7..0]  (8 bits) which virtual method in table?
      // -- bits[12..8]  (5 bits) which virtual method table?
      // -- must fit in 13-bit instruction immediate field.
      __ delayed()->set((i << 8) + j, L0);
    }
  }

  __ bind(common_code);

  // Expecting to be called with the "this" pointer in O0/I0 (where
  // "this" is a Klass object).  In addition, L0 was set (above) to
  // identify the method and table.

  // Look up the correct vtable pointer.

  __ set((intptr_t)vtbl_list, L2);      // L2 = address of new vtable list.
  __ srl(L0, 8, L3);                    // Isolate L3 = vtable identifier.
  __ sll(L3, LogBytesPerWord, L3);
  __ ld_ptr(L2, L3, L3);                // L3 = new (correct) vtable pointer.
  __ st_ptr(L3, Address(I0, 0));        // Save correct vtable ptr in entry.

  // Restore registers and jump to the correct method;

  __ and3(L0, 255, L4);                 // Isolate L3 = method offset;.
  __ sll(L4, LogBytesPerWord, L4);
  __ ld_ptr(L3, L4, L4);                // Get address of correct virtual method
  Address method(L4, 0);
  __ jmpl(method, G0);                  // Jump to correct method.
  __ delayed()->restore();              // Restore registers.

  __ flush();
  *mc_top = (char*)__ pc();

  guarantee(*mc_top <= mc_end, "Insufficient space for method wrappers.");
}