view graal/com.oracle.graal.lir/src/com/oracle/graal/lir/constopt/ConstantLoadOptimization.java @ 18674:ecb9d0cedbab

First draft of option classification.
author Thomas Wuerthinger <thomas.wuerthinger@oracle.com>
date Sat, 13 Dec 2014 15:03:20 +0100
parents 9619ba4daf4c
children e1f63e69dc6c
line wrap: on
line source

/*
 * Copyright (c) 2014, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package com.oracle.graal.lir.constopt;

import static com.oracle.graal.api.code.ValueUtil.*;
import static com.oracle.graal.lir.LIRValueUtil.*;

import java.util.*;

import com.oracle.graal.api.meta.*;
import com.oracle.graal.compiler.common.cfg.*;
import com.oracle.graal.debug.*;
import com.oracle.graal.debug.Debug.Scope;
import com.oracle.graal.lir.*;
import com.oracle.graal.lir.LIRInstruction.OperandFlag;
import com.oracle.graal.lir.LIRInstruction.OperandMode;
import com.oracle.graal.lir.StandardOp.MoveOp;
import com.oracle.graal.lir.constopt.ConstantTree.Flags;
import com.oracle.graal.lir.constopt.ConstantTree.NodeCost;
import com.oracle.graal.lir.gen.*;
import com.oracle.graal.options.*;

/**
 * This optimization tries to improve the handling of constants by replacing a single definition of
 * a constant, which is potentially scheduled into a block with high probability, with one or more
 * definitions in blocks with a lower probability.
 */
public final class ConstantLoadOptimization {

    public static class Options {
        // @formatter:off
        @Option(help = "Enable constant load optimization.", type = OptionType.Debug)
        public static final OptionValue<Boolean> ConstantLoadOptimization = new OptionValue<>(true);
        // @formatter:on
    }

    public static void optimize(LIR lir, LIRGeneratorTool lirGen) {
        new ConstantLoadOptimization(lir, lirGen).apply();
    }

    private LIR lir;
    private LIRGeneratorTool lirGen;
    private VariableMap<DefUseTree> map;
    private BitSet phiConstants;
    private BitSet defined;
    private BlockMap<List<UseEntry>> blockMap;
    private BlockMap<LIRInsertionBuffer> insertionBuffers;

    private static final DebugMetric constantsTotal = Debug.metric("ConstantLoadOptimization[total]");
    private static final DebugMetric phiConstantsSkipped = Debug.metric("ConstantLoadOptimization[PhisSkipped]");
    private static final DebugMetric singleUsageConstantsSkipped = Debug.metric("ConstantLoadOptimization[SingleUsageSkipped]");
    private static final DebugMetric usageAtDefinitionSkipped = Debug.metric("ConstantLoadOptimization[UsageAtDefinitionSkipped]");
    private static final DebugMetric materializeAtDefinitionSkipped = Debug.metric("ConstantLoadOptimization[MaterializeAtDefinitionSkipped]");
    private static final DebugMetric constantsOptimized = Debug.metric("ConstantLoadOptimization[optimized]");

    private ConstantLoadOptimization(LIR lir, LIRGeneratorTool lirGen) {
        this.lir = lir;
        this.lirGen = lirGen;
        this.map = new VariableMap<>();
        this.phiConstants = new BitSet();
        this.defined = new BitSet();
        this.insertionBuffers = new BlockMap<>(lir.getControlFlowGraph());
        this.blockMap = new BlockMap<>(lir.getControlFlowGraph());
    }

    private void apply() {
        try (Indent indent = Debug.logAndIndent("ConstantLoadOptimization")) {
            try (Scope s = Debug.scope("BuildDefUseTree")) {
                // build DefUseTree
                lir.getControlFlowGraph().getBlocks().forEach(this::analyzeBlock);
                // remove all with only one use
                map.filter(t -> {
                    if (t.usageCount() > 1) {
                        return true;
                    } else {
                        singleUsageConstantsSkipped.increment();
                        return false;
                    }
                });
                // collect block map
                map.forEach(tree -> tree.forEach(this::addUsageToBlockMap));
            } catch (Throwable e) {
                throw Debug.handle(e);
            }

            try (Scope s = Debug.scope("BuildConstantTree")) {
                // create ConstantTree
                map.forEach(this::createConstantTree);

                // insert moves, delete null instructions and reset instruction ids
                lir.getControlFlowGraph().getBlocks().forEach(this::rewriteBlock);

                assert verifyStates();
            } catch (Throwable e) {
                throw Debug.handle(e);
            }
        }
    }

    private boolean verifyStates() {
        map.forEach(this::verifyStateUsage);
        return true;
    }

    private void verifyStateUsage(DefUseTree tree) {
        Variable var = tree.getVariable();
        ValueConsumer stateConsumer = new ValueConsumer() {

            @Override
            public void visitValue(Value operand, OperandMode mode, EnumSet<OperandFlag> flags) {
                assert !operand.equals(var) : "constant usage through variable in frame state " + var;
            }
        };
        for (AbstractBlock<?> block : lir.getControlFlowGraph().getBlocks()) {
            for (LIRInstruction inst : lir.getLIRforBlock(block)) {
                // set instruction id to the index in the lir instruction list
                inst.visitEachState(stateConsumer);
            }
        }
    }

    private static boolean isConstantLoad(LIRInstruction inst) {
        if (!(inst instanceof MoveOp)) {
            return false;
        }
        MoveOp move = (MoveOp) inst;
        return isConstant(move.getInput()) && isVariable(move.getResult());
    }

    private void addUsageToBlockMap(UseEntry entry) {
        AbstractBlock<?> block = entry.getBlock();
        List<UseEntry> list = blockMap.get(block);
        if (list == null) {
            list = new ArrayList<>();
            blockMap.put(block, list);
        }
        list.add(entry);
    }

    /**
     * Collects def-use information for a {@code block}.
     */
    private void analyzeBlock(AbstractBlock<?> block) {
        try (Indent indent = Debug.logAndIndent("Block: %s", block)) {

            InstructionValueConsumer loadConsumer = (instruction, value, mode, flags) -> {
                if (isVariable(value)) {
                    Variable var = (Variable) value;

                    if (!phiConstants.get(var.index)) {
                        if (!defined.get(var.index)) {
                            defined.set(var.index);
                            if (isConstantLoad(instruction)) {
                                Debug.log("constant load: %s", instruction);
                                map.put(var, new DefUseTree(instruction, block));
                                constantsTotal.increment();
                            }
                        } else {
                            // Variable is redefined, this only happens for constant loads
                            // introduced by phi resolution -> ignore.
                            DefUseTree removed = map.remove(var);
                            if (removed != null) {
                                phiConstantsSkipped.increment();
                            }
                            phiConstants.set(var.index);
                            Debug.log(3, "Removing phi variable: %s", var);
                        }
                    } else {
                        assert defined.get(var.index) : "phi but not defined? " + var;
                    }
                }
            };

            ValuePositionProcedure useProcedure = (instruction, position) -> {
                Value value = position.get(instruction);
                if (isVariable(value)) {
                    Variable var = (Variable) value;
                    if (!phiConstants.get(var.index)) {
                        DefUseTree tree = map.get(var);
                        if (tree != null) {
                            tree.addUsage(block, instruction, position);
                            Debug.log("usage of %s : %s", var, instruction);
                        }
                    }
                }
            };

            int opId = 0;
            for (LIRInstruction inst : lir.getLIRforBlock(block)) {
                // set instruction id to the index in the lir instruction list
                inst.setId(opId++);
                inst.visitEachOutput(loadConsumer);
                inst.forEachInputPos(useProcedure);
                inst.forEachAlivePos(useProcedure);

            }
        }
    }

    /**
     * Creates the dominator tree and searches for an solution.
     */
    private void createConstantTree(DefUseTree tree) {
        ConstantTree constTree = new ConstantTree(lir.getControlFlowGraph(), tree);
        constTree.set(Flags.SUBTREE, tree.getBlock());
        tree.forEach(u -> constTree.set(Flags.USAGE, u.getBlock()));

        if (constTree.get(Flags.USAGE, tree.getBlock())) {
            // usage in the definition block -> no optimization
            usageAtDefinitionSkipped.increment();
            return;
        }

        constTree.markBlocks();

        NodeCost cost = ConstantTreeAnalyzer.analyze(constTree, tree.getBlock());
        int usageCount = cost.getUsages().size();
        assert usageCount == tree.usageCount() : "Usage count differs: " + usageCount + " vs. " + tree.usageCount();

        if (Debug.isLogEnabled()) {
            try (Indent i = Debug.logAndIndent("Variable: %s, Block: %s, prob.: %f", tree.getVariable(), tree.getBlock(), tree.getBlock().probability())) {
                Debug.log("Usages result: %s", cost);
            }

        }

        if (cost.getNumMaterializations() > 1 || cost.getBestCost() < tree.getBlock().probability()) {
            try (Scope s = Debug.scope("CLOmodify", constTree); Indent i = Debug.logAndIndent("Replacing %s = %s", tree.getVariable(), tree.getConstant().toValueString())) {
                // mark original load for removal
                deleteInstruction(tree);
                constantsOptimized.increment();

                // collect result
                createLoads(tree, constTree, tree.getBlock());

            } catch (Throwable e) {
                throw Debug.handle(e);
            }
        } else {
            // no better solution found
            materializeAtDefinitionSkipped.increment();
        }
        Debug.dump(constTree, "ConstantTree for " + tree.getVariable());
    }

    private void createLoads(DefUseTree tree, ConstantTree constTree, AbstractBlock<?> startBlock) {
        Deque<AbstractBlock<?>> worklist = new ArrayDeque<>();
        worklist.add(startBlock);
        while (!worklist.isEmpty()) {
            AbstractBlock<?> block = worklist.pollLast();
            if (constTree.get(Flags.CANDIDATE, block)) {
                constTree.set(Flags.MATERIALIZE, block);
                // create and insert load
                insertLoad(tree.getConstant(), tree.getVariable().getLIRKind(), block, constTree.getCost(block).getUsages());
            } else {
                for (AbstractBlock<?> dominated : block.getDominated()) {
                    if (constTree.isMarked(dominated)) {
                        worklist.addLast(dominated);
                    }
                }
            }
        }
    }

    private void insertLoad(JavaConstant constant, LIRKind kind, AbstractBlock<?> block, List<UseEntry> usages) {
        assert usages != null && usages.size() > 0 : String.format("No usages %s %s %s", constant, block, usages);
        // create variable
        Variable variable = lirGen.newVariable(kind);
        // create move
        LIRInstruction move = lir.getSpillMoveFactory().createMove(variable, constant);
        // insert instruction
        getInsertionBuffer(block).append(1, move);
        Debug.log("new move (%s) and inserted in block %s", move, block);
        // update usages
        for (UseEntry u : usages) {
            u.getPosition().set(u.getInstruction(), variable);
            Debug.log("patched instruction %s", u.getInstruction());
        }
    }

    /**
     * Inserts the constant loads created in {@link #createConstantTree} and deletes the original
     * definition.
     */
    private void rewriteBlock(AbstractBlock<?> block) {
        // insert moves
        LIRInsertionBuffer buffer = insertionBuffers.get(block);
        if (buffer != null) {
            assert buffer.initialized() : "not initialized?";
            buffer.finish();
        }

        // delete instructions
        List<LIRInstruction> instructions = lir.getLIRforBlock(block);
        boolean hasDead = false;
        for (LIRInstruction inst : instructions) {
            if (inst == null) {
                hasDead = true;
            } else {
                inst.setId(-1);
            }
        }
        if (hasDead) {
            // Remove null values from the list.
            instructions.removeAll(Collections.singleton(null));
        }
    }

    private void deleteInstruction(DefUseTree tree) {
        AbstractBlock<?> block = tree.getBlock();
        LIRInstruction instruction = tree.getInstruction();
        Debug.log("deleting instruction %s from block %s", instruction, block);
        lir.getLIRforBlock(block).set(instruction.id(), null);
    }

    private LIRInsertionBuffer getInsertionBuffer(AbstractBlock<?> block) {
        LIRInsertionBuffer insertionBuffer = insertionBuffers.get(block);
        if (insertionBuffer == null) {
            insertionBuffer = new LIRInsertionBuffer();
            insertionBuffers.put(block, insertionBuffer);
            assert !insertionBuffer.initialized() : "already initialized?";
            List<LIRInstruction> instructions = lir.getLIRforBlock(block);
            insertionBuffer.init(instructions);
        }
        return insertionBuffer;
    }
}