view agent/src/os/solaris/dbx/svc_agent_dbx.cpp @ 3011:f00918f35c7f

inlining and runtime interface related changes: added codeSize() and compilerStorage() to RiMethod HotSpotMethodResolved uses reflective methods instead of vmIds and survives compilations HotSpotResolvedType.isInitialized not represented as field (can change) inlining stores graphs into method objects and reuses them
author Lukas Stadler <lukas.stadler@jku.at>
date Thu, 16 Jun 2011 20:36:17 +0200
parents c18cbe5936b8
children
line wrap: on
line source

/*
 * Copyright (c) 2000, 2002, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// This is the implementation of a very simple dbx import module which
// handles requests from the VM which come in over a socket. The
// higher-level Java wrapper for dbx starts the debugger, attaches to
// the process, imports this command, and runs it. After that, the SA
// writes commands to this agent via its own private communications
// channel. The intent is to move away from the text-based front-end
// completely in the near future (no more calling "debug" by printing
// text to dbx's stdin).

#include <stdio.h>
#include <errno.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <string.h>
#include <stropts.h>
#include <netinet/in.h>
#include <netinet/tcp.h>

#include <proc_service.h>
#include <sys/procfs_isa.h>
#include <rtld_db.h>
#include "proc_service_2.h"
#include "svc_agent_dbx.hpp"

static ServiceabilityAgentDbxModule* module = NULL;
#define NEEDS_CLEANUP

// Useful for debugging
#define VERBOSE_DEBUGGING

#ifdef VERBOSE_DEBUGGING
# define debug_only(x) x
#else
# define debug_only(x)
#endif

// For profiling
//#define PROFILING

#ifdef PROFILING
#define PROFILE_COUNT 200
static Timer scanTimer;
static Timer workTimer;
static Timer writeTimer;
static int numRequests = 0;
#endif /* PROFILING */

const char* ServiceabilityAgentDbxModule::CMD_ADDRESS_SIZE   = "address_size";
const char* ServiceabilityAgentDbxModule::CMD_PEEK_FAIL_FAST = "peek_fail_fast";
const char* ServiceabilityAgentDbxModule::CMD_PEEK           = "peek";
const char* ServiceabilityAgentDbxModule::CMD_POKE           = "poke";
const char* ServiceabilityAgentDbxModule::CMD_MAPPED         = "mapped";
const char* ServiceabilityAgentDbxModule::CMD_LOOKUP         = "lookup";
const char* ServiceabilityAgentDbxModule::CMD_THR_GREGS      = "thr_gregs";
const char* ServiceabilityAgentDbxModule::CMD_EXIT           = "exit";

// The initialization routines must not have C++ name mangling
extern "C" {

/** This is the initialization routine called by dbx upon importing of
    this module. Returns 0 upon successful initialization, -1 upon
    failure. */
int shell_imp_init(int major, int minor,
                   shell_imp_interp_t interp, int argc, char *argv[])
{
  // Ensure shell interpreter data structure is laid out the way we
  // expect
  if (major != SHELL_IMP_MAJOR) {
    debug_only(fprintf(stderr, "Serviceability agent: unexpected value for SHELL_IMP_MAJOR (got %d, expected %d)\n", major, SHELL_IMP_MAJOR);)
    return -1;
  }
  if (minor < SHELL_IMP_MINOR) {
    debug_only(fprintf(stderr, "Serviceability agent: unexpected value for SHELL_IMP_MINOR (got %d, expected >= %d)\n", minor, SHELL_IMP_MINOR);)
    return -1;
  }

  if (module != NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: module appears to already be initialized (should not happen)\n");)
    // Already initialized. Should not happen.
    return -1;
  }

  module = new ServiceabilityAgentDbxModule(major, minor, interp, argc, argv);
  if (!module->install()) {
    debug_only(fprintf(stderr, "Serviceability agent: error installing import module\n");)
    delete module;
    module = NULL;
    return -1;
  }

  // Installation was successful. Next step will be for the user to
  // enter the appropriate command on the command line, which will
  // make the SA's dbx module wait for commands to come in over the
  // socket.
  return 0;
}

/** This is the routine called by dbx upon unloading of this module.
    Returns 0 upon success, -1 upon failure. */
int
shell_imp_fini(shell_imp_interp_t)
{
  if (module == NULL) {
    return -1;
  }

  bool res = module->uninstall();
  delete module;
  module = NULL;
  if (!res) {
    return -1;
  }
  return 0;
}

} // extern "C"

/** This is the routine which is called by the dbx shell when the user
    requests the serviceability agent module to run. This delegates to
    ServiceabilityAgentDbxModule::run. This routine's signature must
    match that of shell_imp_fun_t. */
extern "C" {
static int
svc_agent_run(shell_imp_interp_t, int, char **, void *) {
  if (module == NULL) {
    return -1;
  }

  module->run();
  return 0;
}
}

/*
 * Implementation of ServiceabilityAgentDbxModule class
 */

// NOTE: we need to forward declare the special "ps_get_prochandle2"
// function which allows examination of core files as well. It isn't
// currently in proc_service_2.h. Note also that it has name mangling
// because it isn't declared extern "C".
//const struct ps_prochandle *ps_get_prochandle2(int cores_too);

ServiceabilityAgentDbxModule::ServiceabilityAgentDbxModule(int, int, shell_imp_interp_t interp,
                                                           int argc, char *argv[])
  :myComm(32768, 131072)
{
  _interp = interp;
  _argc = argc;
  _argv = argv;
  _tdb_agent = NULL;
  peek_fail_fast = false;
  libThreadName = NULL;
}

ServiceabilityAgentDbxModule::~ServiceabilityAgentDbxModule() {
  if (_command != NULL) {
    uninstall();
  }
}

char*
readCStringFromProcess(psaddr_t addr) {
  char c;
  int num = 0;
  ps_prochandle* cur_proc = (ps_prochandle*) ps_get_prochandle2(1);

  // Search for null terminator
  do {
    if (ps_pread(cur_proc, addr + num, &c, 1) != PS_OK) {
      return NULL;
    }
    ++num;
  } while (c != 0);

  // Allocate string
  char* res = new char[num];
  if (ps_pread(cur_proc, addr, res, num) != PS_OK) {
    delete[] res;
    return NULL;
  }
  return res;
}

int
findLibThreadCB(const rd_loadobj_t* lo, void* data) {
  ServiceabilityAgentDbxModule* module = (ServiceabilityAgentDbxModule*) data;
  char* name = readCStringFromProcess(lo->rl_nameaddr);
  if (strstr(name, "libthread.so") != NULL) {
    module->libThreadName = name;
    return 0;
  } else {
    delete[] name;
    return 1;
  }
}

bool
ServiceabilityAgentDbxModule::install() {
  // NOTE interdependency between here and Java side wrapper
  // FIXME: casts of string literal to char * to match prototype
  _command = shell_imp_define_command((char *) "svc_agent_run",
                                      &svc_agent_run,
                                      0,
                                      NULL,
                                      (char *) "Run the serviceability agent's dbx module.\n"
                                      "This routine causes the module to listen on a socket for requests.\n"
                                      "It does not return until the Java-side code tells it to exit, at\n"
                                      "which point control is returned to the dbx shell.");
  if (_command == NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: Failed to install svc_agent_run command\n"));
    return false;
  }

  // This is fairly painful. Since dbx doesn't currently load
  // libthread_db with RTLD_GLOBAL, we can't just use RTLD_DEFAULT for
  // the argument to dlsym. Instead, we have to use rtld_db to search
  // through the loaded objects in the target process for libthread.so and

  // Try rtld_db
  if (rd_init(RD_VERSION) != RD_OK) {
    debug_only(fprintf(stderr, "Serviceability agent: Unable to init rtld_db\n"));
    return false;
  }

  rd_agent_t* rda = rd_new((struct ps_prochandle*) ps_get_prochandle2(1));
  if (rda == NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: Unable to allocate rtld_db agent\n"));
    return false;
  }

  if (rd_loadobj_iter(rda, (rl_iter_f*) findLibThreadCB, this) != RD_OK) {
    debug_only(fprintf(stderr, "Serviceability agent: Loadobject iteration failed\n"));
    return false;
  }

  if (libThreadName == NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: Failed to find pathname to libthread.so in target process\n"));
    return false;
  }

  // Find and open libthread_db.so
  char* slash = strrchr(libThreadName, '/');
  if (slash == NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: can't parse path to libthread.so \"%s\"\n"));
    return false;
  }

  int slashPos = slash - libThreadName;
  char* buf = new char[slashPos + strlen("libthread_db.so") + 20]; // slop
  if (buf == NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: error allocating libthread_db.so pathname\n"));
    return false;
  }
  strncpy(buf, libThreadName, slashPos + 1);

  // Check dbx's data model; use sparcv9/ subdirectory if 64-bit and
  // if target process is 32-bit
  if ((sizeof(void*) == 8) &&
      (strstr(libThreadName, "sparcv9") == NULL)) {
    strcpy(buf + slashPos + 1, "sparcv9/");
    slashPos += strlen("sparcv9/");
  }

  strcpy(buf + slashPos + 1, "libthread_db.so");

  libThreadDB = dlopen(buf, RTLD_LAZY);
  void* tmpDB = libThreadDB;
  if (libThreadDB == NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: Warning: unable to find libthread_db.so at \"%s\"\n", buf));
    // Would like to handle this case as well. Maybe dbx has a better
    // idea of where libthread_db.so lies. If the problem with dbx
    // loading libthread_db without RTLD_GLOBAL specified ever gets
    // fixed, we could run this code all the time.
    tmpDB = RTLD_DEFAULT;
  }

  delete[] buf;

  // Initialize access to libthread_db
  td_init_fn          = (td_init_fn_t*)          dlsym(tmpDB, "td_init");
  td_ta_new_fn        = (td_ta_new_fn_t*)        dlsym(tmpDB, "td_ta_new");
  td_ta_delete_fn     = (td_ta_delete_fn_t*)     dlsym(tmpDB, "td_ta_delete");
  td_ta_map_id2thr_fn = (td_ta_map_id2thr_fn_t*) dlsym(tmpDB, "td_ta_map_id2thr");
  td_thr_getgregs_fn  = (td_thr_getgregs_fn_t*)  dlsym(tmpDB, "td_thr_getgregs");

  if (td_init_fn == NULL ||
      td_ta_new_fn == NULL ||
      td_ta_delete_fn == NULL ||
      td_ta_map_id2thr_fn == NULL ||
      td_thr_getgregs_fn == NULL) {
    debug_only(fprintf(stderr, "Serviceability agent: Failed to find one or more libthread_db symbols:\n"));
    debug_only(if (td_init_fn == NULL)          fprintf(stderr, "  td_init\n"));
    debug_only(if (td_ta_new_fn == NULL)        fprintf(stderr, "  td_ta_new\n"));
    debug_only(if (td_ta_delete_fn == NULL)     fprintf(stderr, "  td_ta_delete\n"));
    debug_only(if (td_ta_map_id2thr_fn == NULL) fprintf(stderr, "  td_ta_map_id2thr\n"));
    debug_only(if (td_thr_getgregs_fn == NULL)  fprintf(stderr, "  td_thr_getgregs\n"));
    return false;
  }

  if ((*td_init_fn)() != TD_OK) {
    debug_only(fprintf(stderr, "Serviceability agent: Failed to initialize libthread_db\n"));
    return false;
  }

  return true;
}

bool
ServiceabilityAgentDbxModule::uninstall() {
  if (_command == NULL) {
    return false;
  }

  if (libThreadDB != NULL) {
    dlclose(libThreadDB);
    libThreadDB = NULL;
  }

  int res = shell_imp_undefine_command(_command);

  if (res != 0) {
    return false;
  }

  return true;
}

bool
ServiceabilityAgentDbxModule::run() {
  // This is where most of the work gets done.
  // The command processor loop looks like the following:
  //  - create listening socket
  //  - accept a connection (only one for now)
  //  - while that connection is open and the "exit" command has not
  //    been received:
  //    - read command
  //    - if it's the exit command, cleanup and return
  //    - otherwise, process command and write result

  int listening_socket = socket(AF_INET, SOCK_STREAM, 0);
  if (listening_socket < 0) {
    return false;
  }

  // Set the SO_REUSEADDR property on the listening socket. This
  // prevents problems with calls to bind() to the same port failing
  // after this process exits. This seems to work on all platforms.
  int reuse_address = 1;
  if (setsockopt(listening_socket, SOL_SOCKET, SO_REUSEADDR,
                 (char *)&reuse_address, sizeof(reuse_address)) < 0) {
    close(listening_socket);
    return false;
  }

  sockaddr_in server_address;
  // Build the server address. We can bind the listening socket to the
  // INADDR_ANY internet address.
  memset((char*)&server_address, 0, sizeof(server_address));
  server_address.sin_family = AF_INET;
  server_address.sin_addr.s_addr = (unsigned long)htonl(INADDR_ANY);
  server_address.sin_port = htons((short)PORT);

  // Bind socket to port
  if (bind(listening_socket, (sockaddr*) &server_address,
           sizeof(server_address)) < 0) {
    close(listening_socket);
    return false;
  }

  // Arbitrarily chosen backlog of 5 (shouldn't matter since we expect
  // at most one connection)
  if (listen(listening_socket, 5) < 0) {
    close(listening_socket);
    return false;
  }

  // OK, now ready to wait for a data connection. This call to
  // accept() will block.
  struct sockaddr_in client_address;
  int address_len   = sizeof(client_address);
  int client_socket = accept(listening_socket, (sockaddr*) &client_address,
                         &address_len);
  // Close listening socket regardless of whether accept() succeeded.
  // (FIXME: this may be annoying, especially during debugging, but I
  // really feel that robustness and multiple connections should be
  // handled higher up, e.g., at the Java level -- multiple clients
  // could conceivably connect to the SA via RMI, and that would be a
  // more robust solution than implementing multiple connections at
  // this level)
  NEEDS_CLEANUP;

  // NOTE: the call to shutdown() usually fails, so don't panic if this happens
  shutdown(listening_socket, 2);

  if (close(listening_socket) < 0) {
    debug_only(fprintf(stderr, "Serviceability agent: Error closing listening socket\n"));
    return false;
  }

  if (client_socket < 0) {
    debug_only(fprintf(stderr, "Serviceability agent: Failed to open client socket\n"));
    // No more cleanup necessary
    return false;
  }

  // Attempt to disable TCP buffering on this socket. We send small
  // amounts of data back and forth and don't want buffering.
  int buffer_val = 1;
  if (setsockopt(client_socket, IPPROTO_IP, TCP_NODELAY, (char *) &buffer_val, sizeof(buffer_val)) < 0) {
    debug_only(fprintf(stderr, "Serviceability agent: Failed to set TCP_NODELAY option on client socket\n"));
    cleanup(client_socket);
    return false;
  }

  // OK, we have the data socket through which we will communicate
  // with the Java side. Wait for commands or until reading or writing
  // caused an error.

  bool should_continue = true;

  myComm.setSocket(client_socket);

#ifdef PROFILING
  scanTimer.reset();
  workTimer.reset();
  writeTimer.reset();
#endif

  // Allocate a new thread agent for libthread_db
  if ((*td_ta_new_fn)((ps_prochandle*) ps_get_prochandle2(1), &_tdb_agent) !=
      TD_OK) {
    debug_only(fprintf(stderr, "Serviceability agent: Failed to allocate thread agent\n"));
    cleanup(client_socket);
    return false;
  }

  do {
    // Decided to use text to communicate between these processes.
    // Probably will make debugging easier -- could telnet in if
    // necessary. Will make scanning harder, but probably doesn't
    // matter.

    // Why not just do what workshop does and parse dbx's console?
    // Probably could do that, but at least this way we are in control
    // of the text format on both ends.

    // FIXME: should have some way of synchronizing these commands
    // between the C and Java sources.

    NEEDS_CLEANUP;

    // Do a blocking read of a line from the socket.
    char *input_buffer = myComm.readLine();
    if (input_buffer == NULL) {
      debug_only(fprintf(stderr, "Serviceability agent: error during read: errno = %d\n", errno));
      debug_only(perror("Serviceability agent"));
      // Error occurred during read.
      // FIXME: should guard against SIGPIPE
      cleanup(client_socket);
      return false;
    }

    // OK, now ready to scan. See README-commands.txt for syntax
    // descriptions.

    bool res = false;
    if (!strncmp(input_buffer, CMD_ADDRESS_SIZE, strlen(CMD_ADDRESS_SIZE))) {
      res = handleAddressSize(input_buffer + strlen(CMD_ADDRESS_SIZE));
    } else if (!strncmp(input_buffer, CMD_PEEK_FAIL_FAST, strlen(CMD_PEEK_FAIL_FAST))) {
      res = handlePeekFailFast(input_buffer + strlen(CMD_PEEK_FAIL_FAST));
    } else if (!strncmp(input_buffer, CMD_PEEK, strlen(CMD_PEEK))) {
      res = handlePeek(input_buffer + strlen(CMD_PEEK));
    } else if (!strncmp(input_buffer, CMD_POKE, strlen(CMD_POKE))) {
      res = handlePoke(input_buffer + strlen(CMD_POKE));
    } else if (!strncmp(input_buffer, CMD_MAPPED, strlen(CMD_MAPPED))) {
      res = handleMapped(input_buffer + strlen(CMD_MAPPED));
    } else if (!strncmp(input_buffer, CMD_LOOKUP, strlen(CMD_LOOKUP))) {
      res = handleLookup(input_buffer + strlen(CMD_LOOKUP));
    } else if (!strncmp(input_buffer, CMD_THR_GREGS, strlen(CMD_THR_GREGS))) {
      res = handleThrGRegs(input_buffer + strlen(CMD_THR_GREGS));
    } else if (!strncmp(input_buffer, CMD_EXIT, strlen(CMD_EXIT))) {
      should_continue = false;
    }

    if (should_continue) {
      if (!res) {
        cleanup(client_socket);
        return false;
      }
    }

#ifdef PROFILING
    if (++numRequests == PROFILE_COUNT) {
      fprintf(stderr, "%d requests: %d ms scanning, %d ms work, %d ms writing\n",
              PROFILE_COUNT, scanTimer.total(), workTimer.total(), writeTimer.total());
      fflush(stderr);
      scanTimer.reset();
      workTimer.reset();
      writeTimer.reset();
      numRequests = 0;
    }
#endif

  } while (should_continue);

  // Successful exit
  cleanup(client_socket);
  return true;
}

void
ServiceabilityAgentDbxModule::cleanup(int client_socket) {
  shutdown(client_socket, 2);
  close(client_socket);
  if (_tdb_agent != NULL) {
    (*td_ta_delete_fn)(_tdb_agent);
  }
}

bool
ServiceabilityAgentDbxModule::handleAddressSize(char* data) {
  int data_model;
  ps_err_e result = ps_pdmodel((ps_prochandle*) ps_get_prochandle2(1),
                               &data_model);
  if (result != PS_OK) {
    myComm.writeString("0");
    myComm.flush();
    return false;
  }

  int val;
  switch (data_model) {
  case PR_MODEL_ILP32:
    val = 32;
    break;
  case PR_MODEL_LP64:
    val = 64;
    break;
  default:
    val = 0;
    break;
  }

  if (!myComm.writeInt(val)) {
    return false;
  }
  if (!myComm.writeEOL()) {
    return false;
  }
  return myComm.flush();
}

bool
ServiceabilityAgentDbxModule::handlePeekFailFast(char* data) {
  unsigned int val;
  if (!scanUnsignedInt(&data, &val)) {
    return false;
  }
  peek_fail_fast = (val ? true : false);
  return true;
}

bool
ServiceabilityAgentDbxModule::handlePeek(char* data) {
  // Scan hex address, return false if failed
  psaddr_t addr;
#ifdef PROFILING
  scanTimer.start();
#endif /* PROFILING */
  if (!scanAddress(&data, &addr)) {
    return false;
  }
  unsigned int num;
  if (!scanUnsignedInt(&data, &num)) {
    return false;
  }
  if (num == 0) {
#ifdef PROFILING
    writeTimer.start();
#endif /* PROFILING */
    myComm.writeBinChar('B');
    myComm.writeBinChar(1);
    myComm.writeBinUnsignedInt(0);
    myComm.writeBinChar(0);
#ifdef PROFILING
    writeTimer.stop();
#endif /* PROFILING */
    return true;
  }
#ifdef PROFILING
  scanTimer.stop();
  workTimer.start();
#endif /* PROFILING */
  char* buf = new char[num];
  ps_prochandle* cur_proc = (ps_prochandle*) ps_get_prochandle2(1);
  ps_err_e result = ps_pread(cur_proc, addr, buf, num);
  if (result == PS_OK) {
    // Fast case; entire read succeeded.
#ifdef PROFILING
    workTimer.stop();
    writeTimer.start();
#endif /* PROFILING */
    myComm.writeBinChar('B');
    myComm.writeBinChar(1);
    myComm.writeBinUnsignedInt(num);
    myComm.writeBinChar(1);
    myComm.writeBinBuf(buf, num);
#ifdef PROFILING
    writeTimer.stop();
#endif /* PROFILING */
  } else {
#ifdef PROFILING
    workTimer.stop();
#endif /* PROFILING */

    if (peek_fail_fast) {
#ifdef PROFILING
    writeTimer.start();
#endif /* PROFILING */
      // Fail fast
      myComm.writeBinChar('B');
      myComm.writeBinChar(1);
      myComm.writeBinUnsignedInt(num);
      myComm.writeBinChar(0);
#ifdef PROFILING
    writeTimer.stop();
#endif /* PROFILING */
    } else {
      // Slow case: try to read one byte at a time
      // FIXME: need better way of handling this, a la VirtualQuery

      unsigned int  strideLen      = 0;
      int           bufIdx         = 0;
      bool          lastByteMapped = (ps_pread(cur_proc, addr, buf, 1) == PS_OK ? true : false);

#ifdef PROFILING
      writeTimer.start();
#endif /* PROFILING */
      myComm.writeBinChar('B');
      myComm.writeBinChar(1);
#ifdef PROFILING
      writeTimer.stop();
#endif /* PROFILING */

      for (int i = 0; i < num; ++i, ++addr) {
#ifdef PROFILING
        workTimer.start();
#endif /* PROFILING */
        result = ps_pread(cur_proc, addr, &buf[bufIdx], 1);
#ifdef PROFILING
        workTimer.stop();
#endif /* PROFILING */
        bool tmpMapped = (result == PS_OK ? true : false);
#ifdef PROFILING
        writeTimer.start();
#endif /* PROFILING */
        if (tmpMapped != lastByteMapped) {
          // State change. Write the length of the last stride.
          myComm.writeBinUnsignedInt(strideLen);
          if (lastByteMapped) {
            // Stop gathering data. Write the data of the last stride.
            myComm.writeBinChar(1);
            myComm.writeBinBuf(buf, strideLen);
            bufIdx = 0;
          } else {
            // Start gathering data to write.
            myComm.writeBinChar(0);
          }
          strideLen = 0;
          lastByteMapped = tmpMapped;
        }
#ifdef PROFILING
        writeTimer.stop();
#endif /* PROFILING */
        if (lastByteMapped) {
          ++bufIdx;
        }
        ++strideLen;
      }

      // Write last stride (must be at least one byte long by definition)
#ifdef PROFILING
      writeTimer.start();
#endif /* PROFILING */
      myComm.writeBinUnsignedInt(strideLen);
      if (lastByteMapped) {
        myComm.writeBinChar(1);
        myComm.writeBinBuf(buf, strideLen);
      } else {
        myComm.writeBinChar(0);
      }
#ifdef PROFILING
      writeTimer.stop();
#endif /* PROFILING */
    }
  }
  delete[] buf;
  myComm.flush();
  return true;
}

bool
ServiceabilityAgentDbxModule::handlePoke(char* data) {
  // FIXME: not yet implemented
  NEEDS_CLEANUP;
  bool res = myComm.writeBoolAsInt(false);
  myComm.flush();
  return res;
}

bool
ServiceabilityAgentDbxModule::handleMapped(char* data) {
  // Scan address
  psaddr_t addr;
  if (!scanAddress(&data, &addr)) {
    return false;
  }
  unsigned int num;
  if (!scanUnsignedInt(&data, &num)) {
    return false;
  }
  unsigned char val;
  ps_prochandle* cur_proc = (ps_prochandle*) ps_get_prochandle2(1);
  char* buf = new char[num];
  if (ps_pread(cur_proc, addr, buf, num) == PS_OK) {
    myComm.writeBoolAsInt(true);
  } else {
    myComm.writeBoolAsInt(false);
  }
  delete[] buf;
  myComm.writeEOL();
  myComm.flush();
  return true;
}

extern "C"
int loadobj_iterator(const rd_loadobj_t* loadobj, void *) {
  if (loadobj != NULL) {
    fprintf(stderr, "loadobj_iterator: visited loadobj \"%p\"\n", (void*) loadobj->rl_nameaddr);
    return 1;
  }

  fprintf(stderr, "loadobj_iterator: NULL loadobj\n");
  return 0;
}

bool
ServiceabilityAgentDbxModule::handleLookup(char* data) {
  // Debugging: iterate over loadobjs
  /*
  rd_agent_t* rld_agent = rd_new((ps_prochandle*) ps_get_prochandle2(1));
  rd_loadobj_iter(rld_agent, &loadobj_iterator, NULL);
  rd_delete(rld_agent);
  */

#ifdef PROFILING
  scanTimer.start();
#endif /* PROFILING */

  char* object_name = scanSymbol(&data);
  if (object_name == NULL) {
    return false;
  }
  char* symbol_name = scanSymbol(&data);
  if (symbol_name == NULL) {
    delete[] object_name;
    return false;
  }

#ifdef PROFILING
  scanTimer.stop();
  workTimer.start();
#endif /* PROFILING */

  ps_sym_t sym;
  // FIXME: check return values from write routines
  ps_prochandle* process = (ps_prochandle*) ps_get_prochandle2(1);
  ps_err_e lookup_res = ps_pglobal_sym(process,
                                       object_name, symbol_name, &sym);
#ifdef PROFILING
  workTimer.stop();
  writeTimer.start();
#endif /* PROFILING */

  delete[] object_name;
  delete[] symbol_name;
  if (lookup_res != PS_OK) {
    // This is too noisy
    //    debug_only(fprintf(stderr, "ServiceabilityAgentDbxModule::handleLookup: error %d\n", lookup_res));
    myComm.writeString("0x0");
  } else {
    myComm.writeAddress((void *)sym.st_value);
  }
  myComm.writeEOL();
  myComm.flush();

#ifdef PROFILING
  writeTimer.stop();
#endif /* PROFILING */

  return true;
}

bool
ServiceabilityAgentDbxModule::handleThrGRegs(char* data) {
#ifdef PROFILING
  scanTimer.start();
#endif /* PROFILING */

  unsigned int num;
  // Get the thread ID
  if (!scanUnsignedInt(&data, &num)) {
    return false;
  }

#ifdef PROFILING
  scanTimer.stop();
  workTimer.start();
#endif /* PROFILING */

  // Map tid to thread handle
  td_thrhandle_t thread_handle;
  if ((*td_ta_map_id2thr_fn)(_tdb_agent, num, &thread_handle) != TD_OK) {
    //    fprintf(stderr, "Error mapping thread ID %d to thread handle\n", num);
    return false;
  }

  // Fetch register set
  prgregset_t reg_set;
  memset(reg_set, 0, sizeof(reg_set));
  td_err_e result = (*td_thr_getgregs_fn)(&thread_handle, reg_set);
  if ((result != TD_OK) && (result != TD_PARTIALREG)) {
    //    fprintf(stderr, "Error fetching registers for thread handle %d: error = %d\n", num, result);
    return false;
  }

#ifdef PROFILING
  workTimer.stop();
  writeTimer.start();
#endif /* PROFILING */

#if (defined(__sparc) || defined(__i386))
  myComm.writeInt(NPRGREG);
  myComm.writeSpace();
  for (int i = 0; i < NPRGREG; i++) {
    myComm.writeAddress((void *)reg_set[i]);
    if (i == NPRGREG - 1) {
      myComm.writeEOL();
    } else {
      myComm.writeSpace();
    }
  }
#else
#error  Please port ServiceabilityAgentDbxModule::handleThrGRegs to your current platform
#endif

  myComm.flush();

#ifdef PROFILING
  writeTimer.stop();
#endif /* PROFILING */

  return true;
}

//
// Input routines
//

bool
ServiceabilityAgentDbxModule::scanAddress(char** data, psaddr_t* addr) {
  *addr = 0;

  // Skip whitespace
  while ((**data != 0) && (isspace(**data))) {
    ++*data;
  }

  if (**data == 0) {
    return false;
  }

  if (strncmp(*data, "0x", 2) != 0) {
    return false;
  }

  *data += 2;

  while ((**data != 0) && (!isspace(**data))) {
    int val;
    bool res = charToNibble(**data, &val);
    if (!res) {
      return false;
    }
    *addr <<= 4;
    *addr |= val;
    ++*data;
  }

  return true;
}

bool
ServiceabilityAgentDbxModule::scanUnsignedInt(char** data, unsigned int* num) {
  *num = 0;

  // Skip whitespace
  while ((**data != 0) && (isspace(**data))) {
    ++*data;
  }

  if (**data == 0) {
    return false;
  }

  while ((**data != 0) && (!isspace(**data))) {
    char cur = **data;
    if ((cur < '0') || (cur > '9')) {
      return false;
    }
    *num *= 10;
    *num += cur - '0';
    ++*data;
  }

  return true;
}

char*
ServiceabilityAgentDbxModule::scanSymbol(char** data) {
  // Skip whitespace
  while ((**data != 0) && (isspace(**data))) {
    ++*data;
  }

  if (**data == 0) {
    return NULL;
  }

  // First count length
  int len = 1; // Null terminator
  char* tmpData = *data;
  while ((*tmpData != 0) && (!isspace(*tmpData))) {
    ++tmpData;
    ++len;
  }
  char* buf = new char[len];
  strncpy(buf, *data, len - 1);
  buf[len - 1] = 0;
  *data += len - 1;
  return buf;
}

bool
ServiceabilityAgentDbxModule::charToNibble(char ascii, int* value) {
  if (ascii >= '0' && ascii <= '9') {
    *value = ascii - '0';
    return true;
  } else if (ascii >= 'A' && ascii <= 'F') {
    *value = 10 + ascii - 'A';
    return true;
  } else if (ascii >= 'a' && ascii <= 'f') {
    *value = 10 + ascii - 'a';
    return true;
  }

  return false;
}


char*
ServiceabilityAgentDbxModule::readCStringFromProcess(psaddr_t addr) {
  char c;
  int num = 0;
  ps_prochandle* cur_proc = (ps_prochandle*) ps_get_prochandle2(1);

  // Search for null terminator
  do {
    if (ps_pread(cur_proc, addr + num, &c, 1) != PS_OK) {
      return NULL;
    }
    ++num;
  } while (c != 0);

  // Allocate string
  char* res = new char[num];
  if (ps_pread(cur_proc, addr, res, num) != PS_OK) {
    delete[] res;
    return NULL;
  }
  return res;
}


//--------------------------------------------------------------------------------
// Class Timer
//

Timer::Timer() {
  reset();
}

Timer::~Timer() {
}

void
Timer::start() {
  gettimeofday(&startTime, NULL);
}

void
Timer::stop() {
  struct timeval endTime;
  gettimeofday(&endTime, NULL);
  totalMicroseconds += timevalDiff(&startTime, &endTime);
  ++counter;
}

long
Timer::total() {
  return (totalMicroseconds / 1000);
}

long
Timer::average() {
  return (long) ((double) total() / (double) counter);
}

void
Timer::reset() {
  totalMicroseconds = 0;
  counter = 0;
}

long long
Timer::timevalDiff(struct timeval* start, struct timeval* end) {
  long long secs = end->tv_sec - start->tv_sec;
  secs *= 1000000;
  long long usecs = end->tv_usec - start->tv_usec;
  return (secs + usecs);
}