view src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.cpp @ 453:c96030fff130

6684579: SoftReference processing can be made more efficient Summary: For current soft-ref clearing policies, we can decide at marking time if a soft-reference will definitely not be cleared, postponing the decision of whether it will definitely be cleared to the final reference processing phase. This can be especially beneficial in the case of concurrent collectors where the marking is usually concurrent but reference processing is usually not. Reviewed-by: jmasa
author ysr
date Thu, 20 Nov 2008 16:56:09 -0800
parents 1fdb98a17101
children c18cbe5936b8
line wrap: on
line source

/*
 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_parMarkBitMap.cpp.incl"

bool
ParMarkBitMap::initialize(MemRegion covered_region)
{
  const idx_t bits = bits_required(covered_region);
  // The bits will be divided evenly between two bitmaps; each of them should be
  // an integral number of words.
  assert(bits % (BitsPerWord * 2) == 0, "region size unaligned");

  const size_t words = bits / BitsPerWord;
  const size_t raw_bytes = words * sizeof(idx_t);
  const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
  const size_t granularity = os::vm_allocation_granularity();
  const size_t bytes = align_size_up(raw_bytes, MAX2(page_sz, granularity));

  const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
    MAX2(page_sz, granularity);
  ReservedSpace rs(bytes, rs_align, rs_align > 0);
  os::trace_page_sizes("par bitmap", raw_bytes, raw_bytes, page_sz,
                       rs.base(), rs.size());
  _virtual_space = new PSVirtualSpace(rs, page_sz);
  if (_virtual_space != NULL && _virtual_space->expand_by(bytes)) {
    _region_start = covered_region.start();
    _region_size = covered_region.word_size();
    idx_t* map = (idx_t*)_virtual_space->reserved_low_addr();
    _beg_bits.set_map(map);
    _beg_bits.set_size(bits / 2);
    _end_bits.set_map(map + words / 2);
    _end_bits.set_size(bits / 2);
    return true;
  }

  _region_start = 0;
  _region_size = 0;
  if (_virtual_space != NULL) {
    delete _virtual_space;
    _virtual_space = NULL;
    // Release memory reserved in the space.
    rs.release();
  }
  return false;
}

#ifdef ASSERT
extern size_t mark_bitmap_count;
extern size_t mark_bitmap_size;
#endif  // #ifdef ASSERT

bool
ParMarkBitMap::mark_obj(HeapWord* addr, size_t size)
{
  const idx_t beg_bit = addr_to_bit(addr);
  if (_beg_bits.par_set_bit(beg_bit)) {
    const idx_t end_bit = addr_to_bit(addr + size - 1);
    bool end_bit_ok = _end_bits.par_set_bit(end_bit);
    assert(end_bit_ok, "concurrency problem");
    DEBUG_ONLY(Atomic::inc_ptr(&mark_bitmap_count));
    DEBUG_ONLY(Atomic::add_ptr(size, &mark_bitmap_size));
    return true;
  }
  return false;
}

size_t
ParMarkBitMap::live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const
{
  assert(beg_addr <= end_addr, "bad range");

  idx_t live_bits = 0;

  // The bitmap routines require the right boundary to be word-aligned.
  const idx_t end_bit = addr_to_bit(end_addr);
  const idx_t range_end = BitMap::word_align_up(end_bit);

  idx_t beg_bit = find_obj_beg(addr_to_bit(beg_addr), range_end);
  while (beg_bit < end_bit) {
    idx_t tmp_end = find_obj_end(beg_bit, range_end);
    if (tmp_end < end_bit) {
      live_bits += tmp_end - beg_bit + 1;
      beg_bit = find_obj_beg(tmp_end + 1, range_end);
    } else {
      live_bits += end_bit - beg_bit;  // No + 1 here; end_bit is not counted.
      return bits_to_words(live_bits);
    }
  }
  return bits_to_words(live_bits);
}

size_t ParMarkBitMap::live_words_in_range(HeapWord* beg_addr, oop end_obj) const
{
  assert(beg_addr <= (HeapWord*)end_obj, "bad range");
  assert(is_marked(end_obj), "end_obj must be live");

  idx_t live_bits = 0;

  // The bitmap routines require the right boundary to be word-aligned.
  const idx_t end_bit = addr_to_bit((HeapWord*)end_obj);
  const idx_t range_end = BitMap::word_align_up(end_bit);

  idx_t beg_bit = find_obj_beg(addr_to_bit(beg_addr), range_end);
  while (beg_bit < end_bit) {
    idx_t tmp_end = find_obj_end(beg_bit, range_end);
    assert(tmp_end < end_bit, "missing end bit");
    live_bits += tmp_end - beg_bit + 1;
    beg_bit = find_obj_beg(tmp_end + 1, range_end);
  }
  return bits_to_words(live_bits);
}

ParMarkBitMap::IterationStatus
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
                       idx_t range_beg, idx_t range_end) const
{
  DEBUG_ONLY(verify_bit(range_beg);)
  DEBUG_ONLY(verify_bit(range_end);)
  assert(range_beg <= range_end, "live range invalid");

  // The bitmap routines require the right boundary to be word-aligned.
  const idx_t search_end = BitMap::word_align_up(range_end);

  idx_t cur_beg = find_obj_beg(range_beg, search_end);
  while (cur_beg < range_end) {
    const idx_t cur_end = find_obj_end(cur_beg, search_end);
    if (cur_end >= range_end) {
      // The obj ends outside the range.
      live_closure->set_source(bit_to_addr(cur_beg));
      return incomplete;
    }

    const size_t size = obj_size(cur_beg, cur_end);
    IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size);
    if (status != incomplete) {
      assert(status == would_overflow || status == full, "sanity");
      return status;
    }

    // Successfully processed the object; look for the next object.
    cur_beg = find_obj_beg(cur_end + 1, search_end);
  }

  live_closure->set_source(bit_to_addr(range_end));
  return complete;
}

ParMarkBitMap::IterationStatus
ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
                       ParMarkBitMapClosure* dead_closure,
                       idx_t range_beg, idx_t range_end,
                       idx_t dead_range_end) const
{
  DEBUG_ONLY(verify_bit(range_beg);)
  DEBUG_ONLY(verify_bit(range_end);)
  DEBUG_ONLY(verify_bit(dead_range_end);)
  assert(range_beg <= range_end, "live range invalid");
  assert(range_end <= dead_range_end, "dead range invalid");

  // The bitmap routines require the right boundary to be word-aligned.
  const idx_t live_search_end = BitMap::word_align_up(range_end);
  const idx_t dead_search_end = BitMap::word_align_up(dead_range_end);

  idx_t cur_beg = range_beg;
  if (range_beg < range_end && is_unmarked(range_beg)) {
    // The range starts with dead space.  Look for the next object, then fill.
    cur_beg = find_obj_beg(range_beg + 1, dead_search_end);
    const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1);
    const size_t size = obj_size(range_beg, dead_space_end);
    dead_closure->do_addr(bit_to_addr(range_beg), size);
  }

  while (cur_beg < range_end) {
    const idx_t cur_end = find_obj_end(cur_beg, live_search_end);
    if (cur_end >= range_end) {
      // The obj ends outside the range.
      live_closure->set_source(bit_to_addr(cur_beg));
      return incomplete;
    }

    const size_t size = obj_size(cur_beg, cur_end);
    IterationStatus status = live_closure->do_addr(bit_to_addr(cur_beg), size);
    if (status != incomplete) {
      assert(status == would_overflow || status == full, "sanity");
      return status;
    }

    // Look for the start of the next object.
    const idx_t dead_space_beg = cur_end + 1;
    cur_beg = find_obj_beg(dead_space_beg, dead_search_end);
    if (cur_beg > dead_space_beg) {
      // Found dead space; compute the size and invoke the dead closure.
      const idx_t dead_space_end = MIN2(cur_beg - 1, dead_range_end - 1);
      const size_t size = obj_size(dead_space_beg, dead_space_end);
      dead_closure->do_addr(bit_to_addr(dead_space_beg), size);
    }
  }

  live_closure->set_source(bit_to_addr(range_end));
  return complete;
}

#ifndef PRODUCT
void ParMarkBitMap::reset_counters()
{
  _cas_tries = _cas_retries = _cas_by_another = 0;
}
#endif  // #ifndef PRODUCT

#ifdef ASSERT
void ParMarkBitMap::verify_clear() const
{
  const idx_t* const beg = (const idx_t*)_virtual_space->committed_low_addr();
  const idx_t* const end = (const idx_t*)_virtual_space->committed_high_addr();
  for (const idx_t* p = beg; p < end; ++p) {
    assert(*p == 0, "bitmap not clear");
  }
}
#endif  // #ifdef ASSERT