view src/share/vm/memory/allocation.inline.hpp @ 20543:e7d0505c8a30

8059758: Footprint regressions with JDK-8038423 Summary: Changes in JDK-8038423 always initialize (zero out) virtual memory used for auxiliary data structures. This causes a footprint regression for G1 in startup benchmarks. This is because they do not touch that memory at all, so the operating system does not actually commit these pages. The fix is to, if the initialization value of the data structures matches the default value of just committed memory (=0), do not do anything. Reviewed-by: jwilhelm, brutisso
author tschatzl
date Fri, 10 Oct 2014 15:51:58 +0200
parents 833b0f92429a
children
line wrap: on
line source

/*
 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP
#define SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP

#include "runtime/atomic.inline.hpp"
#include "runtime/os.hpp"
#include "services/memTracker.hpp"

// Explicit C-heap memory management

void trace_heap_malloc(size_t size, const char* name, void *p);
void trace_heap_free(void *p);

#ifndef PRODUCT
// Increments unsigned long value for statistics (not atomic on MP).
inline void inc_stat_counter(volatile julong* dest, julong add_value) {
#if defined(SPARC) || defined(X86)
  // Sparc and X86 have atomic jlong (8 bytes) instructions
  julong value = Atomic::load((volatile jlong*)dest);
  value += add_value;
  Atomic::store((jlong)value, (volatile jlong*)dest);
#else
  // possible word-tearing during load/store
  *dest += add_value;
#endif
}
#endif

// allocate using malloc; will fail if no memory available
inline char* AllocateHeap(size_t size, MEMFLAGS flags,
    const NativeCallStack& stack,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  char* p = (char*) os::malloc(size, flags, stack);
  #ifdef ASSERT
  if (PrintMallocFree) trace_heap_malloc(size, "AllocateHeap", p);
  #endif
  if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
    vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "AllocateHeap");
  }
  return p;
}
inline char* AllocateHeap(size_t size, MEMFLAGS flags,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  return AllocateHeap(size, flags, CURRENT_PC, alloc_failmode);
}

inline char* ReallocateHeap(char *old, size_t size, MEMFLAGS flag,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
  char* p = (char*) os::realloc(old, size, flag, CURRENT_PC);
  #ifdef ASSERT
  if (PrintMallocFree) trace_heap_malloc(size, "ReallocateHeap", p);
  #endif
  if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
    vm_exit_out_of_memory(size, OOM_MALLOC_ERROR, "ReallocateHeap");
  }
  return p;
}

inline void FreeHeap(void* p, MEMFLAGS memflags = mtInternal) {
  #ifdef ASSERT
  if (PrintMallocFree) trace_heap_free(p);
  #endif
  os::free(p, memflags);
}


template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size,
      const NativeCallStack& stack) throw() {
  void* p = (void*)AllocateHeap(size, F, stack);
#ifdef ASSERT
  if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
  return p;
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new(size_t size) throw() {
  return CHeapObj<F>::operator new(size, CALLER_PC);
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
  const std::nothrow_t&  nothrow_constant, const NativeCallStack& stack) throw() {
  void* p = (void*)AllocateHeap(size, F, stack,
      AllocFailStrategy::RETURN_NULL);
#ifdef ASSERT
    if (PrintMallocFree) trace_heap_malloc(size, "CHeapObj-new", p);
#endif
    return p;
  }

template <MEMFLAGS F> void* CHeapObj<F>::operator new (size_t size,
  const std::nothrow_t& nothrow_constant) throw() {
  return CHeapObj<F>::operator new(size, nothrow_constant, CALLER_PC);
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
      const NativeCallStack& stack) throw() {
  return CHeapObj<F>::operator new(size, stack);
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size)
  throw() {
  return CHeapObj<F>::operator new(size, CALLER_PC);
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
  const std::nothrow_t&  nothrow_constant, const NativeCallStack& stack) throw() {
  return CHeapObj<F>::operator new(size, nothrow_constant, stack);
}

template <MEMFLAGS F> void* CHeapObj<F>::operator new [](size_t size,
  const std::nothrow_t& nothrow_constant) throw() {
  return CHeapObj<F>::operator new(size, nothrow_constant, CALLER_PC);
}

template <MEMFLAGS F> void CHeapObj<F>::operator delete(void* p){
    FreeHeap(p, F);
}

template <MEMFLAGS F> void CHeapObj<F>::operator delete [](void* p){
    FreeHeap(p, F);
}

template <class E, MEMFLAGS F>
E* ArrayAllocator<E, F>::allocate(size_t length) {
  assert(_addr == NULL, "Already in use");

  _size = sizeof(E) * length;
  _use_malloc = _size < ArrayAllocatorMallocLimit;

  if (_use_malloc) {
    _addr = AllocateHeap(_size, F);
    if (_addr == NULL && _size >=  (size_t)os::vm_allocation_granularity()) {
      // malloc failed let's try with mmap instead
      _use_malloc = false;
    } else {
      return (E*)_addr;
    }
  }

  int alignment = os::vm_allocation_granularity();
  _size = align_size_up(_size, alignment);

  _addr = os::reserve_memory(_size, NULL, alignment, F);
  if (_addr == NULL) {
    vm_exit_out_of_memory(_size, OOM_MMAP_ERROR, "Allocator (reserve)");
  }

  os::commit_memory_or_exit(_addr, _size, !ExecMem, "Allocator (commit)");

  return (E*)_addr;
}

template<class E, MEMFLAGS F>
void ArrayAllocator<E, F>::free() {
  if (_addr != NULL) {
    if (_use_malloc) {
      FreeHeap(_addr, F);
    } else {
      os::release_memory(_addr, _size);
    }
    _addr = NULL;
  }
}

#endif // SHARE_VM_MEMORY_ALLOCATION_INLINE_HPP