view src/cpu/x86/vm/vm_version_x86_32.cpp @ 453:c96030fff130

6684579: SoftReference processing can be made more efficient Summary: For current soft-ref clearing policies, we can decide at marking time if a soft-reference will definitely not be cleared, postponing the decision of whether it will definitely be cleared to the final reference processing phase. This can be especially beneficial in the case of concurrent collectors where the marking is usually concurrent but reference processing is usually not. Reviewed-by: jmasa
author ysr
date Thu, 20 Nov 2008 16:56:09 -0800
parents 2649e5276dd7
children
line wrap: on
line source

/*
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_vm_version_x86_32.cpp.incl"


int VM_Version::_cpu;
int VM_Version::_model;
int VM_Version::_stepping;
int VM_Version::_cpuFeatures;
const char*           VM_Version::_features_str = "";
VM_Version::CpuidInfo VM_Version::_cpuid_info   = { 0, };

static BufferBlob* stub_blob;
static const int stub_size = 300;

extern "C" {
  typedef void (*getPsrInfo_stub_t)(void*);
}
static getPsrInfo_stub_t getPsrInfo_stub = NULL;


class VM_Version_StubGenerator: public StubCodeGenerator {
 public:

  VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}

  address generate_getPsrInfo() {
    // Flags to test CPU type.
    const uint32_t EFL_AC           = 0x40000;
    const uint32_t EFL_ID           = 0x200000;
    // Values for when we don't have a CPUID instruction.
    const int      CPU_FAMILY_SHIFT = 8;
    const uint32_t CPU_FAMILY_386   = (3 << CPU_FAMILY_SHIFT);
    const uint32_t CPU_FAMILY_486   = (4 << CPU_FAMILY_SHIFT);

    Label detect_486, cpu486, detect_586, std_cpuid1;
    Label ext_cpuid1, ext_cpuid5, done;

    StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
#   define __ _masm->

    address start = __ pc();

    //
    // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
    //
    __ push(rbp);
    __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
    __ push(rbx);
    __ push(rsi);
    __ pushf();          // preserve rbx, and flags
    __ pop(rax);
    __ push(rax);
    __ mov(rcx, rax);
    //
    // if we are unable to change the AC flag, we have a 386
    //
    __ xorl(rax, EFL_AC);
    __ push(rax);
    __ popf();
    __ pushf();
    __ pop(rax);
    __ cmpptr(rax, rcx);
    __ jccb(Assembler::notEqual, detect_486);

    __ movl(rax, CPU_FAMILY_386);
    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
    __ jmp(done);

    //
    // If we are unable to change the ID flag, we have a 486 which does
    // not support the "cpuid" instruction.
    //
    __ bind(detect_486);
    __ mov(rax, rcx);
    __ xorl(rax, EFL_ID);
    __ push(rax);
    __ popf();
    __ pushf();
    __ pop(rax);
    __ cmpptr(rcx, rax);
    __ jccb(Assembler::notEqual, detect_586);

    __ bind(cpu486);
    __ movl(rax, CPU_FAMILY_486);
    __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax);
    __ jmp(done);

    //
    // at this point, we have a chip which supports the "cpuid" instruction
    //
    __ bind(detect_586);
    __ xorptr(rax, rax);
    __ cpuid();
    __ orptr(rax, rax);
    __ jcc(Assembler::equal, cpu486);   // if cpuid doesn't support an input
                                        // value of at least 1, we give up and
                                        // assume a 486
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    __ cmpl(rax, 3);     // Is cpuid(0x4) supported?
    __ jccb(Assembler::belowEqual, std_cpuid1);

    //
    // cpuid(0x4) Deterministic cache params
    //
    __ movl(rax, 4);     // and rcx already set to 0x0
    __ xorl(rcx, rcx);
    __ cpuid();
    __ push(rax);
    __ andl(rax, 0x1f);  // Determine if valid cache parameters used
    __ orl(rax, rax);    // rax,[4:0] == 0 indicates invalid cache
    __ pop(rax);
    __ jccb(Assembler::equal, std_cpuid1);

    __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // Standard cpuid(0x1)
    //
    __ bind(std_cpuid1);
    __ movl(rax, 1);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    __ movl(rax, 0x80000000);
    __ cpuid();
    __ cmpl(rax, 0x80000000);     // Is cpuid(0x80000001) supported?
    __ jcc(Assembler::belowEqual, done);
    __ cmpl(rax, 0x80000004);     // Is cpuid(0x80000005) supported?
    __ jccb(Assembler::belowEqual, ext_cpuid1);
    __ cmpl(rax, 0x80000007);     // Is cpuid(0x80000008) supported?
    __ jccb(Assembler::belowEqual, ext_cpuid5);
    //
    // Extended cpuid(0x80000008)
    //
    __ movl(rax, 0x80000008);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // Extended cpuid(0x80000005)
    //
    __ bind(ext_cpuid5);
    __ movl(rax, 0x80000005);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // Extended cpuid(0x80000001)
    //
    __ bind(ext_cpuid1);
    __ movl(rax, 0x80000001);
    __ cpuid();
    __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
    __ movl(Address(rsi, 0), rax);
    __ movl(Address(rsi, 4), rbx);
    __ movl(Address(rsi, 8), rcx);
    __ movl(Address(rsi,12), rdx);

    //
    // return
    //
    __ bind(done);
    __ popf();
    __ pop(rsi);
    __ pop(rbx);
    __ pop(rbp);
    __ ret(0);

#   undef __

    return start;
  };
};


void VM_Version::get_processor_features() {

  _cpu = 4; // 486 by default
  _model = 0;
  _stepping = 0;
  _cpuFeatures = 0;
  _logical_processors_per_package = 1;
  if (!Use486InstrsOnly) {
    // Get raw processor info
    getPsrInfo_stub(&_cpuid_info);
    assert_is_initialized();
    _cpu = extended_cpu_family();
    _model = extended_cpu_model();
    _stepping = cpu_stepping();
    if (cpu_family() > 4) { // it supports CPUID
      _cpuFeatures = feature_flags();
      // Logical processors are only available on P4s and above,
      // and only if hyperthreading is available.
      _logical_processors_per_package = logical_processor_count();
    }
  }
  _supports_cx8 = supports_cmpxchg8();
  // if the OS doesn't support SSE, we can't use this feature even if the HW does
  if( !os::supports_sse())
    _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
  if (UseSSE < 4) {
    _cpuFeatures &= ~CPU_SSE4_1;
    _cpuFeatures &= ~CPU_SSE4_2;
  }
  if (UseSSE < 3) {
    _cpuFeatures &= ~CPU_SSE3;
    _cpuFeatures &= ~CPU_SSSE3;
    _cpuFeatures &= ~CPU_SSE4A;
  }
  if (UseSSE < 2)
    _cpuFeatures &= ~CPU_SSE2;
  if (UseSSE < 1)
    _cpuFeatures &= ~CPU_SSE;

  if (logical_processors_per_package() == 1) {
    // HT processor could be installed on a system which doesn't support HT.
    _cpuFeatures &= ~CPU_HT;
  }

  char buf[256];
  jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
               cores_per_cpu(), threads_per_core(),
               cpu_family(), _model, _stepping,
               (supports_cmov() ? ", cmov" : ""),
               (supports_cmpxchg8() ? ", cx8" : ""),
               (supports_fxsr() ? ", fxsr" : ""),
               (supports_mmx()  ? ", mmx"  : ""),
               (supports_sse()  ? ", sse"  : ""),
               (supports_sse2() ? ", sse2" : ""),
               (supports_sse3() ? ", sse3" : ""),
               (supports_ssse3()? ", ssse3": ""),
               (supports_sse4_1() ? ", sse4.1" : ""),
               (supports_sse4_2() ? ", sse4.2" : ""),
               (supports_mmx_ext() ? ", mmxext" : ""),
               (supports_3dnow()   ? ", 3dnow"  : ""),
               (supports_3dnow2()  ? ", 3dnowext" : ""),
               (supports_sse4a()   ? ", sse4a": ""),
               (supports_ht() ? ", ht": ""));
  _features_str = strdup(buf);

  // UseSSE is set to the smaller of what hardware supports and what
  // the command line requires.  I.e., you cannot set UseSSE to 2 on
  // older Pentiums which do not support it.
  if( UseSSE > 4 ) UseSSE=4;
  if( UseSSE < 0 ) UseSSE=0;
  if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
    UseSSE = MIN2((intx)3,UseSSE);
  if( !supports_sse3() ) // Drop to 2 if no SSE3 support
    UseSSE = MIN2((intx)2,UseSSE);
  if( !supports_sse2() ) // Drop to 1 if no SSE2 support
    UseSSE = MIN2((intx)1,UseSSE);
  if( !supports_sse () ) // Drop to 0 if no SSE  support
    UseSSE = 0;

  // On new cpus instructions which update whole XMM register should be used
  // to prevent partial register stall due to dependencies on high half.
  //
  // UseXmmLoadAndClearUpper == true  --> movsd(xmm, mem)
  // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
  // UseXmmRegToRegMoveAll == true  --> movaps(xmm, xmm), movapd(xmm, xmm).
  // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm),  movsd(xmm, xmm).

  if( is_amd() ) { // AMD cpus specific settings
    if( supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop) ) {
      // Use it on new AMD cpus starting from Opteron.
      UseAddressNop = true;
    }
    if( supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift) ) {
      // Use it on new AMD cpus starting from Opteron.
      UseNewLongLShift = true;
    }
    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
      if( supports_sse4a() ) {
        UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
      } else {
        UseXmmLoadAndClearUpper = false;
      }
    }
    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
      if( supports_sse4a() ) {
        UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
      } else {
        UseXmmRegToRegMoveAll = false;
      }
    }
    if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
      if( supports_sse4a() ) {
        UseXmmI2F = true;
      } else {
        UseXmmI2F = false;
      }
    }
    if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
      if( supports_sse4a() ) {
        UseXmmI2D = true;
      } else {
        UseXmmI2D = false;
      }
    }
  }

  if( is_intel() ) { // Intel cpus specific settings
    if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
      UseStoreImmI16 = false; // don't use it on Intel cpus
    }
    if( cpu_family() == 6 || cpu_family() == 15 ) {
      if( FLAG_IS_DEFAULT(UseAddressNop) ) {
        // Use it on all Intel cpus starting from PentiumPro
        UseAddressNop = true;
      }
    }
    if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
      UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
    }
    if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
      if( supports_sse3() ) {
        UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
      } else {
        UseXmmRegToRegMoveAll = false;
      }
    }
    if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
#ifdef COMPILER2
      if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
        // For new Intel cpus do the next optimization:
        // don't align the beginning of a loop if there are enough instructions
        // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
        // in current fetch line (OptoLoopAlignment) or the padding
        // is big (> MaxLoopPad).
        // Set MaxLoopPad to 11 for new Intel cpus to reduce number of
        // generated NOP instructions. 11 is the largest size of one
        // address NOP instruction '0F 1F' (see Assembler::nop(i)).
        MaxLoopPad = 11;
      }
#endif // COMPILER2
      if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
        UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
      }
      if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
        if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
          UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
        }
      }
    }
  }

  assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
  assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");

  // set valid Prefetch instruction
  if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
  if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
  if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0;
  if( !supports_sse() && supports_3dnow() ) ReadPrefetchInstr = 3;

  if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
  if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
  if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0;
  if( !supports_sse() && supports_3dnow() ) AllocatePrefetchInstr = 3;

  // Allocation prefetch settings
  intx cache_line_size = L1_data_cache_line_size();
  if( cache_line_size > AllocatePrefetchStepSize )
    AllocatePrefetchStepSize = cache_line_size;
  if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
    AllocatePrefetchLines = 3; // Optimistic value
  assert(AllocatePrefetchLines > 0, "invalid value");
  if( AllocatePrefetchLines < 1 ) // set valid value in product VM
    AllocatePrefetchLines = 1; // Conservative value

  AllocatePrefetchDistance = allocate_prefetch_distance();
  AllocatePrefetchStyle    = allocate_prefetch_style();

  if( AllocatePrefetchStyle == 2 && is_intel() &&
      cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core
    AllocatePrefetchDistance = 320;
  }
  assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");

#ifndef PRODUCT
  if (PrintMiscellaneous && Verbose) {
    tty->print_cr("Logical CPUs per core: %u",
                  logical_processors_per_package());
    tty->print_cr("UseSSE=%d",UseSSE);
    tty->print("Allocation: ");
    if (AllocatePrefetchStyle <= 0 || UseSSE == 0 && !supports_3dnow()) {
      tty->print_cr("no prefetching");
    } else {
      if (UseSSE == 0 && supports_3dnow()) {
        tty->print("PREFETCHW");
      } else if (UseSSE >= 1) {
        if (AllocatePrefetchInstr == 0) {
          tty->print("PREFETCHNTA");
        } else if (AllocatePrefetchInstr == 1) {
          tty->print("PREFETCHT0");
        } else if (AllocatePrefetchInstr == 2) {
          tty->print("PREFETCHT2");
        } else if (AllocatePrefetchInstr == 3) {
          tty->print("PREFETCHW");
        }
      }
      if (AllocatePrefetchLines > 1) {
        tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
      } else {
        tty->print_cr(" %d, one line", AllocatePrefetchDistance);
      }
    }
  }
#endif // !PRODUCT
}

void VM_Version::initialize() {
  ResourceMark rm;
  // Making this stub must be FIRST use of assembler

  stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
  if (stub_blob == NULL) {
    vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
  }
  CodeBuffer c(stub_blob->instructions_begin(),
               stub_blob->instructions_size());
  VM_Version_StubGenerator g(&c);
  getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
                                   g.generate_getPsrInfo());

  get_processor_features();
}