view src/share/vm/gc_implementation/g1/g1RemSet.cpp @ 453:c96030fff130

6684579: SoftReference processing can be made more efficient Summary: For current soft-ref clearing policies, we can decide at marking time if a soft-reference will definitely not be cleared, postponing the decision of whether it will definitely be cleared to the final reference processing phase. This can be especially beneficial in the case of concurrent collectors where the marking is usually concurrent but reference processing is usually not. Reviewed-by: jmasa
author ysr
date Thu, 20 Nov 2008 16:56:09 -0800
parents 37f87013dfd8
children 58054a18d735
line wrap: on
line source

/*
 * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_g1RemSet.cpp.incl"

#define CARD_REPEAT_HISTO 0

#if CARD_REPEAT_HISTO
static size_t ct_freq_sz;
static jbyte* ct_freq = NULL;

void init_ct_freq_table(size_t heap_sz_bytes) {
  if (ct_freq == NULL) {
    ct_freq_sz = heap_sz_bytes/CardTableModRefBS::card_size;
    ct_freq = new jbyte[ct_freq_sz];
    for (size_t j = 0; j < ct_freq_sz; j++) ct_freq[j] = 0;
  }
}

void ct_freq_note_card(size_t index) {
  assert(0 <= index && index < ct_freq_sz, "Bounds error.");
  if (ct_freq[index] < 100) { ct_freq[index]++; }
}

static IntHistogram card_repeat_count(10, 10);

void ct_freq_update_histo_and_reset() {
  for (size_t j = 0; j < ct_freq_sz; j++) {
    card_repeat_count.add_entry(ct_freq[j]);
    ct_freq[j] = 0;
  }

}
#endif


class IntoCSOopClosure: public OopsInHeapRegionClosure {
  OopsInHeapRegionClosure* _blk;
  G1CollectedHeap* _g1;
public:
  IntoCSOopClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* blk) :
    _g1(g1), _blk(blk) {}
  void set_region(HeapRegion* from) {
    _blk->set_region(from);
  }
  virtual void do_oop(narrowOop* p) {
    guarantee(false, "NYI");
  }
  virtual void do_oop(oop* p) {
    oop obj = *p;
    if (_g1->obj_in_cs(obj)) _blk->do_oop(p);
  }
  bool apply_to_weak_ref_discovered_field() { return true; }
  bool idempotent() { return true; }
};

class IntoCSRegionClosure: public HeapRegionClosure {
  IntoCSOopClosure _blk;
  G1CollectedHeap* _g1;
public:
  IntoCSRegionClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* blk) :
    _g1(g1), _blk(g1, blk) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set()) {
      _blk.set_region(r);
      if (r->isHumongous()) {
        if (r->startsHumongous()) {
          oop obj = oop(r->bottom());
          obj->oop_iterate(&_blk);
        }
      } else {
        r->oop_before_save_marks_iterate(&_blk);
      }
    }
    return false;
  }
};

void
StupidG1RemSet::oops_into_collection_set_do(OopsInHeapRegionClosure* oc,
                                            int worker_i) {
  IntoCSRegionClosure rc(_g1, oc);
  _g1->heap_region_iterate(&rc);
}

class UpdateRSOopClosure: public OopClosure {
  HeapRegion* _from;
  HRInto_G1RemSet* _rs;
  int _worker_i;
public:
  UpdateRSOopClosure(HRInto_G1RemSet* rs, int worker_i = 0) :
    _from(NULL), _rs(rs), _worker_i(worker_i) {
    guarantee(_rs != NULL, "Requires an HRIntoG1RemSet");
  }

  void set_from(HeapRegion* from) {
    assert(from != NULL, "from region must be non-NULL");
    _from = from;
  }

  virtual void do_oop(narrowOop* p) {
    guarantee(false, "NYI");
  }
  virtual void do_oop(oop* p) {
    assert(_from != NULL, "from region must be non-NULL");
    _rs->par_write_ref(_from, p, _worker_i);
  }
  // Override: this closure is idempotent.
  //  bool idempotent() { return true; }
  bool apply_to_weak_ref_discovered_field() { return true; }
};

class UpdateRSOutOfRegionClosure: public HeapRegionClosure {
  G1CollectedHeap*    _g1h;
  ModRefBarrierSet*   _mr_bs;
  UpdateRSOopClosure  _cl;
  int _worker_i;
public:
  UpdateRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
    _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
    _mr_bs(g1->mr_bs()),
    _worker_i(worker_i),
    _g1h(g1)
    {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set() && !r->continuesHumongous()) {
      _cl.set_from(r);
      r->set_next_filter_kind(HeapRegionDCTOC::OutOfRegionFilterKind);
      _mr_bs->mod_oop_in_space_iterate(r, &_cl, true, true);
    }
    return false;
  }
};

class VerifyRSCleanCardOopClosure: public OopClosure {
  G1CollectedHeap* _g1;
public:
  VerifyRSCleanCardOopClosure(G1CollectedHeap* g1) : _g1(g1) {}

  virtual void do_oop(narrowOop* p) {
    guarantee(false, "NYI");
  }
  virtual void do_oop(oop* p) {
    oop obj = *p;
    HeapRegion* to = _g1->heap_region_containing(obj);
    guarantee(to == NULL || !to->in_collection_set(),
              "Missed a rem set member.");
  }
};

HRInto_G1RemSet::HRInto_G1RemSet(G1CollectedHeap* g1, CardTableModRefBS* ct_bs)
  : G1RemSet(g1), _ct_bs(ct_bs), _g1p(_g1->g1_policy()),
    _cg1r(g1->concurrent_g1_refine()),
    _par_traversal_in_progress(false), _new_refs(NULL),
    _cards_scanned(NULL), _total_cards_scanned(0)
{
  _seq_task = new SubTasksDone(NumSeqTasks);
  _new_refs = NEW_C_HEAP_ARRAY(GrowableArray<oop*>*, ParallelGCThreads);
}

HRInto_G1RemSet::~HRInto_G1RemSet() {
  delete _seq_task;
}

void CountNonCleanMemRegionClosure::do_MemRegion(MemRegion mr) {
  if (_g1->is_in_g1_reserved(mr.start())) {
    _n += (int) ((mr.byte_size() / CardTableModRefBS::card_size));
    if (_start_first == NULL) _start_first = mr.start();
  }
}

class ScanRSClosure : public HeapRegionClosure {
  size_t _cards_done, _cards;
  G1CollectedHeap* _g1h;
  OopsInHeapRegionClosure* _oc;
  G1BlockOffsetSharedArray* _bot_shared;
  CardTableModRefBS *_ct_bs;
  int _worker_i;
  bool _try_claimed;
public:
  ScanRSClosure(OopsInHeapRegionClosure* oc, int worker_i) :
    _oc(oc),
    _cards(0),
    _cards_done(0),
    _worker_i(worker_i),
    _try_claimed(false)
  {
    _g1h = G1CollectedHeap::heap();
    _bot_shared = _g1h->bot_shared();
    _ct_bs = (CardTableModRefBS*) (_g1h->barrier_set());
  }

  void set_try_claimed() { _try_claimed = true; }

  void scanCard(size_t index, HeapRegion *r) {
    _cards_done++;
    DirtyCardToOopClosure* cl =
      r->new_dcto_closure(_oc,
                         CardTableModRefBS::Precise,
                         HeapRegionDCTOC::IntoCSFilterKind);

    // Set the "from" region in the closure.
    _oc->set_region(r);
    HeapWord* card_start = _bot_shared->address_for_index(index);
    HeapWord* card_end = card_start + G1BlockOffsetSharedArray::N_words;
    Space *sp = SharedHeap::heap()->space_containing(card_start);
    MemRegion sm_region;
    if (ParallelGCThreads > 0) {
      // first find the used area
      sm_region = sp->used_region_at_save_marks();
    } else {
      // The closure is not idempotent.  We shouldn't look at objects
      // allocated during the GC.
      sm_region = sp->used_region_at_save_marks();
    }
    MemRegion mr = sm_region.intersection(MemRegion(card_start,card_end));
    if (!mr.is_empty()) {
      cl->do_MemRegion(mr);
    }
  }

  void printCard(HeapRegion* card_region, size_t card_index,
                 HeapWord* card_start) {
    gclog_or_tty->print_cr("T %d Region [" PTR_FORMAT ", " PTR_FORMAT ") "
                           "RS names card %p: "
                           "[" PTR_FORMAT ", " PTR_FORMAT ")",
                           _worker_i,
                           card_region->bottom(), card_region->end(),
                           card_index,
                           card_start, card_start + G1BlockOffsetSharedArray::N_words);
  }

  bool doHeapRegion(HeapRegion* r) {
    assert(r->in_collection_set(), "should only be called on elements of CS.");
    HeapRegionRemSet* hrrs = r->rem_set();
    if (hrrs->iter_is_complete()) return false; // All done.
    if (!_try_claimed && !hrrs->claim_iter()) return false;
    // If we didn't return above, then
    //   _try_claimed || r->claim_iter()
    // is true: either we're supposed to work on claimed-but-not-complete
    // regions, or we successfully claimed the region.
    HeapRegionRemSetIterator* iter = _g1h->rem_set_iterator(_worker_i);
    hrrs->init_iterator(iter);
    size_t card_index;
    while (iter->has_next(card_index)) {
      HeapWord* card_start = _g1h->bot_shared()->address_for_index(card_index);

#if 0
      gclog_or_tty->print("Rem set iteration yielded card [" PTR_FORMAT ", " PTR_FORMAT ").\n",
                          card_start, card_start + CardTableModRefBS::card_size_in_words);
#endif

      HeapRegion* card_region = _g1h->heap_region_containing(card_start);
      assert(card_region != NULL, "Yielding cards not in the heap?");
      _cards++;

      if (!card_region->in_collection_set()) {
        // If the card is dirty, then we will scan it during updateRS.
        if (!_ct_bs->is_card_claimed(card_index) &&
            !_ct_bs->is_card_dirty(card_index)) {
          assert(_ct_bs->is_card_clean(card_index) ||
                 _ct_bs->is_card_claimed(card_index),
                 "Card is either dirty, clean, or claimed");
          if (_ct_bs->claim_card(card_index))
            scanCard(card_index, card_region);
        }
      }
    }
    hrrs->set_iter_complete();
    return false;
  }
  // Set all cards back to clean.
  void cleanup() {_g1h->cleanUpCardTable();}
  size_t cards_done() { return _cards_done;}
  size_t cards_looked_up() { return _cards;}
};

// We want the parallel threads to start their scanning at
// different collection set regions to avoid contention.
// If we have:
//          n collection set regions
//          p threads
// Then thread t will start at region t * floor (n/p)

HeapRegion* HRInto_G1RemSet::calculateStartRegion(int worker_i) {
  HeapRegion* result = _g1p->collection_set();
  if (ParallelGCThreads > 0) {
    size_t cs_size = _g1p->collection_set_size();
    int n_workers = _g1->workers()->total_workers();
    size_t cs_spans = cs_size / n_workers;
    size_t ind      = cs_spans * worker_i;
    for (size_t i = 0; i < ind; i++)
      result = result->next_in_collection_set();
  }
  return result;
}

void HRInto_G1RemSet::scanRS(OopsInHeapRegionClosure* oc, int worker_i) {
  double rs_time_start = os::elapsedTime();
  HeapRegion *startRegion = calculateStartRegion(worker_i);

  BufferingOopsInHeapRegionClosure boc(oc);
  ScanRSClosure scanRScl(&boc, worker_i);
  _g1->collection_set_iterate_from(startRegion, &scanRScl);
  scanRScl.set_try_claimed();
  _g1->collection_set_iterate_from(startRegion, &scanRScl);

  boc.done();
  double closure_app_time_sec = boc.closure_app_seconds();
  double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
    closure_app_time_sec;
  double closure_app_time_ms = closure_app_time_sec * 1000.0;

  assert( _cards_scanned != NULL, "invariant" );
  _cards_scanned[worker_i] = scanRScl.cards_done();

  _g1p->record_scan_rs_start_time(worker_i, rs_time_start * 1000.0);
  _g1p->record_scan_rs_time(worker_i, scan_rs_time_sec * 1000.0);
  if (ParallelGCThreads > 0) {
    // In this case, we called scanNewRefsRS and recorded the corresponding
    // time.
    double scan_new_refs_time_ms = _g1p->get_scan_new_refs_time(worker_i);
    if (scan_new_refs_time_ms > 0.0) {
      closure_app_time_ms += scan_new_refs_time_ms;
    }
  }
  _g1p->record_obj_copy_time(worker_i, closure_app_time_ms);
}

void HRInto_G1RemSet::updateRS(int worker_i) {
  ConcurrentG1Refine* cg1r = _g1->concurrent_g1_refine();

  double start = os::elapsedTime();
  _g1p->record_update_rs_start_time(worker_i, start * 1000.0);

  if (G1RSBarrierUseQueue && !cg1r->do_traversal()) {
    // Apply the appropriate closure to all remaining log entries.
    _g1->iterate_dirty_card_closure(false, worker_i);
    // Now there should be no dirty cards.
    if (G1RSLogCheckCardTable) {
      CountNonCleanMemRegionClosure cl(_g1);
      _ct_bs->mod_card_iterate(&cl);
      // XXX This isn't true any more: keeping cards of young regions
      // marked dirty broke it.  Need some reasonable fix.
      guarantee(cl.n() == 0, "Card table should be clean.");
    }
  } else {
    UpdateRSOutOfRegionClosure update_rs(_g1, worker_i);
    _g1->heap_region_iterate(&update_rs);
    // We did a traversal; no further one is necessary.
    if (G1RSBarrierUseQueue) {
      assert(cg1r->do_traversal(), "Or we shouldn't have gotten here.");
      cg1r->set_pya_cancel();
    }
    if (_cg1r->use_cache()) {
      _cg1r->clear_and_record_card_counts();
      _cg1r->clear_hot_cache();
    }
  }
  _g1p->record_update_rs_time(worker_i, (os::elapsedTime() - start) * 1000.0);
}

#ifndef PRODUCT
class PrintRSClosure : public HeapRegionClosure {
  int _count;
public:
  PrintRSClosure() : _count(0) {}
  bool doHeapRegion(HeapRegion* r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    _count += (int) hrrs->occupied();
    if (hrrs->occupied() == 0) {
      gclog_or_tty->print("Heap Region [" PTR_FORMAT ", " PTR_FORMAT ") "
                          "has no remset entries\n",
                          r->bottom(), r->end());
    } else {
      gclog_or_tty->print("Printing rem set for heap region [" PTR_FORMAT ", " PTR_FORMAT ")\n",
                          r->bottom(), r->end());
      r->print();
      hrrs->print();
      gclog_or_tty->print("\nDone printing rem set\n");
    }
    return false;
  }
  int occupied() {return _count;}
};
#endif

class CountRSSizeClosure: public HeapRegionClosure {
  size_t _n;
  size_t _tot;
  size_t _max;
  HeapRegion* _max_r;
  enum {
    N = 20,
    MIN = 6
  };
  int _histo[N];
public:
  CountRSSizeClosure() : _n(0), _tot(0), _max(0), _max_r(NULL) {
    for (int i = 0; i < N; i++) _histo[i] = 0;
  }
  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      size_t occ = r->rem_set()->occupied();
      _n++;
      _tot += occ;
      if (occ > _max) {
        _max = occ;
        _max_r = r;
      }
      // Fit it into a histo bin.
      int s = 1 << MIN;
      int i = 0;
      while (occ > (size_t) s && i < (N-1)) {
        s = s << 1;
        i++;
      }
      _histo[i]++;
    }
    return false;
  }
  size_t n() { return _n; }
  size_t tot() { return _tot; }
  size_t mx() { return _max; }
  HeapRegion* mxr() { return _max_r; }
  void print_histo() {
    int mx = N;
    while (mx >= 0) {
      if (_histo[mx-1] > 0) break;
      mx--;
    }
    gclog_or_tty->print_cr("Number of regions with given RS sizes:");
    gclog_or_tty->print_cr("           <= %8d   %8d", 1 << MIN, _histo[0]);
    for (int i = 1; i < mx-1; i++) {
      gclog_or_tty->print_cr("  %8d  - %8d   %8d",
                    (1 << (MIN + i - 1)) + 1,
                    1 << (MIN + i),
                    _histo[i]);
    }
    gclog_or_tty->print_cr("            > %8d   %8d", (1 << (MIN+mx-2))+1, _histo[mx-1]);
  }
};

void
HRInto_G1RemSet::scanNewRefsRS(OopsInHeapRegionClosure* oc,
                                             int worker_i) {
  double scan_new_refs_start_sec = os::elapsedTime();
  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  CardTableModRefBS* ct_bs = (CardTableModRefBS*) (g1h->barrier_set());
  while (_new_refs[worker_i]->is_nonempty()) {
    oop* p = _new_refs[worker_i]->pop();
    oop obj = *p;
    // *p was in the collection set when p was pushed on "_new_refs", but
    // another thread may have processed this location from an RS, so it
    // might not point into the CS any longer.  If so, it's obviously been
    // processed, and we don't need to do anything further.
    if (g1h->obj_in_cs(obj)) {
      HeapRegion* r = g1h->heap_region_containing(p);

      DEBUG_ONLY(HeapRegion* to = g1h->heap_region_containing(obj));
      assert(ParallelGCThreads > 1
             || to->rem_set()->contains_reference(p),
             "Invariant: pushed after being added."
             "(Not reliable in parallel code.)");
      oc->set_region(r);
      // If "p" has already been processed concurrently, this is
      // idempotent.
      oc->do_oop(p);
    }
  }
  _g1p->record_scan_new_refs_time(worker_i,
                                  (os::elapsedTime() - scan_new_refs_start_sec)
                                  * 1000.0);
}

void HRInto_G1RemSet::set_par_traversal(bool b) {
  _par_traversal_in_progress = b;
  HeapRegionRemSet::set_par_traversal(b);
}

void HRInto_G1RemSet::cleanupHRRS() {
  HeapRegionRemSet::cleanup();
}

void
HRInto_G1RemSet::oops_into_collection_set_do(OopsInHeapRegionClosure* oc,
                                             int worker_i) {
#if CARD_REPEAT_HISTO
  ct_freq_update_histo_and_reset();
#endif
  if (worker_i == 0) {
    _cg1r->clear_and_record_card_counts();
  }

  // Make this into a command-line flag...
  if (G1RSCountHisto && (ParallelGCThreads == 0 || worker_i == 0)) {
    CountRSSizeClosure count_cl;
    _g1->heap_region_iterate(&count_cl);
    gclog_or_tty->print_cr("Avg of %d RS counts is %f, max is %d, "
                  "max region is " PTR_FORMAT,
                  count_cl.n(), (float)count_cl.tot()/(float)count_cl.n(),
                  count_cl.mx(), count_cl.mxr());
    count_cl.print_histo();
  }

  if (ParallelGCThreads > 0) {
    // This is a temporary change to serialize the update and scanning
    // of remembered sets. There are some race conditions when this is
    // done in parallel and they are causing failures. When we resolve
    // said race conditions, we'll revert back to parallel remembered
    // set updating and scanning. See CRs 6677707 and 6677708.
    if (worker_i == 0) {
      updateRS(worker_i);
      scanNewRefsRS(oc, worker_i);
      scanRS(oc, worker_i);
    }
  } else {
    assert(worker_i == 0, "invariant");

    updateRS(0);
    scanRS(oc, 0);
  }
}

void HRInto_G1RemSet::
prepare_for_oops_into_collection_set_do() {
#if G1_REM_SET_LOGGING
  PrintRSClosure cl;
  _g1->collection_set_iterate(&cl);
#endif
  cleanupHRRS();
  ConcurrentG1Refine* cg1r = _g1->concurrent_g1_refine();
  _g1->set_refine_cte_cl_concurrency(false);
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  dcqs.concatenate_logs();

  assert(!_par_traversal_in_progress, "Invariant between iterations.");
  if (ParallelGCThreads > 0) {
    set_par_traversal(true);
    int n_workers = _g1->workers()->total_workers();
    _seq_task->set_par_threads(n_workers);
    for (uint i = 0; i < ParallelGCThreads; i++)
      _new_refs[i] = new (ResourceObj::C_HEAP) GrowableArray<oop*>(8192,true);

    if (cg1r->do_traversal()) {
      updateRS(0);
      // Have to do this again after updaters
      cleanupHRRS();
    }
  }
  guarantee( _cards_scanned == NULL, "invariant" );
  _cards_scanned = NEW_C_HEAP_ARRAY(size_t, n_workers());
  _total_cards_scanned = 0;
}


class cleanUpIteratorsClosure : public HeapRegionClosure {
  bool doHeapRegion(HeapRegion *r) {
    HeapRegionRemSet* hrrs = r->rem_set();
    hrrs->init_for_par_iteration();
    return false;
  }
};

void HRInto_G1RemSet::cleanup_after_oops_into_collection_set_do() {
  guarantee( _cards_scanned != NULL, "invariant" );
  _total_cards_scanned = 0;
  for (uint i = 0; i < n_workers(); ++i)
    _total_cards_scanned += _cards_scanned[i];
  FREE_C_HEAP_ARRAY(size_t, _cards_scanned);
  _cards_scanned = NULL;
  // Cleanup after copy
#if G1_REM_SET_LOGGING
  PrintRSClosure cl;
  _g1->heap_region_iterate(&cl);
#endif
  _g1->set_refine_cte_cl_concurrency(true);
  cleanUpIteratorsClosure iterClosure;
  _g1->collection_set_iterate(&iterClosure);
  // Set all cards back to clean.
  _g1->cleanUpCardTable();
  if (ParallelGCThreads > 0) {
    ConcurrentG1Refine* cg1r = _g1->concurrent_g1_refine();
    if (cg1r->do_traversal()) {
      cg1r->cg1rThread()->set_do_traversal(false);
    }
    for (uint i = 0; i < ParallelGCThreads; i++) {
      delete _new_refs[i];
    }
    set_par_traversal(false);
  }
  assert(!_par_traversal_in_progress, "Invariant between iterations.");
}

class UpdateRSObjectClosure: public ObjectClosure {
  UpdateRSOopClosure* _update_rs_oop_cl;
public:
  UpdateRSObjectClosure(UpdateRSOopClosure* update_rs_oop_cl) :
    _update_rs_oop_cl(update_rs_oop_cl) {}
  void do_object(oop obj) {
    obj->oop_iterate(_update_rs_oop_cl);
  }

};

class ScrubRSClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  BitMap* _region_bm;
  BitMap* _card_bm;
  CardTableModRefBS* _ctbs;
public:
  ScrubRSClosure(BitMap* region_bm, BitMap* card_bm) :
    _g1h(G1CollectedHeap::heap()),
    _region_bm(region_bm), _card_bm(card_bm),
    _ctbs(NULL)
  {
    ModRefBarrierSet* bs = _g1h->mr_bs();
    guarantee(bs->is_a(BarrierSet::CardTableModRef), "Precondition");
    _ctbs = (CardTableModRefBS*)bs;
  }

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      r->rem_set()->scrub(_ctbs, _region_bm, _card_bm);
    }
    return false;
  }
};

void HRInto_G1RemSet::scrub(BitMap* region_bm, BitMap* card_bm) {
  ScrubRSClosure scrub_cl(region_bm, card_bm);
  _g1->heap_region_iterate(&scrub_cl);
}

void HRInto_G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm,
                                int worker_num, int claim_val) {
  ScrubRSClosure scrub_cl(region_bm, card_bm);
  _g1->heap_region_par_iterate_chunked(&scrub_cl, worker_num, claim_val);
}


class ConcRefineRegionClosure: public HeapRegionClosure {
  G1CollectedHeap* _g1h;
  CardTableModRefBS* _ctbs;
  ConcurrentGCThread* _cgc_thrd;
  ConcurrentG1Refine* _cg1r;
  unsigned _cards_processed;
  UpdateRSOopClosure _update_rs_oop_cl;
public:
  ConcRefineRegionClosure(CardTableModRefBS* ctbs,
                          ConcurrentG1Refine* cg1r,
                          HRInto_G1RemSet* g1rs) :
    _ctbs(ctbs), _cg1r(cg1r), _cgc_thrd(cg1r->cg1rThread()),
    _update_rs_oop_cl(g1rs), _cards_processed(0),
    _g1h(G1CollectedHeap::heap())
  {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set() &&
        !r->continuesHumongous() &&
        !r->is_young()) {
      _update_rs_oop_cl.set_from(r);
      UpdateRSObjectClosure update_rs_obj_cl(&_update_rs_oop_cl);

      // For each run of dirty card in the region:
      //   1) Clear the cards.
      //   2) Process the range corresponding to the run, adding any
      //      necessary RS entries.
      // 1 must precede 2, so that a concurrent modification redirties the
      // card.  If a processing attempt does not succeed, because it runs
      // into an unparseable region, we will do binary search to find the
      // beginning of the next parseable region.
      HeapWord* startAddr = r->bottom();
      HeapWord* endAddr = r->used_region().end();
      HeapWord* lastAddr;
      HeapWord* nextAddr;

      for (nextAddr = lastAddr = startAddr;
           nextAddr < endAddr;
           nextAddr = lastAddr) {
        MemRegion dirtyRegion;

        // Get and clear dirty region from card table
        MemRegion next_mr(nextAddr, endAddr);
        dirtyRegion =
          _ctbs->dirty_card_range_after_reset(
                           next_mr,
                           true, CardTableModRefBS::clean_card_val());
        assert(dirtyRegion.start() >= nextAddr,
               "returned region inconsistent?");

        if (!dirtyRegion.is_empty()) {
          HeapWord* stop_point =
            r->object_iterate_mem_careful(dirtyRegion,
                                          &update_rs_obj_cl);
          if (stop_point == NULL) {
            lastAddr = dirtyRegion.end();
            _cards_processed +=
              (int) (dirtyRegion.word_size() / CardTableModRefBS::card_size_in_words);
          } else {
            // We're going to skip one or more cards that we can't parse.
            HeapWord* next_parseable_card =
              r->next_block_start_careful(stop_point);
            // Round this up to a card boundary.
            next_parseable_card =
              _ctbs->addr_for(_ctbs->byte_after_const(next_parseable_card));
            // Now we invalidate the intervening cards so we'll see them
            // again.
            MemRegion remaining_dirty =
              MemRegion(stop_point, dirtyRegion.end());
            MemRegion skipped =
              MemRegion(stop_point, next_parseable_card);
            _ctbs->invalidate(skipped.intersection(remaining_dirty));

            // Now start up again where we can parse.
            lastAddr = next_parseable_card;

            // Count how many we did completely.
            _cards_processed +=
              (stop_point - dirtyRegion.start()) /
              CardTableModRefBS::card_size_in_words;
          }
          // Allow interruption at regular intervals.
          // (Might need to make them more regular, if we get big
          // dirty regions.)
          if (_cgc_thrd != NULL) {
            if (_cgc_thrd->should_yield()) {
              _cgc_thrd->yield();
              switch (_cg1r->get_pya()) {
              case PYA_continue:
                // This may have changed: re-read.
                endAddr = r->used_region().end();
                continue;
              case PYA_restart: case PYA_cancel:
                return true;
              }
            }
          }
        } else {
          break;
        }
      }
    }
    // A good yield opportunity.
    if (_cgc_thrd != NULL) {
      if (_cgc_thrd->should_yield()) {
        _cgc_thrd->yield();
        switch (_cg1r->get_pya()) {
        case PYA_restart: case PYA_cancel:
          return true;
        default:
          break;
        }

      }
    }
    return false;
  }

  unsigned cards_processed() { return _cards_processed; }
};


void HRInto_G1RemSet::concurrentRefinementPass(ConcurrentG1Refine* cg1r) {
  ConcRefineRegionClosure cr_cl(ct_bs(), cg1r, this);
  _g1->heap_region_iterate(&cr_cl);
  _conc_refine_traversals++;
  _conc_refine_cards += cr_cl.cards_processed();
}

static IntHistogram out_of_histo(50, 50);



void HRInto_G1RemSet::concurrentRefineOneCard(jbyte* card_ptr, int worker_i) {
  // If the card is no longer dirty, nothing to do.
  if (*card_ptr != CardTableModRefBS::dirty_card_val()) return;

  // Construct the region representing the card.
  HeapWord* start = _ct_bs->addr_for(card_ptr);
  // And find the region containing it.
  HeapRegion* r = _g1->heap_region_containing(start);
  if (r == NULL) {
    guarantee(_g1->is_in_permanent(start), "Or else where?");
    return;  // Not in the G1 heap (might be in perm, for example.)
  }
  // Why do we have to check here whether a card is on a young region,
  // given that we dirty young regions and, as a result, the
  // post-barrier is supposed to filter them out and never to enqueue
  // them? When we allocate a new region as the "allocation region" we
  // actually dirty its cards after we release the lock, since card
  // dirtying while holding the lock was a performance bottleneck. So,
  // as a result, it is possible for other threads to actually
  // allocate objects in the region (after the acquire the lock)
  // before all the cards on the region are dirtied. This is unlikely,
  // and it doesn't happen often, but it can happen. So, the extra
  // check below filters out those cards.
  if (r->is_young()) {
    return;
  }
  // While we are processing RSet buffers during the collection, we
  // actually don't want to scan any cards on the collection set,
  // since we don't want to update remebered sets with entries that
  // point into the collection set, given that live objects from the
  // collection set are about to move and such entries will be stale
  // very soon. This change also deals with a reliability issue which
  // involves scanning a card in the collection set and coming across
  // an array that was being chunked and looking malformed. Note,
  // however, that if evacuation fails, we have to scan any objects
  // that were not moved and create any missing entries.
  if (r->in_collection_set()) {
    return;
  }

  // Should we defer it?
  if (_cg1r->use_cache()) {
    card_ptr = _cg1r->cache_insert(card_ptr);
    // If it was not an eviction, nothing to do.
    if (card_ptr == NULL) return;

    // OK, we have to reset the card start, region, etc.
    start = _ct_bs->addr_for(card_ptr);
    r = _g1->heap_region_containing(start);
    if (r == NULL) {
      guarantee(_g1->is_in_permanent(start), "Or else where?");
      return;  // Not in the G1 heap (might be in perm, for example.)
    }
    guarantee(!r->is_young(), "It was evicted in the current minor cycle.");
  }

  HeapWord* end   = _ct_bs->addr_for(card_ptr + 1);
  MemRegion dirtyRegion(start, end);

#if CARD_REPEAT_HISTO
  init_ct_freq_table(_g1->g1_reserved_obj_bytes());
  ct_freq_note_card(_ct_bs->index_for(start));
#endif

  UpdateRSOopClosure update_rs_oop_cl(this, worker_i);
  update_rs_oop_cl.set_from(r);
  FilterOutOfRegionClosure filter_then_update_rs_oop_cl(r, &update_rs_oop_cl);

  // Undirty the card.
  *card_ptr = CardTableModRefBS::clean_card_val();
  // We must complete this write before we do any of the reads below.
  OrderAccess::storeload();
  // And process it, being careful of unallocated portions of TLAB's.
  HeapWord* stop_point =
    r->oops_on_card_seq_iterate_careful(dirtyRegion,
                                        &filter_then_update_rs_oop_cl);
  // If stop_point is non-null, then we encountered an unallocated region
  // (perhaps the unfilled portion of a TLAB.)  For now, we'll dirty the
  // card and re-enqueue: if we put off the card until a GC pause, then the
  // unallocated portion will be filled in.  Alternatively, we might try
  // the full complexity of the technique used in "regular" precleaning.
  if (stop_point != NULL) {
    // The card might have gotten re-dirtied and re-enqueued while we
    // worked.  (In fact, it's pretty likely.)
    if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
      *card_ptr = CardTableModRefBS::dirty_card_val();
      MutexLockerEx x(Shared_DirtyCardQ_lock,
                      Mutex::_no_safepoint_check_flag);
      DirtyCardQueue* sdcq =
        JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
      sdcq->enqueue(card_ptr);
    }
  } else {
    out_of_histo.add_entry(filter_then_update_rs_oop_cl.out_of_region());
    _conc_refine_cards++;
  }
}

class HRRSStatsIter: public HeapRegionClosure {
  size_t _occupied;
  size_t _total_mem_sz;
  size_t _max_mem_sz;
  HeapRegion* _max_mem_sz_region;
public:
  HRRSStatsIter() :
    _occupied(0),
    _total_mem_sz(0),
    _max_mem_sz(0),
    _max_mem_sz_region(NULL)
  {}

  bool doHeapRegion(HeapRegion* r) {
    if (r->continuesHumongous()) return false;
    size_t mem_sz = r->rem_set()->mem_size();
    if (mem_sz > _max_mem_sz) {
      _max_mem_sz = mem_sz;
      _max_mem_sz_region = r;
    }
    _total_mem_sz += mem_sz;
    size_t occ = r->rem_set()->occupied();
    _occupied += occ;
    return false;
  }
  size_t total_mem_sz() { return _total_mem_sz; }
  size_t max_mem_sz() { return _max_mem_sz; }
  size_t occupied() { return _occupied; }
  HeapRegion* max_mem_sz_region() { return _max_mem_sz_region; }
};

void HRInto_G1RemSet::print_summary_info() {
  G1CollectedHeap* g1 = G1CollectedHeap::heap();
  ConcurrentG1RefineThread* cg1r_thrd =
    g1->concurrent_g1_refine()->cg1rThread();

#if CARD_REPEAT_HISTO
  gclog_or_tty->print_cr("\nG1 card_repeat count histogram: ");
  gclog_or_tty->print_cr("  # of repeats --> # of cards with that number.");
  card_repeat_count.print_on(gclog_or_tty);
#endif

  if (FILTEROUTOFREGIONCLOSURE_DOHISTOGRAMCOUNT) {
    gclog_or_tty->print_cr("\nG1 rem-set out-of-region histogram: ");
    gclog_or_tty->print_cr("  # of CS ptrs --> # of cards with that number.");
    out_of_histo.print_on(gclog_or_tty);
  }
  gclog_or_tty->print_cr("\n Concurrent RS processed %d cards in "
                "%5.2fs.",
                _conc_refine_cards, cg1r_thrd->vtime_accum());

  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  jint tot_processed_buffers =
    dcqs.processed_buffers_mut() + dcqs.processed_buffers_rs_thread();
  gclog_or_tty->print_cr("  Of %d completed buffers:", tot_processed_buffers);
  gclog_or_tty->print_cr("     %8d (%5.1f%%) by conc RS thread.",
                dcqs.processed_buffers_rs_thread(),
                100.0*(float)dcqs.processed_buffers_rs_thread()/
                (float)tot_processed_buffers);
  gclog_or_tty->print_cr("     %8d (%5.1f%%) by mutator threads.",
                dcqs.processed_buffers_mut(),
                100.0*(float)dcqs.processed_buffers_mut()/
                (float)tot_processed_buffers);
  gclog_or_tty->print_cr("   Did %d concurrent refinement traversals.",
                _conc_refine_traversals);
  if (!G1RSBarrierUseQueue) {
    gclog_or_tty->print_cr("   Scanned %8.2f cards/traversal.",
                  _conc_refine_traversals > 0 ?
                  (float)_conc_refine_cards/(float)_conc_refine_traversals :
                  0);
  }
  gclog_or_tty->print_cr("");
  if (G1UseHRIntoRS) {
    HRRSStatsIter blk;
    g1->heap_region_iterate(&blk);
    gclog_or_tty->print_cr("  Total heap region rem set sizes = " SIZE_FORMAT "K."
                           "  Max = " SIZE_FORMAT "K.",
                           blk.total_mem_sz()/K, blk.max_mem_sz()/K);
    gclog_or_tty->print_cr("  Static structures = " SIZE_FORMAT "K,"
                           " free_lists = " SIZE_FORMAT "K.",
                           HeapRegionRemSet::static_mem_size()/K,
                           HeapRegionRemSet::fl_mem_size()/K);
    gclog_or_tty->print_cr("    %d occupied cards represented.",
                           blk.occupied());
    gclog_or_tty->print_cr("    Max sz region = [" PTR_FORMAT ", " PTR_FORMAT " )"
                           " %s, cap = " SIZE_FORMAT "K, occ = " SIZE_FORMAT "K.",
                           blk.max_mem_sz_region()->bottom(), blk.max_mem_sz_region()->end(),
                           (blk.max_mem_sz_region()->popular() ? "POP" : ""),
                           (blk.max_mem_sz_region()->rem_set()->mem_size() + K - 1)/K,
                           (blk.max_mem_sz_region()->rem_set()->occupied() + K - 1)/K);
    gclog_or_tty->print_cr("    Did %d coarsenings.",
                  HeapRegionRemSet::n_coarsenings());

  }
}
void HRInto_G1RemSet::prepare_for_verify() {
  if (G1HRRSFlushLogBuffersOnVerify && VerifyBeforeGC && !_g1->full_collection()) {
    cleanupHRRS();
    _g1->set_refine_cte_cl_concurrency(false);
    if (SafepointSynchronize::is_at_safepoint()) {
      DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
      dcqs.concatenate_logs();
    }
    bool cg1r_use_cache = _cg1r->use_cache();
    _cg1r->set_use_cache(false);
    updateRS(0);
    _cg1r->set_use_cache(cg1r_use_cache);
  }
}