view graal/com.oracle.graal.java/src/com/oracle/graal/java/GraphBuilderPhase.java @ 14633:da2431cc1506

Rename ValueNode kind() to getKind().
author Josef Eisl <josef.eisl@jku.at>
date Thu, 20 Mar 2014 11:48:39 +0100
parents c98fa2ed91d9
children 733e50d96f9b 17a735726670
line wrap: on
line source

/*
 * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package com.oracle.graal.java;

import static com.oracle.graal.api.code.TypeCheckHints.*;
import static com.oracle.graal.api.meta.DeoptimizationAction.*;
import static com.oracle.graal.api.meta.DeoptimizationReason.*;
import static com.oracle.graal.bytecode.Bytecodes.*;
import static com.oracle.graal.java.GraphBuilderPhase.RuntimeCalls.*;
import static com.oracle.graal.phases.GraalOptions.*;
import static java.lang.reflect.Modifier.*;

import java.lang.reflect.*;
import java.util.*;

import com.oracle.graal.api.code.*;
import com.oracle.graal.api.meta.*;
import com.oracle.graal.api.meta.ProfilingInfo.TriState;
import com.oracle.graal.api.meta.ResolvedJavaType.Representation;
import com.oracle.graal.bytecode.*;
import com.oracle.graal.debug.*;
import com.oracle.graal.graph.*;
import com.oracle.graal.java.BciBlockMapping.Block;
import com.oracle.graal.java.BciBlockMapping.ExceptionDispatchBlock;
import com.oracle.graal.java.BciBlockMapping.LocalLiveness;
import com.oracle.graal.nodes.*;
import com.oracle.graal.nodes.calc.*;
import com.oracle.graal.nodes.calc.FloatConvertNode.FloatConvert;
import com.oracle.graal.nodes.extended.*;
import com.oracle.graal.nodes.java.*;
import com.oracle.graal.nodes.java.MethodCallTargetNode.InvokeKind;
import com.oracle.graal.nodes.type.*;
import com.oracle.graal.nodes.util.*;
import com.oracle.graal.options.*;
import com.oracle.graal.phases.*;
import com.oracle.graal.phases.tiers.*;

/**
 * The {@code GraphBuilder} class parses the bytecode of a method and builds the IR graph.
 */
public class GraphBuilderPhase extends BasePhase<HighTierContext> {

    static class Options {
        // @formatter:off
        @Option(help = "The trace level for the bytecode parser used when building a graph from bytecode")
        public static final OptionValue<Integer> TraceBytecodeParserLevel = new OptionValue<>(0);
        // @formatter:on
    }

    public static final class RuntimeCalls {

        public static final ForeignCallDescriptor CREATE_NULL_POINTER_EXCEPTION = new ForeignCallDescriptor("createNullPointerException", NullPointerException.class);
        public static final ForeignCallDescriptor CREATE_OUT_OF_BOUNDS_EXCEPTION = new ForeignCallDescriptor("createOutOfBoundsException", ArrayIndexOutOfBoundsException.class, int.class);
    }

    /**
     * The minimum value to which {@link Options#TraceBytecodeParserLevel} must be set to trace the
     * bytecode instructions as they are parsed.
     */
    public static final int TRACELEVEL_INSTRUCTIONS = 1;

    /**
     * The minimum value to which {@link Options#TraceBytecodeParserLevel} must be set to trace the
     * frame state before each bytecode instruction as it is parsed.
     */
    public static final int TRACELEVEL_STATE = 2;

    private final GraphBuilderConfiguration graphBuilderConfig;

    public GraphBuilderPhase(GraphBuilderConfiguration graphBuilderConfig) {
        this.graphBuilderConfig = graphBuilderConfig;
    }

    @Override
    protected void run(StructuredGraph graph, HighTierContext context) {
        new Instance(context.getMetaAccess(), graphBuilderConfig, context.getOptimisticOptimizations()).run(graph);
    }

    public static class Instance extends Phase {

        private LineNumberTable lnt;
        private int previousLineNumber;
        private int currentLineNumber;

        protected StructuredGraph currentGraph;

        /**
         * Head of placeholder list.
         */
        protected BlockPlaceholderNode placeholders;

        private final MetaAccessProvider metaAccess;
        private ConstantPool constantPool;
        private ResolvedJavaMethod method;
        private int entryBCI;
        private ProfilingInfo profilingInfo;

        private BytecodeStream stream;           // the bytecode stream

        protected FrameStateBuilder frameState;          // the current execution state
        private Block currentBlock;

        private ValueNode methodSynchronizedObject;
        private ExceptionDispatchBlock unwindBlock;

        private FixedWithNextNode lastInstr;                 // the last instruction added

        private final GraphBuilderConfiguration graphBuilderConfig;
        private final OptimisticOptimizations optimisticOpts;

        /**
         * Meters the number of actual bytecodes parsed.
         */
        public static final DebugMetric BytecodesParsed = Debug.metric("BytecodesParsed");

        /**
         * Node that marks the begin of block during bytecode parsing. When a block is identified
         * the first time as a jump target, the placeholder is created and used as the successor for
         * the jump. When the block is seen the second time, a {@link MergeNode} is created to
         * correctly merge the now two different predecessor states.
         */
        private static class BlockPlaceholderNode extends FixedWithNextNode {

            /*
             * Cannot be explicitly declared as a Node type since it is not an input; would cause
             * the !NODE_CLASS.isAssignableFrom(type) guarantee in
             * NodeClass.FieldScanner.scanField() to fail.
             */
            private final Object nextPlaceholder;

            public BlockPlaceholderNode(Instance builder) {
                super(StampFactory.forVoid());
                nextPlaceholder = builder.placeholders;
                builder.placeholders = this;
            }

            BlockPlaceholderNode nextPlaceholder() {
                return (BlockPlaceholderNode) nextPlaceholder;
            }
        }

        private Block[] loopHeaders;
        private LocalLiveness liveness;

        /**
         * Gets the current frame state being processed by this builder.
         */
        protected FrameStateBuilder getCurrentFrameState() {
            return frameState;
        }

        /**
         * Gets the graph being processed by this builder.
         */
        protected StructuredGraph getGraph() {
            return currentGraph;
        }

        protected ResolvedJavaMethod getMethod() {
            return method;
        }

        public Instance(MetaAccessProvider metaAccess, GraphBuilderConfiguration graphBuilderConfig, OptimisticOptimizations optimisticOpts) {
            this.graphBuilderConfig = graphBuilderConfig;
            this.optimisticOpts = optimisticOpts;
            this.metaAccess = metaAccess;
            assert metaAccess != null;
        }

        @Override
        protected void run(StructuredGraph graph) {
            method = graph.method();
            if (graphBuilderConfig.eagerInfopointMode()) {
                lnt = method.getLineNumberTable();
                previousLineNumber = -1;
            }
            entryBCI = graph.getEntryBCI();
            profilingInfo = method.getProfilingInfo();
            assert method.getCode() != null : "method must contain bytecodes: " + method;
            this.stream = new BytecodeStream(method.getCode());
            this.constantPool = method.getConstantPool();
            unwindBlock = null;
            methodSynchronizedObject = null;
            this.currentGraph = graph;
            this.frameState = new FrameStateBuilder(method, graph, graphBuilderConfig.eagerResolving());
            TTY.Filter filter = new TTY.Filter(PrintFilter.getValue(), method);
            try {
                build();
            } finally {
                filter.remove();
            }
        }

        @Override
        protected String getDetailedName() {
            return getName() + " " + MetaUtil.format("%H.%n(%p):%r", method);
        }

        protected void build() {
            if (PrintProfilingInformation.getValue()) {
                TTY.println("Profiling info for " + MetaUtil.format("%H.%n(%p)", method));
                TTY.println(MetaUtil.indent(MetaUtil.profileToString(profilingInfo, method, CodeUtil.NEW_LINE), "  "));
            }

            Indent indent = Debug.logAndIndent("build graph for %s", method);

            // compute the block map, setup exception handlers and get the entrypoint(s)
            BciBlockMapping blockMap = BciBlockMapping.create(method);
            loopHeaders = blockMap.loopHeaders;
            liveness = blockMap.liveness;

            lastInstr = currentGraph.start();
            if (isSynchronized(method.getModifiers())) {
                // add a monitor enter to the start block
                currentGraph.start().setStateAfter(frameState.create(FrameState.BEFORE_BCI));
                methodSynchronizedObject = synchronizedObject(frameState, method);
                lastInstr = genMonitorEnter(methodSynchronizedObject);
            }
            frameState.clearNonLiveLocals(blockMap.startBlock, liveness, true);
            ((StateSplit) lastInstr).setStateAfter(frameState.create(0));

            if (graphBuilderConfig.eagerInfopointMode()) {
                InfopointNode ipn = currentGraph.add(new InfopointNode(InfopointReason.METHOD_START, frameState.create(0)));
                lastInstr.setNext(ipn);
                lastInstr = ipn;
            }

            currentBlock = blockMap.startBlock;
            blockMap.startBlock.entryState = frameState;
            if (blockMap.startBlock.isLoopHeader) {
                /*
                 * TODO(lstadler,gduboscq) createTarget might not be safe at this position, since it
                 * expects currentBlock, etc. to be set up correctly. A better solution to this
                 * problem of start blocks that are loop headers would be to create a dummy block in
                 * BciBlockMapping.
                 */
                appendGoto(createTarget(blockMap.startBlock, frameState));
            } else {
                blockMap.startBlock.firstInstruction = lastInstr;
            }

            for (Block block : blockMap.blocks) {
                processBlock(block);
            }
            processBlock(unwindBlock);

            Debug.dump(currentGraph, "After bytecode parsing");

            connectLoopEndToBegin();

            // remove Placeholders
            for (BlockPlaceholderNode n = placeholders; n != null; n = n.nextPlaceholder()) {
                if (!n.isDeleted()) {
                    currentGraph.removeFixed(n);
                }
            }
            placeholders = null;

            // remove dead FrameStates
            for (Node n : currentGraph.getNodes(FrameState.class)) {
                if (n.usages().isEmpty() && n.predecessor() == null) {
                    n.safeDelete();
                }
            }
            indent.outdent();
        }

        private Block unwindBlock(int bci) {
            if (unwindBlock == null) {
                unwindBlock = new ExceptionDispatchBlock();
                unwindBlock.startBci = -1;
                unwindBlock.endBci = -1;
                unwindBlock.deoptBci = bci;
                unwindBlock.blockID = Integer.MAX_VALUE;
            }
            return unwindBlock;
        }

        protected BytecodeStream stream() {
            return stream;
        }

        protected int bci() {
            return stream.currentBCI();
        }

        private void loadLocal(int index, Kind kind) {
            frameState.push(kind, frameState.loadLocal(index));
        }

        private void storeLocal(Kind kind, int index) {
            ValueNode value;
            if (kind == Kind.Object) {
                value = frameState.xpop();
                // astore and astore_<n> may be used to store a returnAddress (jsr)
                assert value.getKind() == Kind.Object || value.getKind() == Kind.Int;
            } else {
                value = frameState.pop(kind);
            }
            frameState.storeLocal(index, value);
        }

        /**
         * @param type the unresolved type of the constant
         */
        protected void handleUnresolvedLoadConstant(JavaType type) {
            assert !graphBuilderConfig.eagerResolving();
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
            frameState.push(Kind.Object, appendConstant(Constant.NULL_OBJECT));
        }

        /**
         * @param type the unresolved type of the type check
         * @param object the object value whose type is being checked against {@code type}
         */
        protected void handleUnresolvedCheckCast(JavaType type, ValueNode object) {
            assert !graphBuilderConfig.eagerResolving();
            append(new FixedGuardNode(currentGraph.unique(new IsNullNode(object)), Unresolved, InvalidateRecompile));
            frameState.apush(appendConstant(Constant.NULL_OBJECT));
        }

        /**
         * @param type the unresolved type of the type check
         * @param object the object value whose type is being checked against {@code type}
         */
        protected void handleUnresolvedInstanceOf(JavaType type, ValueNode object) {
            assert !graphBuilderConfig.eagerResolving();
            BlockPlaceholderNode successor = currentGraph.add(new BlockPlaceholderNode(this));
            DeoptimizeNode deopt = currentGraph.add(new DeoptimizeNode(InvalidateRecompile, Unresolved));
            append(new IfNode(currentGraph.unique(new IsNullNode(object)), successor, deopt, 1));
            lastInstr = successor;
            frameState.ipush(appendConstant(Constant.INT_0));
        }

        /**
         * @param type the type being instantiated
         */
        protected void handleUnresolvedNewInstance(JavaType type) {
            assert !graphBuilderConfig.eagerResolving();
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
            frameState.apush(appendConstant(Constant.NULL_OBJECT));
        }

        /**
         * @param type the type of the array being instantiated
         * @param length the length of the array
         */
        protected void handleUnresolvedNewObjectArray(JavaType type, ValueNode length) {
            assert !graphBuilderConfig.eagerResolving();
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
            frameState.apush(appendConstant(Constant.NULL_OBJECT));
        }

        /**
         * @param type the type being instantiated
         * @param dims the dimensions for the multi-array
         */
        protected void handleUnresolvedNewMultiArray(JavaType type, ValueNode[] dims) {
            assert !graphBuilderConfig.eagerResolving();
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
            frameState.apush(appendConstant(Constant.NULL_OBJECT));
        }

        /**
         * @param field the unresolved field
         * @param receiver the object containing the field or {@code null} if {@code field} is
         *            static
         */
        protected void handleUnresolvedLoadField(JavaField field, ValueNode receiver) {
            assert !graphBuilderConfig.eagerResolving();
            Kind kind = field.getKind();
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
            frameState.push(kind.getStackKind(), appendConstant(Constant.defaultForKind(kind)));
        }

        /**
         * @param field the unresolved field
         * @param value the value being stored to the field
         * @param receiver the object containing the field or {@code null} if {@code field} is
         *            static
         */
        protected void handleUnresolvedStoreField(JavaField field, ValueNode value, ValueNode receiver) {
            assert !graphBuilderConfig.eagerResolving();
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
        }

        /**
         * @param representation
         * @param type
         */
        protected void handleUnresolvedExceptionType(Representation representation, JavaType type) {
            assert !graphBuilderConfig.eagerResolving();
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
        }

        protected void handleUnresolvedInvoke(JavaMethod javaMethod, InvokeKind invokeKind) {
            assert !graphBuilderConfig.eagerResolving();
            boolean withReceiver = invokeKind != InvokeKind.Static;
            append(new DeoptimizeNode(InvalidateRecompile, Unresolved));
            frameState.popArguments(javaMethod.getSignature().getParameterSlots(withReceiver), javaMethod.getSignature().getParameterCount(withReceiver));
            Kind kind = javaMethod.getSignature().getReturnKind();
            if (kind != Kind.Void) {
                frameState.push(kind.getStackKind(), appendConstant(Constant.defaultForKind(kind)));
            }
        }

        private DispatchBeginNode handleException(ValueNode exceptionObject, int bci) {
            assert bci == FrameState.BEFORE_BCI || bci == bci() : "invalid bci";
            Debug.log("Creating exception dispatch edges at %d, exception object=%s, exception seen=%s", bci, exceptionObject, profilingInfo.getExceptionSeen(bci));

            Block dispatchBlock = currentBlock.exceptionDispatchBlock();
            /*
             * The exception dispatch block is always for the last bytecode of a block, so if we are
             * not at the endBci yet, there is no exception handler for this bci and we can unwind
             * immediately.
             */
            if (bci != currentBlock.endBci || dispatchBlock == null) {
                dispatchBlock = unwindBlock(bci);
            }

            FrameStateBuilder dispatchState = frameState.copy();
            dispatchState.clearStack();

            DispatchBeginNode dispatchBegin;
            if (exceptionObject == null) {
                dispatchBegin = currentGraph.add(new ExceptionObjectNode(metaAccess));
                dispatchState.apush(dispatchBegin);
                dispatchState.setRethrowException(true);
                dispatchBegin.setStateAfter(dispatchState.create(bci));
            } else {
                dispatchBegin = currentGraph.add(new DispatchBeginNode());
                dispatchBegin.setStateAfter(dispatchState.create(bci));
                dispatchState.apush(exceptionObject);
                dispatchState.setRethrowException(true);
            }
            FixedNode target = createTarget(dispatchBlock, dispatchState);
            dispatchBegin.setNext(target);
            return dispatchBegin;
        }

        private void genLoadConstant(int cpi, int opcode) {
            Object con = lookupConstant(cpi, opcode);

            if (con instanceof JavaType) {
                // this is a load of class constant which might be unresolved
                JavaType type = (JavaType) con;
                if (type instanceof ResolvedJavaType) {
                    frameState.push(Kind.Object, appendConstant(((ResolvedJavaType) type).getEncoding(Representation.JavaClass)));
                } else {
                    handleUnresolvedLoadConstant(type);
                }
            } else if (con instanceof Constant) {
                Constant constant = (Constant) con;
                frameState.push(constant.getKind().getStackKind(), appendConstant(constant));
            } else {
                throw new Error("lookupConstant returned an object of incorrect type");
            }
        }

        private void genLoadIndexed(Kind kind) {
            emitExplicitExceptions(frameState.peek(1), frameState.peek(0));

            ValueNode index = frameState.ipop();
            ValueNode array = frameState.apop();
            frameState.push(kind.getStackKind(), append(new LoadIndexedNode(array, index, kind)));
        }

        private void genStoreIndexed(Kind kind) {
            emitExplicitExceptions(frameState.peek(2), frameState.peek(1));

            ValueNode value = frameState.pop(kind.getStackKind());
            ValueNode index = frameState.ipop();
            ValueNode array = frameState.apop();
            append(new StoreIndexedNode(array, index, kind, value));
        }

        private void stackOp(int opcode) {
            switch (opcode) {
                case POP: {
                    frameState.xpop();
                    break;
                }
                case POP2: {
                    frameState.xpop();
                    frameState.xpop();
                    break;
                }
                case DUP: {
                    ValueNode w = frameState.xpop();
                    frameState.xpush(w);
                    frameState.xpush(w);
                    break;
                }
                case DUP_X1: {
                    ValueNode w1 = frameState.xpop();
                    ValueNode w2 = frameState.xpop();
                    frameState.xpush(w1);
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    break;
                }
                case DUP_X2: {
                    ValueNode w1 = frameState.xpop();
                    ValueNode w2 = frameState.xpop();
                    ValueNode w3 = frameState.xpop();
                    frameState.xpush(w1);
                    frameState.xpush(w3);
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    break;
                }
                case DUP2: {
                    ValueNode w1 = frameState.xpop();
                    ValueNode w2 = frameState.xpop();
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    break;
                }
                case DUP2_X1: {
                    ValueNode w1 = frameState.xpop();
                    ValueNode w2 = frameState.xpop();
                    ValueNode w3 = frameState.xpop();
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    frameState.xpush(w3);
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    break;
                }
                case DUP2_X2: {
                    ValueNode w1 = frameState.xpop();
                    ValueNode w2 = frameState.xpop();
                    ValueNode w3 = frameState.xpop();
                    ValueNode w4 = frameState.xpop();
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    frameState.xpush(w4);
                    frameState.xpush(w3);
                    frameState.xpush(w2);
                    frameState.xpush(w1);
                    break;
                }
                case SWAP: {
                    ValueNode w1 = frameState.xpop();
                    ValueNode w2 = frameState.xpop();
                    frameState.xpush(w1);
                    frameState.xpush(w2);
                    break;
                }
                default:
                    throw GraalInternalError.shouldNotReachHere();
            }

        }

        private void genArithmeticOp(Kind result, int opcode) {
            ValueNode y = frameState.pop(result);
            ValueNode x = frameState.pop(result);
            boolean isStrictFP = isStrict(method.getModifiers());
            BinaryNode v;
            switch (opcode) {
                case IADD:
                case LADD:
                    v = new IntegerAddNode(StampFactory.forKind(result), x, y);
                    break;
                case FADD:
                case DADD:
                    v = new FloatAddNode(StampFactory.forKind(result), x, y, isStrictFP);
                    break;
                case ISUB:
                case LSUB:
                    v = new IntegerSubNode(StampFactory.forKind(result), x, y);
                    break;
                case FSUB:
                case DSUB:
                    v = new FloatSubNode(StampFactory.forKind(result), x, y, isStrictFP);
                    break;
                case IMUL:
                case LMUL:
                    v = new IntegerMulNode(StampFactory.forKind(result), x, y);
                    break;
                case FMUL:
                case DMUL:
                    v = new FloatMulNode(StampFactory.forKind(result), x, y, isStrictFP);
                    break;
                case FDIV:
                case DDIV:
                    v = new FloatDivNode(StampFactory.forKind(result), x, y, isStrictFP);
                    break;
                case FREM:
                case DREM:
                    v = new FloatRemNode(StampFactory.forKind(result), x, y, isStrictFP);
                    break;
                default:
                    throw new GraalInternalError("should not reach");
            }
            frameState.push(result, append(v));
        }

        private void genIntegerDivOp(Kind result, int opcode) {
            ValueNode y = frameState.pop(result);
            ValueNode x = frameState.pop(result);
            FixedWithNextNode v;
            switch (opcode) {
                case IDIV:
                case LDIV:
                    v = new IntegerDivNode(StampFactory.forKind(result), x, y);
                    break;
                case IREM:
                case LREM:
                    v = new IntegerRemNode(StampFactory.forKind(result), x, y);
                    break;
                default:
                    throw new GraalInternalError("should not reach");
            }
            frameState.push(result, append(v));
        }

        private void genNegateOp(Kind kind) {
            frameState.push(kind, append(new NegateNode(frameState.pop(kind))));
        }

        private void genShiftOp(Kind kind, int opcode) {
            ValueNode s = frameState.ipop();
            ValueNode x = frameState.pop(kind);
            ShiftNode v;
            switch (opcode) {
                case ISHL:
                case LSHL:
                    v = new LeftShiftNode(StampFactory.forKind(kind), x, s);
                    break;
                case ISHR:
                case LSHR:
                    v = new RightShiftNode(StampFactory.forKind(kind), x, s);
                    break;
                case IUSHR:
                case LUSHR:
                    v = new UnsignedRightShiftNode(StampFactory.forKind(kind), x, s);
                    break;
                default:
                    throw new GraalInternalError("should not reach");
            }
            frameState.push(kind, append(v));
        }

        private void genLogicOp(Kind kind, int opcode) {
            ValueNode y = frameState.pop(kind);
            ValueNode x = frameState.pop(kind);
            Stamp stamp = StampFactory.forKind(kind);
            BitLogicNode v;
            switch (opcode) {
                case IAND:
                case LAND:
                    v = new AndNode(stamp, x, y);
                    break;
                case IOR:
                case LOR:
                    v = new OrNode(stamp, x, y);
                    break;
                case IXOR:
                case LXOR:
                    v = new XorNode(stamp, x, y);
                    break;
                default:
                    throw new GraalInternalError("should not reach");
            }
            frameState.push(kind, append(v));
        }

        private void genCompareOp(Kind kind, boolean isUnorderedLess) {
            ValueNode y = frameState.pop(kind);
            ValueNode x = frameState.pop(kind);
            frameState.ipush(append(new NormalizeCompareNode(x, y, isUnorderedLess)));
        }

        private void genFloatConvert(FloatConvert op, Kind from, Kind to) {
            ValueNode input = frameState.pop(from.getStackKind());
            frameState.push(to.getStackKind(), append(new FloatConvertNode(op, input)));
        }

        private void genSignExtend(Kind from, Kind to) {
            ValueNode input = frameState.pop(from.getStackKind());
            if (from != from.getStackKind()) {
                input = append(new NarrowNode(input, from.getBitCount()));
            }
            frameState.push(to.getStackKind(), append(new SignExtendNode(input, to.getBitCount())));
        }

        private void genZeroExtend(Kind from, Kind to) {
            ValueNode input = frameState.pop(from.getStackKind());
            if (from != from.getStackKind()) {
                input = append(new NarrowNode(input, from.getBitCount()));
            }
            frameState.push(to.getStackKind(), append(new ZeroExtendNode(input, to.getBitCount())));
        }

        private void genNarrow(Kind from, Kind to) {
            ValueNode input = frameState.pop(from.getStackKind());
            frameState.push(to.getStackKind(), append(new NarrowNode(input, to.getBitCount())));
        }

        private void genIncrement() {
            int index = stream().readLocalIndex();
            int delta = stream().readIncrement();
            ValueNode x = frameState.loadLocal(index);
            ValueNode y = appendConstant(Constant.forInt(delta));
            frameState.storeLocal(index, append(new IntegerAddNode(StampFactory.forKind(Kind.Int), x, y)));
        }

        private void genGoto() {
            appendGoto(createTarget(currentBlock.successors.get(0), frameState));
            assert currentBlock.numNormalSuccessors() == 1;
        }

        private void ifNode(ValueNode x, Condition cond, ValueNode y) {
            assert !x.isDeleted() && !y.isDeleted();
            assert currentBlock.numNormalSuccessors() == 2;
            Block trueBlock = currentBlock.successors.get(0);
            Block falseBlock = currentBlock.successors.get(1);
            if (trueBlock == falseBlock) {
                appendGoto(createTarget(trueBlock, frameState));
                return;
            }

            double probability = profilingInfo.getBranchTakenProbability(bci());
            if (probability < 0) {
                assert probability == -1 : "invalid probability";
                Debug.log("missing probability in %s at bci %d", method, bci());
                probability = 0.5;
            }

            if (!optimisticOpts.removeNeverExecutedCode()) {
                if (probability == 0) {
                    probability = 0.0000001;
                } else if (probability == 1) {
                    probability = 0.999999;
                }
            }

            // the mirroring and negation operations get the condition into canonical form
            boolean mirror = cond.canonicalMirror();
            boolean negate = cond.canonicalNegate();

            ValueNode a = mirror ? y : x;
            ValueNode b = mirror ? x : y;

            CompareNode condition;
            assert !a.getKind().isNumericFloat();
            if (cond == Condition.EQ || cond == Condition.NE) {
                if (a.getKind() == Kind.Object) {
                    condition = new ObjectEqualsNode(a, b);
                } else {
                    condition = new IntegerEqualsNode(a, b);
                }
            } else {
                assert a.getKind() != Kind.Object && !cond.isUnsigned();
                condition = new IntegerLessThanNode(a, b);
            }
            condition = currentGraph.unique(condition);

            AbstractBeginNode trueSuccessor = createBlockTarget(probability, trueBlock, frameState);
            AbstractBeginNode falseSuccessor = createBlockTarget(1 - probability, falseBlock, frameState);

            IfNode ifNode = negate ? new IfNode(condition, falseSuccessor, trueSuccessor, 1 - probability) : new IfNode(condition, trueSuccessor, falseSuccessor, probability);
            append(ifNode);
        }

        private void genIfZero(Condition cond) {
            ValueNode y = appendConstant(Constant.INT_0);
            ValueNode x = frameState.ipop();
            ifNode(x, cond, y);
        }

        private void genIfNull(Condition cond) {
            ValueNode y = appendConstant(Constant.NULL_OBJECT);
            ValueNode x = frameState.apop();
            ifNode(x, cond, y);
        }

        private void genIfSame(Kind kind, Condition cond) {
            ValueNode y = frameState.pop(kind);
            ValueNode x = frameState.pop(kind);
            assert !x.isDeleted() && !y.isDeleted();
            ifNode(x, cond, y);
        }

        private void genThrow() {
            ValueNode exception = frameState.apop();
            append(new FixedGuardNode(currentGraph.unique(new IsNullNode(exception)), NullCheckException, InvalidateReprofile, true));
            lastInstr.setNext(handleException(exception, bci()));
        }

        private JavaType lookupType(int cpi, int bytecode) {
            eagerResolvingForSnippets(cpi, bytecode);
            JavaType result = constantPool.lookupType(cpi, bytecode);
            assert !graphBuilderConfig.unresolvedIsError() || result instanceof ResolvedJavaType;
            return result;
        }

        private JavaMethod lookupMethod(int cpi, int opcode) {
            eagerResolvingForSnippets(cpi, opcode);
            JavaMethod result = constantPool.lookupMethod(cpi, opcode);
            /*
             * In general, one cannot assume that the declaring class being initialized is useful,
             * since the actual concrete receiver may be a different class (except for static
             * calls). Also, interfaces are initialized only under special circumstances, so that
             * this assertion would often fail for interface calls.
             */
            assert !graphBuilderConfig.unresolvedIsError() || (result instanceof ResolvedJavaMethod && (opcode != INVOKESTATIC || ((ResolvedJavaMethod) result).getDeclaringClass().isInitialized())) : result;
            return result;
        }

        private JavaField lookupField(int cpi, int opcode) {
            eagerResolvingForSnippets(cpi, opcode);
            JavaField result = constantPool.lookupField(cpi, opcode);
            assert !graphBuilderConfig.unresolvedIsError() || (result instanceof ResolvedJavaField && ((ResolvedJavaField) result).getDeclaringClass().isInitialized()) : result;
            return result;
        }

        private Object lookupConstant(int cpi, int opcode) {
            eagerResolvingForSnippets(cpi, opcode);
            Object result = constantPool.lookupConstant(cpi);
            assert !graphBuilderConfig.eagerResolving() || !(result instanceof JavaType) || (result instanceof ResolvedJavaType) : result;
            return result;
        }

        private void eagerResolvingForSnippets(int cpi, int bytecode) {
            if (graphBuilderConfig.eagerResolving()) {
                constantPool.loadReferencedType(cpi, bytecode);
            }
        }

        private JavaTypeProfile getProfileForTypeCheck(ResolvedJavaType type) {
            if (!optimisticOpts.useTypeCheckHints() || !canHaveSubtype(type)) {
                return null;
            } else {
                return profilingInfo.getTypeProfile(bci());
            }
        }

        private void genCheckCast() {
            int cpi = stream().readCPI();
            JavaType type = lookupType(cpi, CHECKCAST);
            ValueNode object = frameState.apop();
            if (type instanceof ResolvedJavaType) {
                JavaTypeProfile profileForTypeCheck = getProfileForTypeCheck((ResolvedJavaType) type);
                CheckCastNode checkCastNode = append(new CheckCastNode((ResolvedJavaType) type, object, profileForTypeCheck, false));
                frameState.apush(checkCastNode);
            } else {
                handleUnresolvedCheckCast(type, object);
            }
        }

        private void genInstanceOf() {
            int cpi = stream().readCPI();
            JavaType type = lookupType(cpi, INSTANCEOF);
            ValueNode object = frameState.apop();
            if (type instanceof ResolvedJavaType) {
                ResolvedJavaType resolvedType = (ResolvedJavaType) type;
                InstanceOfNode instanceOfNode = new InstanceOfNode((ResolvedJavaType) type, object, getProfileForTypeCheck(resolvedType));
                frameState.ipush(append(new ConditionalNode(currentGraph.unique(instanceOfNode))));
            } else {
                handleUnresolvedInstanceOf(type, object);
            }
        }

        void genNewInstance(int cpi) {
            JavaType type = lookupType(cpi, NEW);
            if (type instanceof ResolvedJavaType && ((ResolvedJavaType) type).isInitialized()) {
                frameState.apush(append(createNewInstance((ResolvedJavaType) type, true)));
            } else {
                handleUnresolvedNewInstance(type);
            }
        }

        protected NewInstanceNode createNewInstance(ResolvedJavaType type, boolean fillContents) {
            return new NewInstanceNode(type, fillContents);
        }

        /**
         * Gets the kind of array elements for the array type code that appears in a
         * {@link Bytecodes#NEWARRAY} bytecode.
         * 
         * @param code the array type code
         * @return the kind from the array type code
         */
        public static Class<?> arrayTypeCodeToClass(int code) {
            // Checkstyle: stop
            switch (code) {
                case 4:
                    return boolean.class;
                case 5:
                    return char.class;
                case 6:
                    return float.class;
                case 7:
                    return double.class;
                case 8:
                    return byte.class;
                case 9:
                    return short.class;
                case 10:
                    return int.class;
                case 11:
                    return long.class;
                default:
                    throw new IllegalArgumentException("unknown array type code: " + code);
            }
            // Checkstyle: resume
        }

        private void genNewPrimitiveArray(int typeCode) {
            Class<?> clazz = arrayTypeCodeToClass(typeCode);
            ResolvedJavaType elementType = metaAccess.lookupJavaType(clazz);
            frameState.apush(append(createNewArray(elementType, frameState.ipop(), true)));
        }

        private void genNewObjectArray(int cpi) {
            JavaType type = lookupType(cpi, ANEWARRAY);
            ValueNode length = frameState.ipop();
            if (type instanceof ResolvedJavaType) {
                frameState.apush(append(createNewArray((ResolvedJavaType) type, length, true)));
            } else {
                handleUnresolvedNewObjectArray(type, length);
            }

        }

        protected NewArrayNode createNewArray(ResolvedJavaType elementType, ValueNode length, boolean fillContents) {
            return new NewArrayNode(elementType, length, fillContents);
        }

        private void genNewMultiArray(int cpi) {
            JavaType type = lookupType(cpi, MULTIANEWARRAY);
            int rank = stream().readUByte(bci() + 3);
            ValueNode[] dims = new ValueNode[rank];
            for (int i = rank - 1; i >= 0; i--) {
                dims[i] = frameState.ipop();
            }
            if (type instanceof ResolvedJavaType) {
                frameState.apush(append(createNewMultiArray((ResolvedJavaType) type, dims)));
            } else {
                handleUnresolvedNewMultiArray(type, dims);
            }
        }

        protected NewMultiArrayNode createNewMultiArray(ResolvedJavaType type, ValueNode[] dimensions) {
            return new NewMultiArrayNode(type, dimensions);
        }

        private void genGetField(JavaField field) {
            emitExplicitExceptions(frameState.peek(0), null);

            Kind kind = field.getKind();
            ValueNode receiver = frameState.apop();
            if ((field instanceof ResolvedJavaField) && ((ResolvedJavaField) field).getDeclaringClass().isInitialized()) {
                appendOptimizedLoadField(kind, new LoadFieldNode(receiver, (ResolvedJavaField) field));
            } else {
                handleUnresolvedLoadField(field, receiver);
            }
        }

        public static class ExceptionInfo {

            public final FixedWithNextNode exceptionEdge;
            public final ValueNode exception;

            public ExceptionInfo(FixedWithNextNode exceptionEdge, ValueNode exception) {
                this.exceptionEdge = exceptionEdge;
                this.exception = exception;
            }
        }

        private void emitNullCheck(ValueNode receiver) {
            if (ObjectStamp.isObjectNonNull(receiver.stamp())) {
                return;
            }
            BlockPlaceholderNode trueSucc = currentGraph.add(new BlockPlaceholderNode(this));
            BlockPlaceholderNode falseSucc = currentGraph.add(new BlockPlaceholderNode(this));
            append(new IfNode(currentGraph.unique(new IsNullNode(receiver)), trueSucc, falseSucc, 0.01));
            lastInstr = falseSucc;

            if (OmitHotExceptionStacktrace.getValue()) {
                ValueNode exception = ConstantNode.forObject(cachedNullPointerException, metaAccess, currentGraph);
                trueSucc.setNext(handleException(exception, bci()));
            } else {
                DeferredForeignCallNode call = currentGraph.add(new DeferredForeignCallNode(CREATE_NULL_POINTER_EXCEPTION));
                call.setStamp(StampFactory.exactNonNull(metaAccess.lookupJavaType(CREATE_NULL_POINTER_EXCEPTION.getResultType())));
                call.setStateAfter(frameState.create(bci()));
                trueSucc.setNext(call);
                call.setNext(handleException(call, bci()));
            }
        }

        private static final ArrayIndexOutOfBoundsException cachedArrayIndexOutOfBoundsException = new ArrayIndexOutOfBoundsException();
        private static final NullPointerException cachedNullPointerException = new NullPointerException();
        static {
            cachedArrayIndexOutOfBoundsException.setStackTrace(new StackTraceElement[0]);
            cachedNullPointerException.setStackTrace(new StackTraceElement[0]);
        }

        private void emitBoundsCheck(ValueNode index, ValueNode length) {
            BlockPlaceholderNode trueSucc = currentGraph.add(new BlockPlaceholderNode(this));
            BlockPlaceholderNode falseSucc = currentGraph.add(new BlockPlaceholderNode(this));
            append(new IfNode(currentGraph.unique(new IntegerBelowThanNode(index, length)), trueSucc, falseSucc, 0.99));
            lastInstr = trueSucc;

            if (OmitHotExceptionStacktrace.getValue()) {
                ValueNode exception = ConstantNode.forObject(cachedArrayIndexOutOfBoundsException, metaAccess, currentGraph);
                falseSucc.setNext(handleException(exception, bci()));
            } else {
                DeferredForeignCallNode call = currentGraph.add(new DeferredForeignCallNode(CREATE_OUT_OF_BOUNDS_EXCEPTION, index));
                call.setStamp(StampFactory.exactNonNull(metaAccess.lookupJavaType(CREATE_OUT_OF_BOUNDS_EXCEPTION.getResultType())));
                call.setStateAfter(frameState.create(bci()));
                falseSucc.setNext(call);
                call.setNext(handleException(call, bci()));
            }
        }

        private static final DebugMetric EXPLICIT_EXCEPTIONS = Debug.metric("ExplicitExceptions");

        protected void emitExplicitExceptions(ValueNode receiver, ValueNode outOfBoundsIndex) {
            assert receiver != null;
            if (graphBuilderConfig.omitAllExceptionEdges() || (optimisticOpts.useExceptionProbabilityForOperations() && profilingInfo.getExceptionSeen(bci()) == TriState.FALSE)) {
                return;
            }

            emitNullCheck(receiver);
            if (outOfBoundsIndex != null) {
                ValueNode length = append(new ArrayLengthNode(receiver));
                emitBoundsCheck(outOfBoundsIndex, length);
            }
            EXPLICIT_EXCEPTIONS.increment();
        }

        private void genPutField(JavaField field) {
            emitExplicitExceptions(frameState.peek(1), null);

            ValueNode value = frameState.pop(field.getKind().getStackKind());
            ValueNode receiver = frameState.apop();
            if (field instanceof ResolvedJavaField && ((ResolvedJavaField) field).getDeclaringClass().isInitialized()) {
                appendOptimizedStoreField(new StoreFieldNode(receiver, (ResolvedJavaField) field, value));
            } else {
                handleUnresolvedStoreField(field, value, receiver);
            }
        }

        private void genGetStatic(JavaField field) {
            Kind kind = field.getKind();
            if (field instanceof ResolvedJavaField && ((ResolvedJavaType) field.getDeclaringClass()).isInitialized()) {
                appendOptimizedLoadField(kind, new LoadFieldNode(null, (ResolvedJavaField) field));
            } else {
                handleUnresolvedLoadField(field, null);
            }
        }

        private void genPutStatic(JavaField field) {
            ValueNode value = frameState.pop(field.getKind().getStackKind());
            if (field instanceof ResolvedJavaField && ((ResolvedJavaType) field.getDeclaringClass()).isInitialized()) {
                appendOptimizedStoreField(new StoreFieldNode(null, (ResolvedJavaField) field, value));
            } else {
                handleUnresolvedStoreField(field, value, null);
            }
        }

        private void appendOptimizedStoreField(StoreFieldNode store) {
            append(store);
        }

        private void appendOptimizedLoadField(Kind kind, LoadFieldNode load) {
            // append the load to the instruction
            ValueNode optimized = append(load);
            frameState.push(kind.getStackKind(), optimized);
        }

        private void genInvokeStatic(JavaMethod target) {
            if (target instanceof ResolvedJavaMethod) {
                ResolvedJavaMethod resolvedTarget = (ResolvedJavaMethod) target;
                ResolvedJavaType holder = resolvedTarget.getDeclaringClass();
                if (!holder.isInitialized() && ResolveClassBeforeStaticInvoke.getValue()) {
                    handleUnresolvedInvoke(target, InvokeKind.Static);
                } else {
                    ValueNode[] args = frameState.popArguments(resolvedTarget.getSignature().getParameterSlots(false), resolvedTarget.getSignature().getParameterCount(false));
                    appendInvoke(InvokeKind.Static, resolvedTarget, args);
                }
            } else {
                handleUnresolvedInvoke(target, InvokeKind.Static);
            }
        }

        private void genInvokeInterface(JavaMethod target) {
            if (target instanceof ResolvedJavaMethod) {
                ValueNode[] args = frameState.popArguments(target.getSignature().getParameterSlots(true), target.getSignature().getParameterCount(true));
                genInvokeIndirect(InvokeKind.Interface, (ResolvedJavaMethod) target, args);
            } else {
                handleUnresolvedInvoke(target, InvokeKind.Interface);
            }
        }

        private void genInvokeDynamic(JavaMethod target) {
            if (target instanceof ResolvedJavaMethod) {
                Object appendix = constantPool.lookupAppendix(stream.readCPI4(), Bytecodes.INVOKEDYNAMIC);
                if (appendix != null) {
                    frameState.apush(ConstantNode.forObject(appendix, metaAccess, currentGraph));
                }
                ValueNode[] args = frameState.popArguments(target.getSignature().getParameterSlots(false), target.getSignature().getParameterCount(false));
                appendInvoke(InvokeKind.Static, (ResolvedJavaMethod) target, args);
            } else {
                handleUnresolvedInvoke(target, InvokeKind.Static);
            }
        }

        private void genInvokeVirtual(JavaMethod target) {
            if (target instanceof ResolvedJavaMethod) {
                /*
                 * Special handling for runtimes that rewrite an invocation of
                 * MethodHandle.invoke(...) or MethodHandle.invokeExact(...) to a static adapter.
                 * HotSpot does this - see
                 * https://wikis.oracle.com/display/HotSpotInternals/Method+handles
                 * +and+invokedynamic
                 */
                boolean hasReceiver = !isStatic(((ResolvedJavaMethod) target).getModifiers());
                Object appendix = constantPool.lookupAppendix(stream.readCPI(), Bytecodes.INVOKEVIRTUAL);
                if (appendix != null) {
                    frameState.apush(ConstantNode.forObject(appendix, metaAccess, currentGraph));
                }
                ValueNode[] args = frameState.popArguments(target.getSignature().getParameterSlots(hasReceiver), target.getSignature().getParameterCount(hasReceiver));
                if (hasReceiver) {
                    genInvokeIndirect(InvokeKind.Virtual, (ResolvedJavaMethod) target, args);
                } else {
                    appendInvoke(InvokeKind.Static, (ResolvedJavaMethod) target, args);
                }
            } else {
                handleUnresolvedInvoke(target, InvokeKind.Virtual);
            }

        }

        private void genInvokeSpecial(JavaMethod target) {
            if (target instanceof ResolvedJavaMethod) {
                assert target != null;
                assert target.getSignature() != null;
                ValueNode[] args = frameState.popArguments(target.getSignature().getParameterSlots(true), target.getSignature().getParameterCount(true));
                invokeDirect((ResolvedJavaMethod) target, args);
            } else {
                handleUnresolvedInvoke(target, InvokeKind.Special);
            }
        }

        private void genInvokeIndirect(InvokeKind invokeKind, ResolvedJavaMethod target, ValueNode[] args) {
            ValueNode receiver = args[0];
            // attempt to devirtualize the call
            ResolvedJavaType klass = target.getDeclaringClass();

            // 0. check for trivial cases
            if (target.canBeStaticallyBound()) {
                // check for trivial cases (e.g. final methods, nonvirtual methods)
                invokeDirect(target, args);
                return;
            }
            // 1. check if the exact type of the receiver can be determined
            ResolvedJavaType exact = klass.asExactType();
            if (exact == null && receiver.stamp() instanceof ObjectStamp) {
                ObjectStamp receiverStamp = (ObjectStamp) receiver.stamp();
                if (receiverStamp.isExactType()) {
                    exact = receiverStamp.type();
                }
            }
            if (exact != null) {
                // either the holder class is exact, or the receiver object has an exact type
                ResolvedJavaMethod exactMethod = exact.resolveMethod(target);
                if (exactMethod != null) {
                    invokeDirect(exactMethod, args);
                    return;
                }
            }
            // devirtualization failed, produce an actual invokevirtual
            appendInvoke(invokeKind, target, args);
        }

        private void invokeDirect(ResolvedJavaMethod target, ValueNode[] args) {
            appendInvoke(InvokeKind.Special, target, args);
        }

        private void appendInvoke(InvokeKind invokeKind, ResolvedJavaMethod targetMethod, ValueNode[] args) {
            Kind resultType = targetMethod.getSignature().getReturnKind();
            if (DeoptALot.getValue()) {
                append(new DeoptimizeNode(DeoptimizationAction.None, RuntimeConstraint));
                frameState.pushReturn(resultType, ConstantNode.defaultForKind(resultType, currentGraph));
                return;
            }

            JavaType returnType = targetMethod.getSignature().getReturnType(method.getDeclaringClass());
            if (graphBuilderConfig.eagerResolving()) {
                returnType = returnType.resolve(targetMethod.getDeclaringClass());
            }
            if (invokeKind != InvokeKind.Static) {
                emitExplicitExceptions(args[0], null);
                if (invokeKind != InvokeKind.Special && this.optimisticOpts.useTypeCheckHints()) {
                    JavaTypeProfile profile = profilingInfo.getTypeProfile(bci());
                    args[0] = TypeProfileProxyNode.create(args[0], profile);
                }
            }
            MethodCallTargetNode callTarget = currentGraph.add(createMethodCallTarget(invokeKind, targetMethod, args, returnType));

            // be conservative if information was not recorded (could result in endless recompiles
            // otherwise)
            if (graphBuilderConfig.omitAllExceptionEdges() || (optimisticOpts.useExceptionProbability() && profilingInfo.getExceptionSeen(bci()) == TriState.FALSE)) {
                createInvoke(callTarget, resultType);
            } else {
                assert bci() == currentBlock.endBci;
                frameState.clearNonLiveLocals(currentBlock, liveness, false);

                InvokeWithExceptionNode invoke = createInvokeWithException(callTarget, resultType);

                Block nextBlock = currentBlock.successors.get(0);
                invoke.setNext(createTarget(nextBlock, frameState));
            }
        }

        protected MethodCallTargetNode createMethodCallTarget(InvokeKind invokeKind, ResolvedJavaMethod targetMethod, ValueNode[] args, JavaType returnType) {
            return new MethodCallTargetNode(invokeKind, targetMethod, args, returnType);
        }

        protected InvokeNode createInvoke(CallTargetNode callTarget, Kind resultType) {
            InvokeNode invoke = append(new InvokeNode(callTarget, bci()));
            frameState.pushReturn(resultType, invoke);
            return invoke;
        }

        protected InvokeWithExceptionNode createInvokeWithException(CallTargetNode callTarget, Kind resultType) {
            DispatchBeginNode exceptionEdge = handleException(null, bci());
            InvokeWithExceptionNode invoke = append(new InvokeWithExceptionNode(callTarget, exceptionEdge, bci()));
            frameState.pushReturn(resultType, invoke);
            Block nextBlock = currentBlock.successors.get(0);
            invoke.setStateAfter(frameState.create(nextBlock.startBci));
            return invoke;
        }

        private void genReturn(ValueNode x) {
            frameState.setRethrowException(false);
            frameState.clearStack();
            if (graphBuilderConfig.eagerInfopointMode()) {
                append(new InfopointNode(InfopointReason.METHOD_END, frameState.create(bci())));
            }

            synchronizedEpilogue(FrameState.AFTER_BCI, x);
            if (frameState.lockDepth() != 0) {
                throw new BailoutException("unbalanced monitors");
            }

            append(new ReturnNode(x));
        }

        private MonitorEnterNode genMonitorEnter(ValueNode x) {
            MonitorIdNode monitorId = currentGraph.add(new MonitorIdNode(frameState.lockDepth()));
            MonitorEnterNode monitorEnter = append(new MonitorEnterNode(x, monitorId));
            frameState.pushLock(x, monitorId);
            return monitorEnter;
        }

        private MonitorExitNode genMonitorExit(ValueNode x, ValueNode returnValue) {
            MonitorIdNode monitorId = frameState.peekMonitorId();
            ValueNode lockedObject = frameState.popLock();
            if (GraphUtil.originalValue(lockedObject) != GraphUtil.originalValue(x)) {
                throw new BailoutException("unbalanced monitors: mismatch at monitorexit, %s != %s", GraphUtil.originalValue(x), GraphUtil.originalValue(lockedObject));
            }
            MonitorExitNode monitorExit = append(new MonitorExitNode(x, monitorId, returnValue));
            return monitorExit;
        }

        private void genJsr(int dest) {
            Block successor = currentBlock.jsrSuccessor;
            assert successor.startBci == dest : successor.startBci + " != " + dest + " @" + bci();
            JsrScope scope = currentBlock.jsrScope;
            if (!successor.jsrScope.pop().equals(scope)) {
                throw new JsrNotSupportedBailout("unstructured control flow (internal limitation)");
            }
            if (successor.jsrScope.nextReturnAddress() != stream().nextBCI()) {
                throw new JsrNotSupportedBailout("unstructured control flow (internal limitation)");
            }
            frameState.push(Kind.Int, ConstantNode.forInt(stream().nextBCI(), currentGraph));
            appendGoto(createTarget(successor, frameState));
        }

        private void genRet(int localIndex) {
            Block successor = currentBlock.retSuccessor;
            ValueNode local = frameState.loadLocal(localIndex);
            JsrScope scope = currentBlock.jsrScope;
            int retAddress = scope.nextReturnAddress();
            append(new FixedGuardNode(currentGraph.unique(new IntegerEqualsNode(local, ConstantNode.forInt(retAddress, currentGraph))), JavaSubroutineMismatch, InvalidateReprofile));
            if (!successor.jsrScope.equals(scope.pop())) {
                throw new JsrNotSupportedBailout("unstructured control flow (ret leaves more than one scope)");
            }
            appendGoto(createTarget(successor, frameState));
        }

        private double[] switchProbability(int numberOfCases, int bci) {
            double[] prob = profilingInfo.getSwitchProbabilities(bci);
            if (prob != null) {
                assert prob.length == numberOfCases;
            } else {
                Debug.log("Missing probability (switch) in %s at bci %d", method, bci);
                prob = new double[numberOfCases];
                for (int i = 0; i < numberOfCases; i++) {
                    prob[i] = 1.0d / numberOfCases;
                }
            }
            assert allPositive(prob);
            return prob;
        }

        private static boolean allPositive(double[] a) {
            for (double d : a) {
                if (d < 0) {
                    return false;
                }
            }
            return true;
        }

        /**
         * Helper function that sums up the probabilities of all keys that lead to a specific
         * successor.
         * 
         * @return an array of size successorCount with the accumulated probability for each
         *         successor.
         */
        private static double[] successorProbabilites(int successorCount, int[] keySuccessors, double[] keyProbabilities) {
            double[] probability = new double[successorCount];
            for (int i = 0; i < keySuccessors.length; i++) {
                probability[keySuccessors[i]] += keyProbabilities[i];
            }
            return probability;
        }

        private void genSwitch(BytecodeSwitch bs) {
            int bci = bci();
            ValueNode value = frameState.ipop();

            int nofCases = bs.numberOfCases();
            double[] keyProbabilities = switchProbability(nofCases + 1, bci);

            Map<Integer, SuccessorInfo> bciToBlockSuccessorIndex = new HashMap<>();
            for (int i = 0; i < currentBlock.successors.size(); i++) {
                assert !bciToBlockSuccessorIndex.containsKey(currentBlock.successors.get(i).startBci);
                if (!bciToBlockSuccessorIndex.containsKey(currentBlock.successors.get(i).startBci)) {
                    bciToBlockSuccessorIndex.put(currentBlock.successors.get(i).startBci, new SuccessorInfo(i));
                }
            }

            ArrayList<Block> actualSuccessors = new ArrayList<>();
            int[] keys = new int[nofCases];
            int[] keySuccessors = new int[nofCases + 1];
            int deoptSuccessorIndex = -1;
            int nextSuccessorIndex = 0;
            for (int i = 0; i < nofCases + 1; i++) {
                if (i < nofCases) {
                    keys[i] = bs.keyAt(i);
                }

                if (isNeverExecutedCode(keyProbabilities[i])) {
                    if (deoptSuccessorIndex < 0) {
                        deoptSuccessorIndex = nextSuccessorIndex++;
                        actualSuccessors.add(null);
                    }
                    keySuccessors[i] = deoptSuccessorIndex;
                } else {
                    int targetBci = i >= nofCases ? bs.defaultTarget() : bs.targetAt(i);
                    SuccessorInfo info = bciToBlockSuccessorIndex.get(targetBci);
                    if (info.actualIndex < 0) {
                        info.actualIndex = nextSuccessorIndex++;
                        actualSuccessors.add(currentBlock.successors.get(info.blockIndex));
                    }
                    keySuccessors[i] = info.actualIndex;
                }
            }

            double[] successorProbabilities = successorProbabilites(actualSuccessors.size(), keySuccessors, keyProbabilities);
            IntegerSwitchNode switchNode = append(new IntegerSwitchNode(value, actualSuccessors.size(), keys, keyProbabilities, keySuccessors));
            for (int i = 0; i < actualSuccessors.size(); i++) {
                switchNode.setBlockSuccessor(i, createBlockTarget(successorProbabilities[i], actualSuccessors.get(i), frameState));
            }

        }

        private static class SuccessorInfo {

            int blockIndex;
            int actualIndex;

            public SuccessorInfo(int blockSuccessorIndex) {
                this.blockIndex = blockSuccessorIndex;
                actualIndex = -1;
            }
        }

        protected ConstantNode appendConstant(Constant constant) {
            assert constant != null;
            return ConstantNode.forConstant(constant, metaAccess, currentGraph);
        }

        private <T extends ControlSinkNode> T append(T fixed) {
            assert !fixed.isAlive() && !fixed.isDeleted() : "instruction should not have been appended yet";
            assert lastInstr.next() == null : "cannot append instruction to instruction which isn't end (" + lastInstr + "->" + lastInstr.next() + ")";
            T added = currentGraph.add(fixed);
            lastInstr.setNext(added);
            lastInstr = null;
            return added;
        }

        private <T extends ControlSplitNode> T append(T fixed) {
            assert !fixed.isAlive() && !fixed.isDeleted() : "instruction should not have been appended yet";
            assert lastInstr.next() == null : "cannot append instruction to instruction which isn't end (" + lastInstr + "->" + lastInstr.next() + ")";
            T added = currentGraph.add(fixed);
            lastInstr.setNext(added);
            lastInstr = null;
            return added;
        }

        protected <T extends FixedWithNextNode> T append(T fixed) {
            assert !fixed.isAlive() && !fixed.isDeleted() : "instruction should not have been appended yet";
            assert lastInstr.next() == null : "cannot append instruction to instruction which isn't end (" + lastInstr + "->" + lastInstr.next() + ")";
            T added = currentGraph.add(fixed);
            lastInstr.setNext(added);
            lastInstr = added;
            return added;
        }

        private <T extends FloatingNode> T append(T v) {
            assert !(v instanceof ConstantNode);
            T added = currentGraph.unique(v);
            return added;
        }

        private static class Target {

            FixedNode fixed;
            FrameStateBuilder state;

            public Target(FixedNode fixed, FrameStateBuilder state) {
                this.fixed = fixed;
                this.state = state;
            }
        }

        private Target checkLoopExit(FixedNode target, Block targetBlock, FrameStateBuilder state) {
            if (currentBlock != null) {
                long exits = currentBlock.loops & ~targetBlock.loops;
                if (exits != 0) {
                    LoopExitNode firstLoopExit = null;
                    LoopExitNode lastLoopExit = null;

                    int pos = 0;
                    ArrayList<Block> exitLoops = new ArrayList<>(Long.bitCount(exits));
                    do {
                        long lMask = 1L << pos;
                        if ((exits & lMask) != 0) {
                            exitLoops.add(loopHeaders[pos]);
                            exits &= ~lMask;
                        }
                        pos++;
                    } while (exits != 0);

                    Collections.sort(exitLoops, new Comparator<Block>() {

                        @Override
                        public int compare(Block o1, Block o2) {
                            return Long.bitCount(o2.loops) - Long.bitCount(o1.loops);
                        }
                    });

                    int bci = targetBlock.startBci;
                    if (targetBlock instanceof ExceptionDispatchBlock) {
                        bci = ((ExceptionDispatchBlock) targetBlock).deoptBci;
                    }
                    FrameStateBuilder newState = state.copy();
                    for (Block loop : exitLoops) {
                        LoopBeginNode loopBegin = (LoopBeginNode) loop.firstInstruction;
                        LoopExitNode loopExit = currentGraph.add(new LoopExitNode(loopBegin));
                        if (lastLoopExit != null) {
                            lastLoopExit.setNext(loopExit);
                        }
                        if (firstLoopExit == null) {
                            firstLoopExit = loopExit;
                        }
                        lastLoopExit = loopExit;
                        Debug.log("Target %s (%s) Exits %s, scanning framestates...", targetBlock, target, loop);
                        newState.insertLoopProxies(loopExit, loop.entryState);
                        loopExit.setStateAfter(newState.create(bci));
                    }

                    lastLoopExit.setNext(target);
                    return new Target(firstLoopExit, newState);
                }
            }
            return new Target(target, state);
        }

        private FixedNode createTarget(double probability, Block block, FrameStateBuilder stateAfter) {
            assert probability >= 0 && probability <= 1.01 : probability;
            if (isNeverExecutedCode(probability)) {
                return currentGraph.add(new DeoptimizeNode(InvalidateReprofile, UnreachedCode));
            } else {
                assert block != null;
                return createTarget(block, stateAfter);
            }
        }

        private boolean isNeverExecutedCode(double probability) {
            return probability == 0 && optimisticOpts.removeNeverExecutedCode() && entryBCI == StructuredGraph.INVOCATION_ENTRY_BCI;
        }

        private FixedNode createTarget(Block block, FrameStateBuilder state) {
            assert block != null && state != null;
            assert !block.isExceptionEntry || state.stackSize() == 1;

            if (block.firstInstruction == null) {
                /*
                 * This is the first time we see this block as a branch target. Create and return a
                 * placeholder that later can be replaced with a MergeNode when we see this block
                 * again.
                 */
                block.firstInstruction = currentGraph.add(new BlockPlaceholderNode(this));
                Target target = checkLoopExit(block.firstInstruction, block, state);
                FixedNode result = target.fixed;
                block.entryState = target.state == state ? state.copy() : target.state;
                block.entryState.clearNonLiveLocals(block, liveness, true);

                Debug.log("createTarget %s: first visit, result: %s", block, block.firstInstruction);
                return result;
            }

            // We already saw this block before, so we have to merge states.
            if (!block.entryState.isCompatibleWith(state)) {
                throw new BailoutException("stacks do not match; bytecodes would not verify");
            }

            if (block.firstInstruction instanceof LoopBeginNode) {
                assert block.isLoopHeader && currentBlock.blockID >= block.blockID : "must be backward branch";
                /*
                 * Backward loop edge. We need to create a special LoopEndNode and merge with the
                 * loop begin node created before.
                 */
                LoopBeginNode loopBegin = (LoopBeginNode) block.firstInstruction;
                Target target = checkLoopExit(currentGraph.add(new LoopEndNode(loopBegin)), block, state);
                FixedNode result = target.fixed;
                block.entryState.merge(loopBegin, target.state);

                Debug.log("createTarget %s: merging backward branch to loop header %s, result: %s", block, loopBegin, result);
                return result;
            }
            assert currentBlock == null || currentBlock.blockID < block.blockID : "must not be backward branch";
            assert block.firstInstruction.next() == null : "bytecodes already parsed for block";

            if (block.firstInstruction instanceof BlockPlaceholderNode) {
                /*
                 * This is the second time we see this block. Create the actual MergeNode and the
                 * End Node for the already existing edge. For simplicity, we leave the placeholder
                 * in the graph and just append the new nodes after the placeholder.
                 */
                BlockPlaceholderNode placeholder = (BlockPlaceholderNode) block.firstInstruction;

                // The EndNode for the already existing edge.
                AbstractEndNode end = currentGraph.add(new EndNode());
                // The MergeNode that replaces the placeholder.
                MergeNode mergeNode = currentGraph.add(new MergeNode());
                FixedNode next = placeholder.next();

                placeholder.setNext(end);
                mergeNode.addForwardEnd(end);
                mergeNode.setNext(next);

                block.firstInstruction = mergeNode;
            }

            MergeNode mergeNode = (MergeNode) block.firstInstruction;

            // The EndNode for the newly merged edge.
            AbstractEndNode newEnd = currentGraph.add(new EndNode());
            Target target = checkLoopExit(newEnd, block, state);
            FixedNode result = target.fixed;
            block.entryState.merge(mergeNode, target.state);
            mergeNode.addForwardEnd(newEnd);

            Debug.log("createTarget %s: merging state, result: %s", block, result);
            return result;
        }

        /**
         * Returns a block begin node with the specified state. If the specified probability is 0,
         * the block deoptimizes immediately.
         */
        private AbstractBeginNode createBlockTarget(double probability, Block block, FrameStateBuilder stateAfter) {
            FixedNode target = createTarget(probability, block, stateAfter);
            AbstractBeginNode begin = AbstractBeginNode.begin(target);

            assert !(target instanceof DeoptimizeNode && begin.stateAfter() != null) : "We are not allowed to set the stateAfter of the begin node, because we have to deoptimize "
                            + "to a bci _before_ the actual if, so that the interpreter can update the profiling information.";
            return begin;
        }

        private ValueNode synchronizedObject(FrameStateBuilder state, ResolvedJavaMethod target) {
            if (isStatic(target.getModifiers())) {
                return appendConstant(target.getDeclaringClass().getEncoding(Representation.JavaClass));
            } else {
                return state.loadLocal(0);
            }
        }

        private void processBlock(Block block) {
            // Ignore blocks that have no predecessors by the time their bytecodes are parsed
            if (block == null || block.firstInstruction == null) {
                Debug.log("Ignoring block %s", block);
                return;
            }
            Indent indent = Debug.logAndIndent("Parsing block %s  firstInstruction: %s  loopHeader: %b", block, block.firstInstruction, block.isLoopHeader);

            lastInstr = block.firstInstruction;
            frameState = block.entryState;
            currentBlock = block;

            frameState.cleanupDeletedPhis();
            if (lastInstr instanceof MergeNode) {
                int bci = block.startBci;
                if (block instanceof ExceptionDispatchBlock) {
                    bci = ((ExceptionDispatchBlock) block).deoptBci;
                }
                ((MergeNode) lastInstr).setStateAfter(frameState.create(bci));
            }

            if (block == unwindBlock) {
                frameState.setRethrowException(false);
                createUnwind();
            } else if (block instanceof ExceptionDispatchBlock) {
                createExceptionDispatch((ExceptionDispatchBlock) block);
            } else {
                frameState.setRethrowException(false);
                iterateBytecodesForBlock(block);
            }
            indent.outdent();
        }

        private void connectLoopEndToBegin() {
            for (LoopBeginNode begin : currentGraph.getNodes(LoopBeginNode.class)) {
                if (begin.loopEnds().isEmpty()) {
                    // @formatter:off
                // Remove loop header without loop ends.
                // This can happen with degenerated loops like this one:
                // for (;;) {
                //     try {
                //         break;
                //     } catch (UnresolvedException iioe) {
                //     }
                // }
                // @formatter:on
                    assert begin.forwardEndCount() == 1;
                    currentGraph.reduceDegenerateLoopBegin(begin);
                } else {
                    GraphUtil.normalizeLoopBegin(begin);
                }
            }
        }

        private void createUnwind() {
            assert frameState.stackSize() == 1 : frameState;
            ValueNode exception = frameState.apop();
            append(new FixedGuardNode(currentGraph.unique(new IsNullNode(exception)), NullCheckException, InvalidateReprofile, true));
            synchronizedEpilogue(FrameState.AFTER_EXCEPTION_BCI, null);
            append(new UnwindNode(exception));
        }

        private void synchronizedEpilogue(int bci, ValueNode returnValue) {
            if (Modifier.isSynchronized(method.getModifiers())) {
                MonitorExitNode monitorExit = genMonitorExit(methodSynchronizedObject, returnValue);
                if (returnValue != null) {
                    frameState.push(returnValue.getKind(), returnValue);
                }
                monitorExit.setStateAfter(frameState.create(bci));
                assert !frameState.rethrowException();
            }
        }

        private void createExceptionDispatch(ExceptionDispatchBlock block) {
            assert frameState.stackSize() == 1 : frameState;
            if (block.handler.isCatchAll()) {
                assert block.successors.size() == 1;
                appendGoto(createTarget(block.successors.get(0), frameState));
                return;
            }

            JavaType catchType = block.handler.getCatchType();
            if (graphBuilderConfig.eagerResolving()) {
                catchType = lookupType(block.handler.catchTypeCPI(), INSTANCEOF);
            }
            boolean initialized = (catchType instanceof ResolvedJavaType);
            if (initialized && graphBuilderConfig.getSkippedExceptionTypes() != null) {
                ResolvedJavaType resolvedCatchType = (ResolvedJavaType) catchType;
                for (ResolvedJavaType skippedType : graphBuilderConfig.getSkippedExceptionTypes()) {
                    if (skippedType.isAssignableFrom(resolvedCatchType)) {
                        Block nextBlock = block.successors.size() == 1 ? unwindBlock(block.deoptBci) : block.successors.get(1);
                        ValueNode exception = frameState.stackAt(0);
                        FixedNode trueSuccessor = currentGraph.add(new DeoptimizeNode(InvalidateReprofile, UnreachedCode));
                        FixedNode nextDispatch = createTarget(nextBlock, frameState);
                        append(new IfNode(currentGraph.unique(new InstanceOfNode((ResolvedJavaType) catchType, exception, null)), trueSuccessor, nextDispatch, 0));
                        return;
                    }
                }
            }

            if (initialized) {
                Block nextBlock = block.successors.size() == 1 ? unwindBlock(block.deoptBci) : block.successors.get(1);
                ValueNode exception = frameState.stackAt(0);
                CheckCastNode checkCast = currentGraph.add(new CheckCastNode((ResolvedJavaType) catchType, exception, null, false));
                frameState.apop();
                frameState.push(Kind.Object, checkCast);
                FixedNode catchSuccessor = createTarget(block.successors.get(0), frameState);
                frameState.apop();
                frameState.push(Kind.Object, exception);
                FixedNode nextDispatch = createTarget(nextBlock, frameState);
                checkCast.setNext(catchSuccessor);
                append(new IfNode(currentGraph.unique(new InstanceOfNode((ResolvedJavaType) catchType, exception, null)), checkCast, nextDispatch, 0.5));
            } else {
                handleUnresolvedExceptionType(Representation.ObjectHub, catchType);
            }
        }

        private void appendGoto(FixedNode target) {
            if (lastInstr != null) {
                lastInstr.setNext(target);
            }
        }

        private static boolean isBlockEnd(Node n) {
            return n instanceof ControlSplitNode || n instanceof ControlSinkNode;
        }

        private void iterateBytecodesForBlock(Block block) {
            if (block.isLoopHeader) {
                // Create the loop header block, which later will merge the backward branches of the
                // loop.
                AbstractEndNode preLoopEnd = currentGraph.add(new EndNode());
                LoopBeginNode loopBegin = currentGraph.add(new LoopBeginNode());
                lastInstr.setNext(preLoopEnd);
                // Add the single non-loop predecessor of the loop header.
                loopBegin.addForwardEnd(preLoopEnd);
                lastInstr = loopBegin;

                // Create phi functions for all local variables and operand stack slots.
                frameState.insertLoopPhis(loopBegin);
                loopBegin.setStateAfter(frameState.create(block.startBci));

                /*
                 * We have seen all forward branches. All subsequent backward branches will merge to
                 * the loop header. This ensures that the loop header has exactly one non-loop
                 * predecessor.
                 */
                block.firstInstruction = loopBegin;
                /*
                 * We need to preserve the frame state builder of the loop header so that we can
                 * merge values for phi functions, so make a copy of it.
                 */
                block.entryState = frameState.copy();

                Debug.log("  created loop header %s", loopBegin);
            }
            assert lastInstr.next() == null : "instructions already appended at block " + block;
            Debug.log("  frameState: %s", frameState);

            int endBCI = stream.endBCI();

            stream.setBCI(block.startBci);
            int bci = block.startBci;
            BytecodesParsed.add(block.endBci - bci);

            while (bci < endBCI) {
                if (graphBuilderConfig.eagerInfopointMode() && lnt != null) {
                    currentLineNumber = lnt.getLineNumber(bci);
                    if (currentLineNumber != previousLineNumber) {
                        append(new InfopointNode(InfopointReason.LINE_NUMBER, frameState.create(bci)));
                        previousLineNumber = currentLineNumber;
                    }
                }

                // read the opcode
                int opcode = stream.currentBC();
                traceState();
                traceInstruction(bci, opcode, bci == block.startBci);
                if (bci == entryBCI) {
                    if (block.jsrScope != JsrScope.EMPTY_SCOPE) {
                        throw new BailoutException("OSR into a JSR scope is not supported");
                    }
                    EntryMarkerNode x = append(new EntryMarkerNode());
                    frameState.insertProxies(x);
                    x.setStateAfter(frameState.create(bci));
                }
                processBytecode(bci, opcode);

                if (lastInstr == null || isBlockEnd(lastInstr) || lastInstr.next() != null) {
                    break;
                }

                stream.next();
                bci = stream.currentBCI();

                if (bci > block.endBci) {
                    frameState.clearNonLiveLocals(currentBlock, liveness, false);
                }
                if (lastInstr instanceof StateSplit) {
                    if (lastInstr.getClass() == AbstractBeginNode.class) {
                        // BeginNodes do not need a frame state
                    } else {
                        StateSplit stateSplit = (StateSplit) lastInstr;
                        if (stateSplit.stateAfter() == null) {
                            stateSplit.setStateAfter(frameState.create(bci));
                        }
                    }
                }
                if (bci < endBCI) {
                    if (bci > block.endBci) {
                        assert !block.successors.get(0).isExceptionEntry;
                        assert block.numNormalSuccessors() == 1;
                        // we fell through to the next block, add a goto and break
                        appendGoto(createTarget(block.successors.get(0), frameState));
                        break;
                    }
                }
            }
        }

        private final int traceLevel = Options.TraceBytecodeParserLevel.getValue();

        private void traceState() {
            if (traceLevel >= TRACELEVEL_STATE && Debug.isLogEnabled()) {
                Debug.log(String.format("|   state [nr locals = %d, stack depth = %d, method = %s]", frameState.localsSize(), frameState.stackSize(), method));
                for (int i = 0; i < frameState.localsSize(); ++i) {
                    ValueNode value = frameState.localAt(i);
                    Debug.log(String.format("|   local[%d] = %-8s : %s", i, value == null ? "bogus" : value.getKind().getJavaName(), value));
                }
                for (int i = 0; i < frameState.stackSize(); ++i) {
                    ValueNode value = frameState.stackAt(i);
                    Debug.log(String.format("|   stack[%d] = %-8s : %s", i, value == null ? "bogus" : value.getKind().getJavaName(), value));
                }
            }
        }

        private void processBytecode(int bci, int opcode) {
            int cpi;

            // Checkstyle: stop
            // @formatter:off
        switch (opcode) {
            case NOP            : /* nothing to do */ break;
            case ACONST_NULL    : frameState.apush(appendConstant(Constant.NULL_OBJECT)); break;
            case ICONST_M1      : frameState.ipush(appendConstant(Constant.INT_MINUS_1)); break;
            case ICONST_0       : frameState.ipush(appendConstant(Constant.INT_0)); break;
            case ICONST_1       : frameState.ipush(appendConstant(Constant.INT_1)); break;
            case ICONST_2       : frameState.ipush(appendConstant(Constant.INT_2)); break;
            case ICONST_3       : frameState.ipush(appendConstant(Constant.INT_3)); break;
            case ICONST_4       : frameState.ipush(appendConstant(Constant.INT_4)); break;
            case ICONST_5       : frameState.ipush(appendConstant(Constant.INT_5)); break;
            case LCONST_0       : frameState.lpush(appendConstant(Constant.LONG_0)); break;
            case LCONST_1       : frameState.lpush(appendConstant(Constant.LONG_1)); break;
            case FCONST_0       : frameState.fpush(appendConstant(Constant.FLOAT_0)); break;
            case FCONST_1       : frameState.fpush(appendConstant(Constant.FLOAT_1)); break;
            case FCONST_2       : frameState.fpush(appendConstant(Constant.FLOAT_2)); break;
            case DCONST_0       : frameState.dpush(appendConstant(Constant.DOUBLE_0)); break;
            case DCONST_1       : frameState.dpush(appendConstant(Constant.DOUBLE_1)); break;
            case BIPUSH         : frameState.ipush(appendConstant(Constant.forInt(stream.readByte()))); break;
            case SIPUSH         : frameState.ipush(appendConstant(Constant.forInt(stream.readShort()))); break;
            case LDC            : // fall through
            case LDC_W          : // fall through
            case LDC2_W         : genLoadConstant(stream.readCPI(), opcode); break;
            case ILOAD          : loadLocal(stream.readLocalIndex(), Kind.Int); break;
            case LLOAD          : loadLocal(stream.readLocalIndex(), Kind.Long); break;
            case FLOAD          : loadLocal(stream.readLocalIndex(), Kind.Float); break;
            case DLOAD          : loadLocal(stream.readLocalIndex(), Kind.Double); break;
            case ALOAD          : loadLocal(stream.readLocalIndex(), Kind.Object); break;
            case ILOAD_0        : // fall through
            case ILOAD_1        : // fall through
            case ILOAD_2        : // fall through
            case ILOAD_3        : loadLocal(opcode - ILOAD_0, Kind.Int); break;
            case LLOAD_0        : // fall through
            case LLOAD_1        : // fall through
            case LLOAD_2        : // fall through
            case LLOAD_3        : loadLocal(opcode - LLOAD_0, Kind.Long); break;
            case FLOAD_0        : // fall through
            case FLOAD_1        : // fall through
            case FLOAD_2        : // fall through
            case FLOAD_3        : loadLocal(opcode - FLOAD_0, Kind.Float); break;
            case DLOAD_0        : // fall through
            case DLOAD_1        : // fall through
            case DLOAD_2        : // fall through
            case DLOAD_3        : loadLocal(opcode - DLOAD_0, Kind.Double); break;
            case ALOAD_0        : // fall through
            case ALOAD_1        : // fall through
            case ALOAD_2        : // fall through
            case ALOAD_3        : loadLocal(opcode - ALOAD_0, Kind.Object); break;
            case IALOAD         : genLoadIndexed(Kind.Int   ); break;
            case LALOAD         : genLoadIndexed(Kind.Long  ); break;
            case FALOAD         : genLoadIndexed(Kind.Float ); break;
            case DALOAD         : genLoadIndexed(Kind.Double); break;
            case AALOAD         : genLoadIndexed(Kind.Object); break;
            case BALOAD         : genLoadIndexed(Kind.Byte  ); break;
            case CALOAD         : genLoadIndexed(Kind.Char  ); break;
            case SALOAD         : genLoadIndexed(Kind.Short ); break;
            case ISTORE         : storeLocal(Kind.Int, stream.readLocalIndex()); break;
            case LSTORE         : storeLocal(Kind.Long, stream.readLocalIndex()); break;
            case FSTORE         : storeLocal(Kind.Float, stream.readLocalIndex()); break;
            case DSTORE         : storeLocal(Kind.Double, stream.readLocalIndex()); break;
            case ASTORE         : storeLocal(Kind.Object, stream.readLocalIndex()); break;
            case ISTORE_0       : // fall through
            case ISTORE_1       : // fall through
            case ISTORE_2       : // fall through
            case ISTORE_3       : storeLocal(Kind.Int, opcode - ISTORE_0); break;
            case LSTORE_0       : // fall through
            case LSTORE_1       : // fall through
            case LSTORE_2       : // fall through
            case LSTORE_3       : storeLocal(Kind.Long, opcode - LSTORE_0); break;
            case FSTORE_0       : // fall through
            case FSTORE_1       : // fall through
            case FSTORE_2       : // fall through
            case FSTORE_3       : storeLocal(Kind.Float, opcode - FSTORE_0); break;
            case DSTORE_0       : // fall through
            case DSTORE_1       : // fall through
            case DSTORE_2       : // fall through
            case DSTORE_3       : storeLocal(Kind.Double, opcode - DSTORE_0); break;
            case ASTORE_0       : // fall through
            case ASTORE_1       : // fall through
            case ASTORE_2       : // fall through
            case ASTORE_3       : storeLocal(Kind.Object, opcode - ASTORE_0); break;
            case IASTORE        : genStoreIndexed(Kind.Int   ); break;
            case LASTORE        : genStoreIndexed(Kind.Long  ); break;
            case FASTORE        : genStoreIndexed(Kind.Float ); break;
            case DASTORE        : genStoreIndexed(Kind.Double); break;
            case AASTORE        : genStoreIndexed(Kind.Object); break;
            case BASTORE        : genStoreIndexed(Kind.Byte  ); break;
            case CASTORE        : genStoreIndexed(Kind.Char  ); break;
            case SASTORE        : genStoreIndexed(Kind.Short ); break;
            case POP            : // fall through
            case POP2           : // fall through
            case DUP            : // fall through
            case DUP_X1         : // fall through
            case DUP_X2         : // fall through
            case DUP2           : // fall through
            case DUP2_X1        : // fall through
            case DUP2_X2        : // fall through
            case SWAP           : stackOp(opcode); break;
            case IADD           : // fall through
            case ISUB           : // fall through
            case IMUL           : genArithmeticOp(Kind.Int, opcode); break;
            case IDIV           : // fall through
            case IREM           : genIntegerDivOp(Kind.Int, opcode); break;
            case LADD           : // fall through
            case LSUB           : // fall through
            case LMUL           : genArithmeticOp(Kind.Long, opcode); break;
            case LDIV           : // fall through
            case LREM           : genIntegerDivOp(Kind.Long, opcode); break;
            case FADD           : // fall through
            case FSUB           : // fall through
            case FMUL           : // fall through
            case FDIV           : // fall through
            case FREM           : genArithmeticOp(Kind.Float, opcode); break;
            case DADD           : // fall through
            case DSUB           : // fall through
            case DMUL           : // fall through
            case DDIV           : // fall through
            case DREM           : genArithmeticOp(Kind.Double, opcode); break;
            case INEG           : genNegateOp(Kind.Int); break;
            case LNEG           : genNegateOp(Kind.Long); break;
            case FNEG           : genNegateOp(Kind.Float); break;
            case DNEG           : genNegateOp(Kind.Double); break;
            case ISHL           : // fall through
            case ISHR           : // fall through
            case IUSHR          : genShiftOp(Kind.Int, opcode); break;
            case IAND           : // fall through
            case IOR            : // fall through
            case IXOR           : genLogicOp(Kind.Int, opcode); break;
            case LSHL           : // fall through
            case LSHR           : // fall through
            case LUSHR          : genShiftOp(Kind.Long, opcode); break;
            case LAND           : // fall through
            case LOR            : // fall through
            case LXOR           : genLogicOp(Kind.Long, opcode); break;
            case IINC           : genIncrement(); break;
            case I2F            : genFloatConvert(FloatConvert.I2F, Kind.Int, Kind.Float); break;
            case I2D            : genFloatConvert(FloatConvert.I2D, Kind.Int, Kind.Double); break;
            case L2F            : genFloatConvert(FloatConvert.L2F, Kind.Long, Kind.Float); break;
            case L2D            : genFloatConvert(FloatConvert.L2D, Kind.Long, Kind.Double); break;
            case F2I            : genFloatConvert(FloatConvert.F2I, Kind.Float, Kind.Int); break;
            case F2L            : genFloatConvert(FloatConvert.F2L, Kind.Float, Kind.Long); break;
            case F2D            : genFloatConvert(FloatConvert.F2D, Kind.Float, Kind.Double); break;
            case D2I            : genFloatConvert(FloatConvert.D2I, Kind.Double, Kind.Int); break;
            case D2L            : genFloatConvert(FloatConvert.D2L, Kind.Double, Kind.Long); break;
            case D2F            : genFloatConvert(FloatConvert.D2F, Kind.Double, Kind.Float); break;
            case L2I            : genNarrow(Kind.Long, Kind.Int); break;
            case I2L            : genSignExtend(Kind.Int, Kind.Long); break;
            case I2B            : genSignExtend(Kind.Byte, Kind.Int); break;
            case I2S            : genSignExtend(Kind.Short, Kind.Int); break;
            case I2C            : genZeroExtend(Kind.Char, Kind.Int); break;
            case LCMP           : genCompareOp(Kind.Long, false); break;
            case FCMPL          : genCompareOp(Kind.Float, true); break;
            case FCMPG          : genCompareOp(Kind.Float, false); break;
            case DCMPL          : genCompareOp(Kind.Double, true); break;
            case DCMPG          : genCompareOp(Kind.Double, false); break;
            case IFEQ           : genIfZero(Condition.EQ); break;
            case IFNE           : genIfZero(Condition.NE); break;
            case IFLT           : genIfZero(Condition.LT); break;
            case IFGE           : genIfZero(Condition.GE); break;
            case IFGT           : genIfZero(Condition.GT); break;
            case IFLE           : genIfZero(Condition.LE); break;
            case IF_ICMPEQ      : genIfSame(Kind.Int, Condition.EQ); break;
            case IF_ICMPNE      : genIfSame(Kind.Int, Condition.NE); break;
            case IF_ICMPLT      : genIfSame(Kind.Int, Condition.LT); break;
            case IF_ICMPGE      : genIfSame(Kind.Int, Condition.GE); break;
            case IF_ICMPGT      : genIfSame(Kind.Int, Condition.GT); break;
            case IF_ICMPLE      : genIfSame(Kind.Int, Condition.LE); break;
            case IF_ACMPEQ      : genIfSame(Kind.Object, Condition.EQ); break;
            case IF_ACMPNE      : genIfSame(Kind.Object, Condition.NE); break;
            case GOTO           : genGoto(); break;
            case JSR            : genJsr(stream.readBranchDest()); break;
            case RET            : genRet(stream.readLocalIndex()); break;
            case TABLESWITCH    : genSwitch(new BytecodeTableSwitch(stream(), bci())); break;
            case LOOKUPSWITCH   : genSwitch(new BytecodeLookupSwitch(stream(), bci())); break;
            case IRETURN        : genReturn(frameState.ipop()); break;
            case LRETURN        : genReturn(frameState.lpop()); break;
            case FRETURN        : genReturn(frameState.fpop()); break;
            case DRETURN        : genReturn(frameState.dpop()); break;
            case ARETURN        : genReturn(frameState.apop()); break;
            case RETURN         : genReturn(null); break;
            case GETSTATIC      : cpi = stream.readCPI(); genGetStatic(lookupField(cpi, opcode)); break;
            case PUTSTATIC      : cpi = stream.readCPI(); genPutStatic(lookupField(cpi, opcode)); break;
            case GETFIELD       : cpi = stream.readCPI(); genGetField(lookupField(cpi, opcode)); break;
            case PUTFIELD       : cpi = stream.readCPI(); genPutField(lookupField(cpi, opcode)); break;
            case INVOKEVIRTUAL  : cpi = stream.readCPI(); genInvokeVirtual(lookupMethod(cpi, opcode)); break;
            case INVOKESPECIAL  : cpi = stream.readCPI(); genInvokeSpecial(lookupMethod(cpi, opcode)); break;
            case INVOKESTATIC   : cpi = stream.readCPI(); genInvokeStatic(lookupMethod(cpi, opcode)); break;
            case INVOKEINTERFACE: cpi = stream.readCPI(); genInvokeInterface(lookupMethod(cpi, opcode)); break;
            case INVOKEDYNAMIC  : cpi = stream.readCPI4(); genInvokeDynamic(lookupMethod(cpi, opcode)); break;
            case NEW            : genNewInstance(stream.readCPI()); break;
            case NEWARRAY       : genNewPrimitiveArray(stream.readLocalIndex()); break;
            case ANEWARRAY      : genNewObjectArray(stream.readCPI()); break;
            case ARRAYLENGTH    : genArrayLength(); break;
            case ATHROW         : genThrow(); break;
            case CHECKCAST      : genCheckCast(); break;
            case INSTANCEOF     : genInstanceOf(); break;
            case MONITORENTER   : genMonitorEnter(frameState.apop()); break;
            case MONITOREXIT    : genMonitorExit(frameState.apop(), null); break;
            case MULTIANEWARRAY : genNewMultiArray(stream.readCPI()); break;
            case IFNULL         : genIfNull(Condition.EQ); break;
            case IFNONNULL      : genIfNull(Condition.NE); break;
            case GOTO_W         : genGoto(); break;
            case JSR_W          : genJsr(stream.readBranchDest()); break;
            case BREAKPOINT:
                throw new BailoutException("concurrent setting of breakpoint");
            default:
                throw new BailoutException("Unsupported opcode " + opcode + " (" + nameOf(opcode) + ") [bci=" + bci + "]");
        }
        // @formatter:on
            // Checkstyle: resume
        }

        private void traceInstruction(int bci, int opcode, boolean blockStart) {
            if (traceLevel >= TRACELEVEL_INSTRUCTIONS && Debug.isLogEnabled()) {
                StringBuilder sb = new StringBuilder(40);
                sb.append(blockStart ? '+' : '|');
                if (bci < 10) {
                    sb.append("  ");
                } else if (bci < 100) {
                    sb.append(' ');
                }
                sb.append(bci).append(": ").append(Bytecodes.nameOf(opcode));
                for (int i = bci + 1; i < stream.nextBCI(); ++i) {
                    sb.append(' ').append(stream.readUByte(i));
                }
                if (!currentBlock.jsrScope.isEmpty()) {
                    sb.append(' ').append(currentBlock.jsrScope);
                }
                Debug.log(sb.toString());
            }
        }

        private void genArrayLength() {
            frameState.ipush(append(new ArrayLengthNode(frameState.apop())));
        }
    }
}